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The eye is a vital sensory organ that enables us to fulfill all our life’s needs. Diseases affecting such a 

vital organ can have a detrimental impact on our lives. Although certain eye conditions are easily 

managed, others may result in lasting damage or loss of sight if not identified promptly. Problems within 

the retina or improper image focus on the retina may result in loss of eyesight. Optical Coherence 

Tomography (OCT) can identify diseases using retinal images taken from a side-angle view. Medical 

images are analyzed using Convolutional Neural Networks (CNNs) to automatically diagnose diseases. 

Doctors may reach varying conclusions when diagnosing diseases based on medical images. These 

conclusions may even contain human error. These challenges can be overcome with the use of CNNs. 

When creating a CNN architecture, many hyperparameter values need to be determined at the beginning 

before the training phase. A well-structured design is crucial for the successful performance of CNNs. 

The lengthy training time of CNNs makes testing every hyperparameter combination a very time-

intensive process. This research determined the best hyperparameters for CNNs by means of Bayesian 

optimization. The study employed a dataset comprising four categories: DME, CNV, DRUSEN, and 

NORMAL. With Bayesian optimization, this proposed model reached an accuracy and F1 score of 

99.69%, outperforming existing research findings. The proposed model will also help doctors to make 

decisions and speed up the decision-making process. 
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1. INTRODUCTION 

The eyes are the most important of our sensory organs. In fact, the brain is the organ that enables us to see and 

the eye helps us to see in this sense (Çevik et al., 2021). The eye is composed of three layers that are capable 

of transmitting and refracting light (Malkoç, 2006). The sclera, the first layer from the outside to the inside, is 

the white area where light is refracted and protects the eye from external factors. The second layer is the retina 

(choroid), a network of blood vessels responsible for nourishing the retina. The third layer, the retina, is located 

behind the eye wall and contains millions of light-sensitive nerve cells (Farsiu et al., 2014). The light coming 

into the eye is refracted first in the cornea and then in the lens and falls on the retina, and vision is realized by 

stimulating millions of nerve cells in the retina (Alqudah, 2020). Messages about vision are processed in the 

brain through the optic nerve, which is composed of millions of nerve fibers, to form the image (Wu et al., 

2013).  
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Vision starts in the retina. The retina also contains cells that allow us to see in the dark and in the light (Tayal 

et al., 2021). Numerous conditions can affect the retina, including diabetic retinopathy, retinal tears, retinal 

detachments, yellow spot disease, occlusions of the retinal artery, epiretinal membrane, and traumatic eye 

injuries (Fujimoto et al., 2000, Wu et al., 2013, Farsiu et al., 2014, Asif et al., 2022). Diseases occurring in the 

retina affect the visual ability of the person and the damage to the retina is irreversible (Saleh et al., 2022). 

Therefore, timely diagnosis and intervention are essential. Diabetic retinopathy, for example, which can cause 

vision loss, can be diagnosed early with a retinal examination (Çevik et al., 2021). Ultrasonography, fundus 

fluorescein angiography, and optical coherence tomography, in addition to retinal examination, can be used 

for diagnosis (Silverman et al., 2014). 

Optical Coherence Tomography (OCT) is a method of creating cross-sectional images of the retina using light 

waves (Li et al., 2019). OCT provides a detailed view of all retinal layers and assesses their thickness. These 

measurements aid in the diagnosis and selection of the best treatment method for retinal diseases (Fujimoto, et 

al., 2000). Although retinal eye diseases are typically detected by specialist clinicians through eye 

examinations, their assessments may sometimes vary. Human error may also arise due to the specialists' 

workload or conflicting disease conditions. To address these issues, it is important to support decision-making 

processes with computer-aided artificial intelligence systems (Kaya & Çetin-Kaya, 2024a, Duran et al., 2025). 

In the last decade, deep learning-based Convolutional Neural Networks (CNNs) have been extensively utilized 

and successfully applied to disease diagnosis from medical images (Çetin-Kaya & Kaya, 2024). The structure 

of a CNN comprises convolutional layers, pooling layers, and fully connected layers, and performs end-to-end 

learning in the training phase, using raw images as input (Krizhevsky et al., 2012; LeCun et al., 1998). In 

classical machine learning, the features used as input are manually determined at the beginning of the training 

phase, while in deep learning-based models, feature extraction from raw images is performed automatically 

during the training phase. 

