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Forced vibrations of a thin viscoelastic shell immersed in fluid under the effect of damping
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Abstract. The plane strain problem for low-frequency forced vibrations of a fluid-loaded thin vis-

coelastic shell is considered. A small structural damping is incorporated using the concept of a complex
Young’s modulus. The two-term asymptotic expansion is derived assuming that the structural damping

is of the same order as the small thickness of the shell. It is demonstrated that the effect of the structural

damping is remarkably greater than that of the radiation damping and the latter can be neglected in
the vast majority of the problems.
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1. Introduction

Structural damping plays a significant role in the dynamic analysis of mechanical systems since it
governs the mechanism of energy dissipation which is crucial for various technical applications in civil,
mechanical, naval and automotive engineering, e.g. see [1], [2], [3], [4] and references therein. There is
a great number of publications on the subject. In particular, the vibrations of viscoelastic fluid-loaded
shells were treated in numerical contributions, including [5], [6], [7], [8], [9], [10] to mention a few. At
the same time, the asymptotic methods widely spread in the thin shell theory have been mainly applied
within the purely elastic framework, e.g., see [11], [12], [13], [14], [15], [16].

The recent asymptotic analysis in [17] and [18] show that the radiation damping of low-frequency
resonant vibrations of purely elastic cylindrical shells is remarkably small. It is natural to question,
in this case, whether the formulations not taking into consideration structural damping may provide
adequate evaluation of dynamic behaviour. This observation motivates to extend the framework of [17]
to viscoelastic shells.

In this paper, the viscoelastic properties are incorporated using the simplest model of the structural
damping based on the concept of a complex Young’s modulus, see [19]. The imaginary part of the latter
stands for energy dissipation. It is assumed to be of the same order that the relative thickness of the
shell.

Instead of scattering problem tackled in [17], below we deal with a radiation problem. A time-harmonic
load is assumed to be specified along the inner surface of the shell, while the outer face is subject to fluid
loading. The developed asymptotic procedure is oriented to a coupled fluid-structure interaction problem
similar to the above mentioned publications [17], [18], and also [20], studying a flat, fluid-loaded elastic
layer. It was noted that for a long time, the asymptotic results for thin-walled bodies with traction free
faces were readily adapted for modeling of fluid-structure interaction ignoring, in a sense, the effect of
coupling, e.g., see [11].

We expand displacement, stresses and fluid pressure in the Fourier series across the polar angle prior
to the asymptotic integration across the shell thickness. A two-term asymptotic solution is derived. As
might be expected, a small term corresponding to the structural damping does not appear at leading
order. However, it is shown that it is significantly greater than the contribution of the damping caused
by radiation. The most important result of the presented analysis is that the latter may usually be
neglected.
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2. Statement of the Problem

Consider a thin cylindrical shell with thickness 2h and a mid-surface radius R immersed in a com-
pressible fluid for which η = h/R ≪ 1 is a small geometric parameter, see Fig.1. We specify curvilinear
coordinates α2 and α3 for which 0 ≤ α2 < 2πR and −h ≤ α3 ≤ h. The 2D plane strain equations

Figure 1. Schematic diagram of a thin cylindrical shell immersed in a fluid.

governing the time-harmonic vibrations of a shell, omitting the factor exp(−iωt), with ω representing the
angular frequency and t denoting time, are given by, see [12],
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where σij (σij = σji) and vj , i, j = 2, 3, are the stresses and displacements, respectively and ρ is the
mass density of the shell. The corresponding stress-displacement relations are also presented as
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The mechanical parameters of the considered problem are the Young’s modulus E and Poisson’s ratio ν.
To incorporate the effect of viscosity in the simplest manner, we define the Young’s modulus in a complex
form, e.g., see [19]

E = E0(1 + iα), (6)

where E0 and α are real constants. The fluid pressure is governed by the 2D Helmholtz equation

∆p+
ω2

c2f
p = 0 (7)

where p is fluid pressure and cf is the wave speed in the fluid. 2D Laplace operator ∆ is given by

∆ =
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The boundary conditions along the shell faces are given by

σ32 = 0, σ33 = q at α3 = −h, (9)
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σ32 = 0, σ33 = −p, and v3 =
1

