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1. Introduction  
Weld defect detection has a critical application area in 
many fields ranging from industrial manufacturing 
processes to the automotive and aerospace industries. 
Weld defects can be structural defects, cracks, or faults 
that usually occur during the welding process [1]. 
Detection of such defects is very important in terms of 
improving production quality, ensuring product safety 
and preventing failures. Traditional methods such as 
visual inspection, ultrasonic testing, magnetic grounding, 
etc. for the detection of weld defects are often time-
consuming and error-prone [2]. In recent years, artificial 
intelligence techniques have been increasingly used to 
solve such problems faster and more accurately. Deep 
learning methods for weld defect detection have been 
frequently used in the literature. 

Image processing techniques are one of the most widely 
used deep learning approaches for weld defect 
detection. Visual data may include microstructures, 
cracks or other distortions in the weld zone. 
Convolutional Neural Networks (CNN) show high 
success in object recognition and classification by 
extracting features from such visual data [3].  

S. Oh et al. [4] introduced an approach for the automated 
detection of weld defects utilizing Faster R-CNN 
grounded in deep learning, aiming to carry out both 
feature extraction and classification within a unified 
algorithm while achieving comprehensive automation. 
Algorithms were analyzed to learn the data and data 
augmentation method was used to artificially increase 

the limited data. Two integrated feature extractors of 
Faster R-CNN are chosen to effectively extract the 
features from the radiographic test image.  

D. Palma-Ramírez et al. [5] introduced an innovative 
CNN model derived from ResNet50 to differentiate four 
categories of weld defects in radiographic images: crack, 
pore, non-penetration, and no defect. To enhance 
generalization and prevent overfitting, they employed 
layered cross-validation, data augmentation, and 
regularization techniques. The model was evaluated 
using three datasets, achieving accuracies of 98.75%, 
90.255%, and 75.83% respectively. 

Detecting source defects often requires an anomaly 
detection approach. Deep learning models learn what is 
normal in the training data and can be used to detect 
anomalies. Such approaches can be useful in scenarios 
where labeled data is limited [6]. 

G. Stemmer et al. [7] sought to utilize deep learning 
techniques for the real-time detection of welding defects 
by capturing the welding process with microphones and 
cameras. They compiled an extensive database 
consisting of over 4000 welding samples that included a 
variety of weld types, materials, and defect categories. 
Notably, their multi-modal strategy achieved an average 
Area Under the ROC Curve (AUC) score of 0.92 across 
all eleven defect categories represented in the dataset. 

H. Engbers et al. [8] introduced a model selection 
technique for detecting multivariate anomalies in 
manufacturing systems by employing a meta-learning 
method based on multi-output regression. The 
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suggested approach leveraged the strengths of meta-
learning to identify and understand intricate relationships 
within multivariate data, facilitating the selection of the 
most effective anomaly detection model. 

The process-based nature of welding operations creates 
the need to model with time series data. Long Short Term 
Memory (LSTM) networks are effective for examining 
data that changes over time. LSTM can learn the 
dynamics of welding processes and detect any abnormal 
changes during the process [9]. 

GANs are another approach in deep learning techniques 
that has attracted attention in recent years. GANs can be 
used to generate data where data is limited and to 
diversify the existing dataset. This allows the model to 
generalize better for the detection of source defects [10]. 
R. Guo et al. [11] introduced a method for detecting weld 
defects by utilizing a generative adversarial network 
alongside transfer learning to address the issue of data 
imbalance in radiographic images, thereby enhancing 
the accuracy of defect detection. The defect detection 
model effectively identified five different types of weld 
defects: cracks, lack of fusion, penetration, porosity, and 
slag inclusion, achieving an F1 score of 90% and a 
recognition accuracy of 92.5%. 

In this study, welding defects were detected using 
YOLOv10 (You Only Look Once version 10). In the 
experiments with the three-class dataset, 0.939 
Precision-Confidence and 0.91 Recall-Confidence were 
obtained. This accuracy metric indicates that the 
suggested model is suitable for the task of detecting weld 
defects. In the first part of the organization of the paper, 
general information about the subject and related 
literature studies are given. The materials and methods 
used are analyzed in the second part of the paper. The 
dataset and the YOLOv10 model are presented in this 
section, followed by the implementation and the results 
obtained in the third section. The study is finalized with a 
conclusion section. 