Common problems in disease diagnosis from medical images with CNN can be listed as follows: insufficient 

number of labeled data, unbalanced class distributions in the datasets, noisy datasets, high similarities between 

dataset classes, and overfitting during training. When dealing with a dataset with limited labeled samples, 

underfitting occurs if CNN architectures are defined in a simple way with few layers, but overfitting occurs in 

the training phase if the architecture is too deep and complex (Kaya, 2024; Güneş & Çetin-Kaya, 2024). When 

overfitting occurs, CNN models tend to retain the training data in memory rather than generalizing from it, so 

their training accuracy is very high, but their performance drops significantly when encountering unfamiliar 

test data (Zhang et al., 2021). Therefore, determining the optimal CNN architecture is crucial for achieving 

high performance (Çetin-Kaya., 2024). Since CNN architectures have many hyperparameters, it is almost 

impossible to determine the optimal architecture manually. CNNs are also trained with medical images to 

diagnose diseases (Cheyi & Çetin-Kaya, 2024). In order to develop a successful model with CNNs, many 

hyperparameters, including the quantity and dimensions of filters within the convolutional layer, the quantity 
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of neurons in the densely connected layer, the dropout rate and the learning rate need to be optimally adjusted. 

In CNNs, hyperparameters comprise many combinations and trying all combinations is costly in terms of 

training time. To overcome these problems, statistical estimation methods are employed to find the best 

hyperparameters. In this study, Bayesian optimization method is used to determine the optimal 

hyperparameters in CNN architectures. Thus, four different retinal disease types were successfully classified. 

1.1. Motivation 

It is very important that retinal eye diseases are automatically detected by artificial intelligence systems at an 

early stage. Rapid treatment of early diagnosed eye diseases will accelerate the healing process. In the 

literature, there are various studies involving transfer learning and custom models. Since transfer learning 

models are complex models, it may not be possible to run them on all devices. Likewise, custom and transfer 

learning models have not been optimized to find the optimal hyperparameter values for eye diseases. There is 

a need for models with a very low error rate and a lightweight architecture for eye diseases. 

1.2. Contributions  

In the paper, a CNN-based model is introduced for the automated diagnosis of eye diseases using OCT images. 

A lightweight CNN architecture is developed using Bayesian optimization. Within the CNN structure, key 

settings like the quantity of filters, filter dimensions, the count of neurons in the fully connected layer, dropout 

percentage, and learning rate are fine-tuned for optimal performance. The proposed model achieves higher 

accuracy than previous studies in the literature. This lightweight model can also run quickly on resource-

constrained devices. 

The remainder of this document is structured as follows: Section 2 offers an overview of prior research. Section 

3 describes the dataset and methodology. In Section 4, the training results of the models are presented and 

compared with existing literature. Section 5 presents a comparative analysis of previous research studies. 

Lastly, Section 6 wraps up by providing an overview of the results. 

2. RELATED WORKS 

Deep learning architectures are commonly used for the classification of eye diseases. One of the methods used 

in deep learning studies is to design a model specific to the classification problem. Thus, customized 

architectures are used in studies aimed at diagnosing eye diseases. 

Alqudah (2020) proposed a custom CNN model for the classification of eye diseases from spectral-domain 

OCT images. The proposed model includes 4 Convolutional layers and consists of 19 layers in total. In the 

study, classification was performed for 5 classes: diabetic macular edema (DME), age-related macular 

degeneration (AMD), Drusen, choroidal neovascularization (CNV), and Normal. Training of the suggested 

model was conducted over 100 epochs, with the utilization of the Adam optimization algorithm. In the test 
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using 1250 images, the general accuracy rate of the model is 97.12% and the accuracy values on a class basis 

are between 97.84% (Drusen) and 100% (AMD). In this study, no optimization algorithm was applied for the 

filter count and kernel dimension in the model. For hyperparameters such as epoch and learning speed, the 

trial and error method was applied. For testing the proposed approach, the test data specified in the dataset was 

used. A successful result was obtained with a small model with fewer parameters than transfer learning models. 

Tayal et al. (2021) proposed three custom CNN architectures for classification of eye disease. The models 

differ in the number of CNN layers they have (five, seven and nine layers). Before the images were transmitted 

to the models, they were first preprocessed and then different image enhancement techniques were applied. 

All three models were trained for 15 rounds and the Adam optimizer is utilized with a learning rate of 0.001 

and a batch size of 84. As a result of the tests, the best result was obtained with the 7-layer model with 96.5% 

accuracy and 95.33% F1-score. High performance was achieved by enhancing the images with image 

processing techniques. The effect of 3 different architectures with different number of layers was analyzed. 

The study did not use an optimization algorithm to find the optimum architecture. Berrimi and Moussaoui 

(2020) proposed two CNN architectures for multiple classification and compared their performance with 

transfer learning models. The initial CNN design integrates three convolutional layers, with each layer's output 

subsequently processed through maximum pooling. Subsequently, a fully connected layer and an output layer, 

comprising four neurons that align with the class count, are appended. The second CNN architecture includes 

a dropout layer and a batch normalization layer in addition to the first CNN architecture. The first CNN model 

achieved 95.60% accuracy and the second CNN model achieved 98.75% accuracy. 

As the model depth increases, it involves a significant the duration required to train a model from end to end. 