ρfω
2

∂p

∂α3
at α3 = h, (10)

where q is the force applied at the inner surface of the shell and ρf is the fluid density.
In the dimensionless coordinates θ = α2/R and ζ = α3/h (0 ≤ θ < 2π and −1 ≤ ζ ≤ 1 inside the shell

or ζ > 1 outside the shell) the displacement and stress components of the shell, the acoustic pressure and
the external force can be presented as

v2(θ, ζ) = u2(ζ) sin(nθ), v3(θ, ζ) = u3(ζ) cos(nθ), (11)

σ22(θ, ζ) = s22(ζ) cos(nθ), σ32(θ, ζ) = s32(ζ) sin(nθ), σ33(θ, ζ) = s33(ζ) cos(nθ), (12)

p(θ, ζ) = P (ζ) cos(nθ), q(θ, ζ) = Q(ζ) cos(nθ). (13)

3. Scaling

Let us now define the dimensionless equations in the previous section similar to those in [17] setting

u2 = Ru∗
2, u3 = Ru∗

3, (14)

s22 = E0ηs
∗
22, s32 = E0η

2s∗32, s33 = E0η
2s∗33 (15)

P = E0η
2P ∗, Q = E0η

3Q∗. (16)

where the starred quantities are assumed to be of order unity. In addition, we assume that the viscosity
coefficient (6) can be taken as

α = ηα∗
0. (17)

We also specify the dimensionless frequency by

Ω = η−3/2ωR

√
ρ

E0
, Ω ∼ 1. (18)

The fluid pressure, subject to the radiation condition, e.g., see [21], is found from equation (7) and is
given by

p = p0H
(2)
n

(
ωR(1 + ηζ)

cf

)
. (19)

where H
(2)
n is the Hankel function of the second kind, see [22], and p0 is an unknown constant.

Next, combining boundary conditions (10)2 and (10)3, and substituting (19) there, accounting (11)2,
(12)3 and (13)1, we have
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where
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Inserting the dimensionless quantities (14), (15) and (17) into the equations of motion (1)–(2) and the
relations (3)–(5), we obtain
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In addition, we set

H = η−3/2H∗, (27)

where, according to [22],

H∗ =− ncf
Ω(1 + η)

√
ρ

E0

(
1 +

n− 2

4(n− 1)
Ω2η3(1 + η)2

E0

c2fρ
+ . . .

. . .+ i
π

22n−1c2nf n ((n− 1)!)
2Ω

2nη3n(1 + η)2n
(
E0

ρ

)n

+ . . .

)
.

(28)

The contact conditions (9) and (10) become

s∗32 = 0, ζ = ±1 and s∗33 = ηQ∗, ζ = −1, (29)

ηΩu∗
3 +

1

cfρf

√
ρ

E0
H∗s∗33 = 0, ζ = 1. (30)

In what follows, we expand all the started quantities in the asymptotic series as

f∗ = f (0) + ηf (1) + η2f (2) + . . . . (31)

4. Asymptotic Solution

Let us start by integrating (25) and (26) with respect to the thickness coordinate ζ to get at leading
order

u
(0)
3 = U

(0)
3 and u

(0)
2 = U

(0)
2 , (32)

where the unknown constants U
(0)
3 and U

(0)
2 are, due to (24), related by

U
(0)
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n
U

(0)
3 . (33)

Formula (33) corresponds to the circumferential inextensibility of the mid-surface of a cylindrical shell,
see [23].

Then, integrating (22) and (23) with respect to the thickness variable, we obtain

s
(0)
3m = −n3−m

∫ 1

ζ

s
(0)
22 ds, m = 2, 3. (34)

Applying the conditions (29), we deduce ∫ 1

−1

s
(0)
22 ds = 0. (35)

At next order, first, we integrate (25) in the thickness variable having

u
(1)
3 = U

(1)
3 (36)

where U
(1)
3 is an unknown constant. In the same manner, integrating (26) in ζ and employing the relation

(33), we get
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Now, integrating (24) and taking into account the latter relation, we arrive at

s
(0)
22 = − (1− n2)
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ζU

(0)
3 . (39)

As a result, formulae (34) may be rewritten as
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Next, we integrate (23) across the thickness and adopt formulae (39) and (40) together with the boundary
condition (29)2 to get ∫ 1

−1

s
(1)
22 ds =

(
ρf
ρn

Ω2 +
2n2(1− n2)

3(1− ν2)

)
U

(0)
3 −Q∗. (41)

We also integrate (22) in ζ and utilize formula (39). Then, we subject the resulting equation to condition
(29)1. As a result, we have

s
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32 = −n
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Taking ζ = −1 in the last equation, taking into consideration (29)1 and (41), we derive(
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)
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ρn
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It is clear that the effect of the material damping, i.e., the parameter α0, on the stress components and
the vertical displacement does not appear in this equation. To incorporate the effect of this parameter,
we need to consider the next order approximation.