2. Material and Methods 
The dataset and method used are explained in this part 
of the study. 

2.1. Dataset 
The weld detection dataset [12] was used to perform the 
study. The Object Detection dataset contains 3 classes 
to detect defects on weld surfaces: bad weld, good weld, 
and defect. This dataset is formatted for the object 
detection task in the YOLO annotation format. The 
images in this dataset are taken from various image 
collections and datasets. Some images belonging to the 
dataset are given in the figure. The images in the first 
row belong to the “Bad Weld” class. The following rows 
show images belonging to the “Good Weld” and “Defect” 
classes, respectively. The last line presents images of 
examples where different classes coexist. 

 
Figure 1. Image samples from dataset [12]. 

The distribution of examples across each class in the 
dataset is illustrated in Figure 2. 

 
Figure 2. The distribution of examples across each class in 

the dataset.  

2.2. YOLOv10  
In recent years, YOLOs have emerged as the dominant 
paradigm in the field of real-time object detection due to 
their effective balance between computational cost and 
detection performance. Researchers have achieved 
significant progress by studying the architectural 
designs, optimization goals, data augmentation 
strategies, and others for YOLOs [13]. YOLOv10 is the 
tenth version of the YOLO model used in the field of 
object detection. This model is an extremely fast and 
efficient structure that performs the function of detecting 
and classifying objects in images. The YOLO series was 
first introduced in 2015 by Joseph Redmon et al., and 
each new version includes significant improvements in 
both accuracy and speed. YOLOv10 is specifically 
designed for real-time object detection and is widely 
used in industrial applications, security systems, 
autonomous vehicles, and robotics. YOLOv10 offers 
several technical innovations and optimizations 
compared to previous versions. These innovations 
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enable the model to run faster, have lower latency, and 
provide more accurate results [14]. 

YOLOv10, similar to its previous versions, uses a 
convolutional neural network (CNN) architecture. 
However, in YOLOv10, the network depth has been 
increased and more parameters have been optimized. 
This improves the model's ability to detect more complex 
objects. YOLOv10 enables the model to use processor 
resources more efficiently thanks to weight sharing and 
efficient computational techniques. This provides a 
significant advantage especially in real-time 
applications. 

YOLOv10 incorporates attention mechanisms into its 
architecture by using transformer-based layers, which 
have gained popularity in recent years. This 
enhancement leads to improved precision in object 
detection and localization.  

YOLOv10 strikes an excellent balance between speed 
and accuracy. The speed issues seen in earlier iterations 
have been significantly minimized through optimization 
strategies and advancements in model architecture. 
YOLOv10 is capable of processing thousands of frames 
per second with impressive speed. It employs 
sophisticated data augmentation techniques to enhance 
data diversity. Additionally, it streamlines the training 
process by leveraging pre-trained weights through 
transfer learning methods. 

YOLOv10 has the advantages of higher accuracy, real-
time performance, and model size compared to other 
YOLO versions. For these reasons, YOLOv10 was 
preferred in the study.  

2.3. Performance Metrics 
Precision, recall, intersection over union, mean Average 
Precision, Frame Per Second,(FPS), latency are the 
basic metrics utilized to measure the performance of 
object detection algorithms [13, 15, 16].  

Precision: Measures how many of the objects detected 
by the algorithm are correct. High precision means that 
false positives are low. The formula is as in equation (1). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
!"#$"

                                                                     (1) 

Recall: Measures how many real objects are correctly 
detected. High recall means fewer missed objects. The 
formula is as in equation (2). 

𝑅𝑒𝑐𝑎𝑙𝑙 = !"
!"#$%

                                                                          (2) 

F1-Score: Used to measure the balance between 
precision and recall. The formula is as in equation (3). 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = &∗"()*+,+-.∗/)*011
("()*+,+-.#/)*011)

                                                      (3) 

Intersection over Union (IoU): Measures how much the 
bounding box detected by the algorithm overlaps with the 
actual bounding box. IoU > 0.5 is generally accepted for 
the algorithm to be considered to have made an accurate 
detection. The formula is as in equation (4). 

𝐼𝑜𝑈 = !"#$%&$'#()"	+%$,
-"()"	+%$,

                                                      (4) 

Mean Average Precision (mAP): It is one of the most 
widely used metrics. It represents the averaged average 
precision (AP) values for all classes and IoU threshold 
values. It is found by calculating the area under the 
average precision curve (Precision-Recall Curve). 

FPS (Frame Per Second): Evaluates the real-time 
operability of the algorithm. Faster models are more 
valuable, especially in practical applications. 

Latency: The time it takes for the algorithm to process a 
frame. Lower latencies are critical for real-time 
applications. 

Confusion Matrix and Associated Metrics: 

True Positive (TP): Objects that were accurately 
identified. 

False Positive (FP): Objects that were incorrectly 
identified. 