In addition, many images are required to achieve good classification performance. Access to both medical 

images and competent experts to take part in the labeling process can be difficult. To overcome these problems, 

rather than training the model from scratch to completion, it is preferred to train a certain number of layers 

using the transfer learning method, thus creating deep learning models with higher performance with fewer 

images. Saleh et al. (2022) performed a transfer learning study on classifying retinal weaknesses from OCT 

images. The images were preprocessed in two stages. First, contrast enhancement was performed and then 

anisotropic diffusion filtration algorithm was applied. In the study, The SqueezeNet, a customized version of 

SqueezeNet, and the InceptionV3 models were implemented using a transfer learning technique. Regarding 

accuracy, the Modified SqueezeNet model (98%) outperformed the original SqueezeNet model (96.85%). The 

InceptionV3 model achieved the highest accuracy of 98.4%. Li et al. (2019) presented a deep learning model 

for the determination of retinal eye illnesses, which combines deep features with handcrafted features. 

Handcrafted features are derived from Sift and Gabor filters. The study was carried out with three frameworks. 

In the first one, images and handcraft features are combined and sent to the deep architecture, while in the 

second one, images and handcraft features are sent separately to the deep architecture and the results are 

combined for classification. In the third framework, images and handcrafted features are combined after each 

convolutional block and RCNet model is used to realize this. With the dataset, three groups with different 
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distributions were created and training and testing were performed. The best performance for all three groups 

was obtained by adding the RCNet model and Gabor features. The authors explored combining manually 

designed features with those derived from deep learning methods. In order to examine the effect of different 

datasets, they divided the dataset into three different groups. Especially in group 2, a total of 1000 images were 

employed for training, and another 1000 images were reserved for testing. In this case, they showed that deep 

learning models integrated with handcrafted features perform better on small datasets. In Group 1, 1000 images 

of the dataset were used for testing and the rest for training. In Group 3, 50% of the dataset was reserved to 

training and the other 50% part to testing. Asif et al. (2022) presented a model for identifying eye illnesses 

from OCT images, utilizing transfer learning as a key component. In the study, ResNet50 architecture is used 

by modifying the last layer and training the entire system as a whole. A fully connected block including three 

dense layers, Relu activation function, three BatchNormalization layers, Dropout layer and L2 regularization 

is added to the RESNet50 model. The model was tested with 242 images for each class and 968 images in 

total, and an accuracy of 99.48% was obtained. Zheng et al. (2020) undertook an investigation on the use of 

synthetic images generated with GAN in the detection of retinal diseases. They used Kermany dataset 

consisting of original images and a synthetic dataset. The synthetic dataset was created from 130 urgent and 

148 nonurgent images using GAN. This dataset contains 100,456 OCR images, of which 48,751 are urgent 

and 51,705 are nonurgent. The Inception V3 model was trained with both the original and synthetic dataset 

using transfer learning. The performance of the models was assessed across the actual image data and the 

fabricated image data. In the test phase using the original dataset, the effectiveness of the model trained using 

an artificially generated dataset was slightly lower than the model trained with the original images. Kermany 

et al. (2018) introduced a transfer learning model that utilizes the InceptionV3 architecture for classifying eye 

diseases in OCT images. Training of the model was performed across 100 epochs, utilizing a total of 108,312 

images. Then, it was tested with 1000 images and a specificity of 97.4%, a sensitivity of 97.8%, and an 

accuracy of 96.6% was observed. The authors also investigated whether there would be any performance loss 

if the model underwent training using a reduced dataset. Training of the model utilized a dataset containing 

1000 images for each class, and an accuracy rate of 93.4% was obtained as a result of the test. Tuncer et al. 

(2021) employed advanced, already trained models to perform the classification of OCT images into various 

categories. In the feature extraction phase of the proposed architecture, they utilized AlexNet, GoogleNet and 

ResNet18 architectures. Accuracy values of 96.88%, 97.40% and 95.36% were obtained respectively. To 

maximize the architectures' functional output, they used the SVM algorithm in the classification phase. When 

the results obtained are analyzed, Alexnet-SVM, Resnet18-SVM and Googlenet-SVM architectures obtained 

accuracy values of 98.96%, 95.36% and 98.2% respectively. Kim and Tran (2021) proposed two models in 

their study. In the first model, three binary CNN classifiers are used. These classifiers can be thought of as 

sequential, first reducing from 4 classes to 2 classes and then performing binary classification in the remaining 

classes. The first classifier (ResNet152) was used to classify the images into DME and CNV and Normal and 

Drusen. Then, the second classifier (InceptionV3) is used for CNV and DME discrimination and the third 

classifier (VGG19) is used for Drusen and Normal discrimination. Four distinct binary CNN classifiers are 
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employed by the second model. Each classifier detects a specific disease (Classifier1 (VGG16)-CNV vs. 