Following the same process carried out in the previous sections and omitting intermediate calculations,
we get from (25)
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Similarly, it follows from (26) that
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Then, integration of equation (24), taking into consideration (32), (37), (38), (40), (42), (44) and (45),
results in
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Inserting the last formula back into equation (23), we obtain
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Now, we revisit equation (23), using the dimensionless impenetrability condition (30) taken at first order,
and also equations (39), (47) and (48). The result is
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This formula allows us to rewrite formula (42) as

s
(1)
32 =

n(1− n2)

2(1− ν2)
(1− ζ2)U

(1)
3 − (1− n2)(1− ζ2)

1− ν2

(
nζ − iα0

2

)
U

(0)
3 . (49)

Using (30) and integrating (22) and (23) along the thickness at second order, we derive, respectively,∫ 1
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Comparing (50) and (51), we finally have(
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5. Discussion

Let us set W = U
(0)
3 + ηU

(1)
3 . Then, we obtain from (43) and (52)

W =
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g(Ω)

ρn

ρf
(1− η), (53)

where

g(Ω) = Ω2 − 2ρn(1− n2)2

3ρf (1− ν2)
+ η

(
2Ω2

(
1 +

ρ(1 + n2)

ρfn

)
− iα0

2ρn(1− n2)2

3ρf (1− ν2)

)
. (54)

The roots of the equation g(Ω) = 0 correspond to the resonance frequencies. Let us adapt a two-term
expansion Ω2 = Ω2

0 + ηΩ2
1 + . . .. In this case, we may rewrite (54) as

g(Ω) = 2Ω0
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in which
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Thus, the approximate vertical displacement component takes the form
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ρn

2ρfΩ0
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predicting the complex resonance frequencies

Ω = Ω0 − ηΩ0

(
1 +

ρ(1 + n2)

ρf n
− iα0

2

)
. (58)

This formula demonstrates the role of the small viscosity of interest.
From the above derivation, it is clear that the damping due to the radiation corresponding to a small

imaginary term in (28) is far beyond the accuracy of (57) taking into account the structural damping
defined by the parameter α0. As it was shown in [17], the order of the damping caused by the radiation
is of order O(η3n) is negligible compared with the considered structural damping which is of O(η) as
predicted by the asymptotic formulae above. Figures 2 and 3 illustrate the resonant behaviour of a thin
cylindrical shell immersed in a fluid at n = 2 and n = 3 for the vertical displacement normalised by Q∗

(see, equation (57)). In all numerical calculations, the problem parameters are ρ = 2790 kg/m3, ν = 0.3,
and ρf = 1000 kg/m3.

6. Concluding Remarks

An asymptotic procedure is developed for forced low-frequency vibrations of a thin viscoelastic cylin-
drical shell immersed in fluid. The effect of viscosity is accounted by adapting the concept of a complex
Young’s modulus.

Refined asymptotic formulae for the shell transverse displacement and the related complex resonance
frequency are derived. They demonstrate that the incorporated effect of structural damping is much
greater than the contribution of the damping due to the radiation of vibration energy into the fluid. As
a result, the latter can be ignored in practical applications. This is also beneficial since its evaluation
requires retaining extra higher order terms in the expansion (28), see also [17] for more details.

The proposed approach has a clear potential to be extended to more sophisticated models of viscoelas-
tic behaviour as well as to a transversely inhomogeneous fluid-loaded shell, e.g., see [18]. The obtained
results can also be readily generalized to scattering problems, including 3D ones.
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Figure 2. Displacement (57) for n = 2 with the Poisson ratio ν = 0.3 and η = 0.01
with α0 = 1 (solid line), α0 = 2 (dashed red line) and α0 = 3 (dashed orange line).
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Figure 3. Displacement (57) for n = 3 with the Poisson ratio ν = 0.3 and η = 0.01
with α0 = 1 (solid line), α0 = 2 (dashed red line) and α0 = 3 (dashed orange line).
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