False Negative (FN): Objects that were overlooked. 

True Negative (TN): Areas that are not relevant.These 
metrics are important for comparing both the accuracy 
and efficiency of algorithms and are evaluated with 
different priorities for different application domains.  

3. Experimental Results 
This study was conducted using the Python 
programming language. 1619 datasets were used for 
training and 283 for validation. The experiment requires 
a Windows 10 operating system, 16 GB of RAM, an 
NVIDIA GeForce 3050 Ti GPU, and an Intel(R) Core(TM) 
i7-11370H CPU. 

YOLOv10 has six variants with various scales to meet 
different application needs. These are; YOLOv10-n, 
YOLOv10s, YOLOv10m, YOLOv10b, YOLOv10l and 
YOLOv10x [14]. In the study, YOLOv10n, which is the 
smallest scale, was preferred. Information on training 
parameters is given in Table 1. 

Table 1. Hyperparameters.  

Parameters Values 

Epoch 50 
Batch Size 8 
Momentum 0.937 

Weight Decay 0.0005 
Learning Rate 0.01 

The complexity matrix obtained in the task of detecting 
defects in weld images as “Bad Weld”, “Good Weld”, and 
“Defect” is shown in Figure 3.  
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Figure 3. Confusion matrix of the model. 

The two fundamental performance metrics utilized in the 
realm of object detection, namely the precision-
confidence curve and the precision-recall curve, offer 
insights from various perspectives to assess a model's 
predictive effectiveness.   

The Precision-Confidence Curve connects the accuracy 
of a model's predictions with the confidence threshold.   

Confidence Score: An indication of how certain the 
model is about the presence of the object it forecasts.   

Various confidence threshold values are established. 
Precision is computed for each threshold. At elevated 
confidence thresholds, the model produces fewer 
predictions, yet these are typically more precise, leading 
to an increase in precision. The Precision-Confidence 
curve helps to analyze the performance of object 
detection systems based on the model's confidence level 
in its predictions. The Precision-Confidence curve for the 
method is illustrated in Figure 4. A Precision-Confidence 
value of 0.939 is attained across all classes. 

 

Figure 4.  Precision-Confidence Curve of the model. 

The precision-recall curve shows the relationship 
between the model's precision and recall. Precision and 
recall are calculated with different threshold values or 
various settings. The precision-recall curve shows how 
precision changes at higher recall levels. Precision and 

recall are usually inversely proportional: precision 
usually decreases for higher recall, and vice versa. It is 
used to evaluate the overall accuracy and coverage 
(recall) of the model's predictive performance. This curve 
can be especially informative in imbalanced data sets. 

The precision-recall curve usually provides a more 
general performance evaluation, while the precision-
confidence curve is more suitable for examining how 
confidence values are adjusted. The precision-recall 
curve of the model is given in Figure 5. 

 
Figure 5. Precision-Recall curve of the model. 

The recall-confidence curve is a performance evaluation 
tool that visualizes how the recall value of a model 
changes as the confidence threshold changes. This 
curve helps understand how comprehensively the model 
can predict at different confidence levels. The recall-
confidence curve focuses on comprehensiveness 
(recall) rather than a single measure of accuracy like the 
precision-confidence curve. Therefore, it is especially 
preferred when it is desired to understand how well the 
model can detect all true positives. Figure 6 presents the 
model's Recall-Confidence curve. A Recall-Confidence 
value of 0.91 was achieved in all classes. 

 
Figure 6. Recall-Confidence curve of the model. 
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Figure 7. Results of the model. 

Other results obtained from the model are as given in 
Figure 7. YOLOv10 has achieved successful results in 
the detection of defects in the source in the relevant 
dataset. 

4. Conclusions 
In this study, the YOLOv10n model was used for the 
detection of weld defects and showed strong 
performance and efficiency. Among the six variants of 
the YOLOv10 family, YOLOv10n, the smallest scale 
variant, was preferred due to its suitability for the dataset 
and computational efficiency. The model achieved 
impressive results by correctly classifying into "Bad 
Weld," "Good Weld" and "Defect" categories. Precision-
confidence, precision-recall and recall-confidence 
curves, which are among the performance metrics, 
confirmed the model's reliability. These findings reveal 
the effectiveness of the YOLOv10n model in the task of 
detecting weld defects, especially within the scope of the 
used dataset. This study shows that the YOLOv10n 
model provides a robust and effective solution for 
automatic defect detection in industrial applications. 
Future research shows that this approach can be applied 
to larger, more diverse datasets. The promising results 
obtained here provide a basis for the development of 
non-destructive testing methods using deep learning 
methods. 
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