Others, Classifier2 (VGG16)-DME vs. others, Classifier3 (VGG19)-Drusen vs. others and Classifier4 

(IncepitonV3)-Normal vs. others). Each classifier works only to detect the disease of interest and groups the 

rest of the classes as “other”. Model 1 achieved 98.1% accuracy while model 2 achieved 98.7% accuracy. İncir 

and Bozkurt (2024a) used K-means clustering algorithm to segment hard exudates, which are important lesions 

of the disease, and increased the effect of these regions in the original image. Thus, the importance of data 

preprocessing is emphasized. In addition, they utilized ResNet50, MobileNet, DenseNet121 and 

EfficientNetV2-M architectures in the feature extraction phase. The extracted features are fed separately as 

input to the Global Average Pooling layer and then forwarded to the dense and dropout layers. At the end of 

the study, ResNet50, MobileNet, DenseNet121 and EfficientNetV2-M models achieved 91.07%, 88.62%, 

91.87% and 94.36% accuracy on the original data set, respectively. On the preprocessed dataset, the accuracy 

values were 92.18%, 90.70%, 93.30% and 95.16%, respectively. İncir and Bozkurt (2024b) created a 

meaningful and sufficient dataset for diabetic retinopathy classification with the aid of well-designed data 

preparation and alteration methodologies. A selection of pre-trained models, specifically EfficientNetV2-M, 

MobileNet, VGG16, Inception-V3, Xception, DenseNet-121, and ResNet-50, was employed by them to extract 

features. As a result, EfficientNetV2-M architecture achieved the highest accuracy value with 97.65%. 

3. MATERIAL AND METHOD 

3.1. Dataset 

A dataset consisting of four different classes of diseased and healthy, namely CNV, DME, DRUSEN, and 

NORMAL was used in this work (Kaggle, 2018). In this dataset, there are 37205 CNV diseased eye OCT 

images, 11348 DME diseased OCT images, 8616 DRUSEN diseased OCT images and 26315 NORMAL 

healthy OCT images to be used in training, while there are 242 OCT images in each class in the test. 8 images 

have been allocated to each class for validation. Since this number is quite small for validation, we rearranged 

the dataset by reserving 5% of the training dataset for validation. Figure 1 displays examples of images from 

this dataset. 

Data partitioning results for the OCT data are presented in Table 1. The 8 images reserved for validation in the 

Kaggle data were added to the training dataset and 5% of each class was reorganized for validation based on 

this result. 

3.2. Convolutional Neural Network 

CNNs are deep learning architectures used in image processing for image recognition and segmentation that 

take raw images as input (Litjens et al., 2017, Kaya & Çetin-Kaya, 2024b). This algorithm, which captures 

features in images in different processes, consists of different layers (LeCun et al., 2015; O'Shea & Nash, 

2015). CNNs perform feature extraction automatically from raw input images in the training phase, instead of 

using manual feature extraction in the training phase in classical machine learning. 

https://doi.org/10.54287/gujsa.1592915


21 
Kaya, M.  

GU J Sci, Part A 12(1) 15-35 (2025) 10.54287/gujsa.1592915  
 

 

  
(a) CNV (b) DME 

  
(c) DRUSEN (d) NORMAL 

Figure 1. Retinal Disease Images 
 

Table 1. Data partitioning of the OCT dataset 

 
Original dataset After reserving the validation data (%5) from train 

Train Validation Test Train Validation Test 

CNV 37205 8 242 35352 1861 242 

DME 11348 8 242 10788 568 242 

DRUSEN 8616 8 242 8193 431 242 

NORMAL 26315 8 242 25007 1316 242 

A CNN model is composed of three main components: initial feature determination via several sequential 

convolution layer, followed by a pooling layer, and concluding with a fully connected layer for network 

classification. (LeCun et al., 2015). Architecturally, a CNN is designed as a feed-forward network, including 

layers dedicated to normalization, feature extraction, and pooling. (LeCun et al., 2015; O'Shea & Nash, 2015). 

Neurons sharing identical filters are exclusively linked to localized image segments, maintaining the spatial 

arrangement, and their weights are shared to minimize the model's parameter count (Zeiler & Fergus, 2014). 

In the CNN architecture, convolutional layers in the early stages learn general features about the image such 

as color blobs, edges, and lines. Subsequent layers learn special forms specific to the dataset (O'Shea & Nash, 

2015; Lu et al. 2017). 
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A significant benefit of CNNs is their capacity to reduce the parameter number within Artificial Neural 

Networks (ANN). CNNs use shared filter weights. CNNs can also shrink the dimension of the feature map 

after each sequential convolution operation through pooling mechanisms. Unlike ANNs, CNNs help to extract 

features spatially through filters that are moved over the image. Therefore, CNN empowers developers to 

address intricate challenges beyond the capabilities of traditional ANN and to construct more extensive models. 

As the layers deepen, more abstract features are obtained from the data presented as input to the CNN. This is 

critical for object detection (Schulz et al., 2018; Mascarenhas & Agarwal, 2021). Overfitting is one of the most 

serious issues in CNN architectures (O'Shea & Nash, 2015; Litjens et al., 2017). In CNNs, the number of 

parameters increases as the network gets deeper. In the case of limited labeled data, CNNs have high training 

accuracy because they can memorize the training data, they struggle with test data that has not been seen before 

(Zhang et al., 2021). Hence, it is crucial to ascertain the ideal quantity of filters within the convolutional layer 

in CNN designs. 

3.3. Bayesian Optimization 

Bayesian optimization involves a step-by-step, repetitive process most commonly used in hyperparameter 

optimization problems. In this method, compared to other hyperparameterization techniques, it determines the 

next evaluation points based on the results obtained previously. Bayesian optimization uses two basic 

components for this process; the acquisition and the surrogate functions (Frazier, 2018). 

The surrogate function places all evaluated points into the objective function. The goal function determines 

the utilization of different points according to the link between discovery and utilization through the acquisition 

function, after calculating the probability through Bayes' theorem (Frazier, 2018). Bayes model is faster than 

other hyperparameter optimization techniques (Snoek et al., 2012). Because the optimized hyperparameter 

combinations can be determined with pre-tested values (Frazier, 2018; Fernandes et al., 2021). 

Tree-structured Parzen estimator is used in this study. In each iteration, new observations are identified and 

tested by deciding the optimal hyperparameter result at the end of the iteration. The test results are added to 

the dataset and the iteration is continued. The Bayes formula in Equation 1 is applied (Brochu, et al., 2010; 

Fernandes et al., 2021). Performance comparison of the trial results is based on the Expected Improvement 

formula in Equation 2 (Brochu, et al., 2010; Fernandes et al., 2021). 

 𝑝(𝑦|𝑥): 𝑝(𝑥|𝑦) =
𝑝(𝑥|𝑦) ∗ 𝑝(𝑦)

𝑝(𝑥)
 (1) 

 𝐸𝐼𝑓∗(𝑥) =  
𝛾𝑓∗𝐼(𝑥)  ∫ 𝑝(𝑓)𝑑𝑓

𝑓∗

−∞

𝛾𝐼(𝑥) + (1 − 𝛾)𝑔(𝑥)
 ∝ ( 𝛾 +

𝑔(𝑥)

𝐼(𝑥)
 (1 − 𝛾))−1 (2) 
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The acquisition function chosen for this research is the Expected Improvement (EI). EI is a function used in 

the optimization process to select the best among candidate solutions. EI focuses on exploiting the current best 

solution by balancing between exploration and exploitation, i.e. the ability to search near the best value, and 

exploring new values in new search spaces. 

3.4. Proposed Method 

The model proposed in this paper consists of eight convolutional layers. Following the initial convolutional 

layer, a Batch Normalization layer and then a 2x2 max pooling layer were added. This initial structure was 

repeated once more. Then, after two convolutional and Batch Normalization layers, a max pooling layer was 

added. This last structure was repeated three times. A Batch Normalization layer was incorporated following 

every convolutional layer. Thus, eight convolutional layers were used in total. After the convolutional layer, 

which is the feature extraction layers, the flatten layer was added to make the data suitable for the densely 

connected layer. Two dense layers were implemented in the proposed design. After the flatten and fully 

connected layers, a dropout layer was added. In the last layer, since there are 4 classes in our dataset, we created 

an output layer with 4 neurons using softmax. The CNN architecture we used to achieve the best performance 

is shown in Figure 2. 

 

Figure 2. Proposed CNN Architecture 

Utilizing Bayesian optimization, the best values were found for the dropout rate, the filter count in the 

convolutional layers, the quantity of neurons within the densely connected layer, learning rate, and filter kernel 

sizes. In fact, the number of filters is expected to be increased for more robust feature extraction in later layers. 

Since overfitting is often encountered in such cases, finding the best values is time-consuming when performed 

manually.  

The procedure for Bayesian optimization is detailed in Algorithm 1. First, a dataset is created for several 

randomly selected combinations of hyperparameters. The surrogate model is trained with this dataset. From 

the candidate hyperparameter combinations, the one with the highest expected improvement is selected and 

tested on the real function. 

Algorithm 1. Bayesian Optimization 
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Define surrogate model and acquisition function 

Find initial dataset with random hyperparameter combinations 

While i < maxIteration do: 

      -»Train the surrogate model with the dataset 

      -»Calculate expected improvement for candidate hyperparameter sets 

      -»Choose hyperparameter combination with high expected improvement 

      -»Find accuracy value for selected hyperparameter combination 

      -»Update the dataset with new hyperparameter combination 

      i++ 

end while 

            

4. RESULTS 

The experimental studies and all operations were performed on a regular PC configuration, which consisted of 

16 gigabytes of RAM, an NVIDIA GeForce GTX 1080 Ti GPU with 11 gigabytes of memory, and an Intel i5-

8400 processor. In this research, we designed the most successful model by optimizing the optimal filter count, 

the quantity of neurons within the fully connected layer and other hyperparameters for an architecture 

consisting of eight convolution layers and 2 densely connected layers. For the model, we set the epochs value 

to 50 after resizing the images to 224x224x3 and started training. 

CNN models are generally an end-to-end learning architecture that automatically extracts features from the 

raw image. CNN models should have enough data for effective learning. Therefore, training times depend on 

the size of the dataset and are quite costly. There are many hyperparameters in CNN models, and optimizing 

all hyperparameters will extend the optimization process considerably. For this reason, the number of filters, 

kernel dimension, neuron count in the fully connected layer and dropout percentage, which are generally 

considered as the most important hyperparameters in the literature, are taken into consideration. For CNN 

models to be robust, feature extraction needs to be done in detail. In general, the number of filters and kernel 

size are effective at this point. The neuron count in the densely connected layer is important for classification 

accuracy, so classification performance after feature extraction is highly dependent on the neurons in the fully 

connected layer. The biggest problem in the training phase is overfitting. To avoid this, it is important to 

determine the appropriate dropout rate. Moreover, the hyperparameter ranges were determined based on high 

performance studies in the literature, state-of-the-art CNN model architectures and trial-and-error method. 
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Table 2 shows the hyperparameters to be optimized and their values. Table 3 shows the optimum 

hyperparameters for the proposed CNN architecture. The results of the two best CNN architectures can be seen 

comparatively in Table 3. The optimization process was terminated upon reaching 50 iterations, which was 

the pre-defined limit. Since the training of CNN models is very costly, the number of iterations should not be 

kept too high, but since it is thought that the desired performance value cannot be achieved at a small iteration 

value such as 20, the number 50 was chosen. This value was chosen to keep the training cost low and to achieve 

high performance. 

Table 2. Hyperparameters values (range) 

Hyperparameters Value 

Filter number of conv layers from 16 to 256, step: 16 

Kernel size 3x3, 5x5, 7x7 

Dropout from 0 to 0.8, step: 0.1 

Dense neuron number from 16 to 256 , step :16 

Learning rate 0.00001; 0.0001; 0.001 

The results of the performance evaluation are presented in Table 4, which includes the accuracy, precision, 

recall, F1-score, and AUC for each model. CNN models obtained as a result of Bayesian optimization gave 

the highest accuracy. In cases where the dataset is unevenly distributed, precision, recall and F1-score values 

should also be considered for comparison. The Bayesian model searches for the CNN model with the most 

optimal parameters for 50 iterations. As a result, it obtained the best performing models that do not fall into 

overfitting in the training phase. Existing state-of-the-art CNN models were also used for comparison. In these 

models with pre-trained weights, the final layers are removed up to the last convolution layer, after which the 

GlobalAveragePooling layer is added. After that, a dense layer with 512 neurons and a layer with a dropout 

percentage of 0.5 were added. Finally, a layer with four neurons was added for classification. Only the last 

layers of these models were trained with transfer learning. Among the transfer learning models, DenseNet201 

was the best model with 95.87% accuracy. 

As a result of the test data, the Confusion Matrix values for each class are shown in Figure 3. The classes in 

the confusion matrix are as follows: CNV(0), DME(1), DRUSEN(2), and NORMAL(3). Actual labels are 

represented along the horizontal axis, while the model's predicted values are displayed on the vertical axis. All 

of the images that belonged to the CNV and Normal classes were correctly classified by the proposed model 

1. One image in the DME class and two images in the DRUSEN class were incorrectly classified. According 

to proposed model 2, the difference here is that 3 images that should be DRUSEN are incorrectly classified as 

CNV. Performance metrics were calculated as described in (Kaya et al., 2023). 

Table 3. Best hyperparameters for two models 

Hyperparams Model-1(A,BxB) Model-2(A,BxB) 
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Conv1 112, 3x3 112, 3x3 

Conv2 112, 5x5 112, 5x5 

Conv3 112, 5x5 16, 3x3 

Conv4 48, 3x3 48, 3x3 

Conv5 240, 3x3 208, 5x5 

Conv6 144, 3x3 48, 3x3 

Conv7 112, 3x3 112, 5x5 

Conv8 112, 5x5 208, 3x3 

Dropout 1 0 0 

Dense 1 128 96 

Dropout 2 0.2 0.4 

Dense 2 96 80 

Dropout 3 0 0 

Learning rate 0.0001 0.001 

(A, BxB) , A stands for the number of filters, B is the kernel size of the filter 

 

Table 4. Performance metrics of proposed models and transfer learning based models 

Models Accuracy(%) Precision(%) Recall(%) F1-Score(%) AUC(%) 

DenseNet121 93.29 94.25 93.29 93.31 95.52 

DenseNet169 94.63 95.01 94.53 94.62 96.42 

DenseNet201 95.87 96.08 95.87 95.87 97.25 

VGG19 87.50 90.14 87.50 87.20 91.67 

InceptionV3 94.01 94.48 94.01 93.96 96.01 

InceptionResNetV2 93.18 93.96 93.18 93.15 95.45 

Xception 90.39 92.32 90.39 90.32 93.60 

MobileNetV2 94.42 94.86 94.42 94.42 96.28 

Proposed Model-1 99.69 99.69 99.69 99.69 99.79 

Proposed Model-2 99.59 99.59 99.59 99.59 99.72 
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Proposed Model 1 Proposed Model 2 

Figure 3. Confusion Matrix for Proposed Models 

Figure 4 presents the training-validation accuracy and loss graphs of the proposed models during the training. 

When these graphs are analyzed, it can be said that the models generally do not fall into an overlearning 

situation. If the models had fallen into a state of overlearning, for example in the accuracy graph, after a certain 

epoch value, the training accuracy would start to improve, that is, to increase or continue stably, while the 

validation graph would start to fall downward after this epoch value and the validation performance would 

start to decrease. However, while the training accuracy tended to increase over the epoch, the validation 

accuracy did not increase in the same way and generally followed a near-parallel trend with a slight gap 

between them. The validation graph shows a sharp drop in the dropout cases, but quickly recovers in the 

following epochs. 

Figure 5 and 6 show the training-validation accuracy and loss graphs of the 10-fold cross validation method in 

each fold respectively. For 10-fold cross validation, the training and test dataset are combined and the whole 

dataset is divided into 10 folds. In each training phase, the previously unused part of the 10 partitions will be 

used for testing and the remaining part will be used for training. In this way, the model will have tried all the 

samples in the dataset for testing. In this way, the accuracy of the models in each fold will be considered 

together and the average accuracy will be the model's total efficacy. The accuracy obtained in this way will 

better reflect the dataset. At this stage, the best CNN architectures found by Bayesian optimization were 

reconstructed with the optimum parameters found and retrained and then tested on the 10-fold cross validation 

dataset. If we consider the accuracy graphs at this stage, the training and validation accuracy graphs continued 

in an increasing and mostly overlapping manner throughout the epochs. This means that during training and 

validation, the models learned at full capacity without overlearning. Averaging all test accuracies in each fold 

yields an average accuracy of 97.03% for Bayesian model 1 and 96.73% for Bayesian model 2. Validation 

methods such as 10-fold cross validation usually yield the most reliable model accuracies. However, none of 

the existing studies applied k-fold-cross-validation. This dataset is partitioned into training, validation and 

testing on the Kaggle website. For each class, 8 images are allocated as validation. In our study, 5% of the 

training dataset is reserved for validation. In the dataset, 968 images are allocated for testing and this partition 

https://doi.org/10.54287/gujsa.1592915


28 
Kaya, M.  

GU J Sci, Part A 12(1) 15-35 (2025) 10.54287/gujsa.1592915  
 

 

is used only for testing purposes after the model training is finished. Since the majority of current studies 

typically report the test image accuracies based on these 968 images, it becomes easier to make comparisons 

in this way. 

  

  

Figure 4. Training-validation accuracy and loss graphs for Proposed Models 

 

 

Figure 5. Training-validation accuracy and loss graphs for 10-fold cross validation of Bayes Model 1 
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Figure 6. Training-validation accuracy and loss graphs for 10-fold cross validation of Bayes Model 2 

Figure 7 presents the training-validation accuracy and loss graphs of state-of-the-art CNN models. Considering 

the loss graph, the training-validation loss graphs are declining over the epochs and the important point is that 

the validation loss graph follows the training loss graph from the top and since there is some space between 

them, these models have the capacity for improvement. Figure 8 presents the confusion matrix tables of popular 

pre-trained CNN models. When the confusion matrices of the models are analyzed, it is seen that most of the 

errors are due to the misclassification of the DRUSEN class as CNV. Then the DME class is misclassified as 

CNV and finally the DME class is misclassified as NORMAL. The data volume for the most frequently 

misclassified categories can be augmented. 

 

Figure 7. Training and validation accuracy and loss graphs for state-of-the-art CNN models a) 

DenseNet121 b) DenseNet169 c) DenseNet201 d) InceptionResNetV2 e)InceptionV3 f)MobileNetV2 

g)VGG19 h)Xception 
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Figure 8. Confusion Matrix for state-of-the-art CNN models a) DenseNet121 b) DenseNet169 c) 

DenseNet201 d) InceptionResNetV2 e)InceptionV3 f)MobileNetV2 g)VGG19 h)Xception 

Table 5 summarizes the existing studies, the architectures they use and their results. The proposed CNN 

architecture gave better results than the current studies. 

Table 5. Proposed CNN model comparison with existing studies 

*Calculated from the confusion matrix. 

Reference Model Number of class 

Performance Metrics 

F1-Score Accuracy 

Kermany et al. (2018) InceptionV3 4 classes 0,9760 0.966 

Li et al. (2019) RCNET 4 classes 0,9819* 0,988 

Kim and Tran (2021) Transfer Learning  2 classes 0,99 0,987 

Alqudah (2020) Custom CNN 5 classes 0,9819* 0.9712 

Tayal et al. (2021) Custom CNN 4 classes 0,95 0,9649 

Saleh et al. (2022) InceptionV3 4 classes 0,96 0,9840 

Asif et al. (2022) Resnet50 4 classes 0,99 0,9948 

Proposed Model Custom CNN 4 classes 0,9969 0,9969 
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5. DISCUSSION 

This study proposes a lightweight CNN design for high accuracy classification of eye diseases. Since the CNN 

architecture contains many hyperparameters, it is almost impossible to tune them manually to find the optimum 

architecture. Therefore, an optimal architecture is obtained with a Bayesian optimization based algorithm. On 

the Kaggle web page, the dataset is set as training, validation and test. In our wok, 5% of the training dataset 

is allocated as validation since there is very little validation-only dataset. In the literature, k-fold cross 

validation is generally not used. Data is commonly partitioned into the training, validation, and test sets. 

Generally, different test datasets were created and used than the test dataset shared on the Kaggle website. This 

makes it difficult to compare with many existing studies. The dataset is large enough, but there is an imbalance 

in the number of images in each class. 

Li et al. (2019) investigated the integration of handcrafted features with different datasets into deep learning 

architecture. In this study, it is seen that when the data is organized into training and test by 50%, the accuracy 

value drops significantly compared to the test case with approximately 1000 images. Asif et al. (2022) used 

the original dataset and 968 test image data in the same way as us. They added a fully connected layer and 

dropout to the ResNet50 architecture for transfer learning. They found the same test accuracy as our work with 

a more complex architecture and more parameters. In addition, they increased the original dataset by 

approximately 8 times. This process increases the training cost considerably. Alqudah (2020) proposed a model 

with 4 convolution layers and found a 5-class classification with 97.12% accuracy. 1250 images were used for 

testing. The remaining dataset was split, with 70% used for training and 30% used for validation. Although it 

is unclear how the four-layer architecture and the number of filters in each layer were determined, the trial and 

error method was used for hyperparameters such as learning rate, batch size and epochs. Tayal et al. (2021) 

divided the dataset into training, validation and testing. About 8% of the dataset was used for testing. Three 

different custom CNN architectures were proposed. The highest accuracy was 96.5%. Since authors selected 

the test data more than the one given on the Kaggle web page, it is not possible to make an accurate comparison. 

Saleh et al. used transfer learning methods such as SqueezeNet, modified SqueezeNet and Inception V3. They 

divided the dataset into parts to keep the training time short. For each model, they divided these parts into 

training validation and testing. They used 2700 images for testing in their best model with 98.4% accuracy. 

After a review of the relevant literature, research using transfer learning models have generally achieved high 

accuracy values. Since these models are trained from the beginning with fine tuning, their training is more 

costly. They also have high parameter numbers. Other custom models have fewer parameters than state-of-

the-art transfer learning models, but their overall test accuracy has been limited. Considering all these 

evaluations, our proposed model reached higher accuracy than the current studies. 
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6. CONCLUSION 

Early diagnosis plays a key role in managing retinal eye diseases. Retinal eye disease classification is often 

conducted through the analysis of OCT images; however, expert-based manual classification can sometimes 

be inaccurate. For this reason, automatic classification of retinal diseases by computer-aided systems is gaining 

importance. CNN architectures have recently demonstrated successful performance in disease detection from 

medical images. For successful image classification, CNN architectures need to be well designed. In CNN 

architectures, hyperparameters such as the number of filters in each layer, kernel dimension, learning rate, 

dropout and the count of nodes within the fully connected layer should be optimally determined. Since there 

are many combinations of hyperparameters, it is very difficult to perform this process manually. Therefore, 

we have determined the optimum hyperparameters with a Bayesian optimization based algorithm. High 

performance metrics (99.69% accuracy and F1 score) were achieved with the proposed model. These results 

are better than the existing research findings in the literature. The intention of the proposed model is to 

streamline the decision-making process and lessen the workload of expert personnel. In future studies, 

optimization will be performed on different architectures. 
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