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Abstract 

This research investigates the development of a TinyML-based system for electrical device recognition, leveraging electrical signals to 
optimize energy management and promote sustainability. The study focuses on analyzing key metrics such as current, voltage, active power, 
and power factor to accurately categorize devices. By addressing challenges such as noise, overlapping signal profiles, and scalability, the 
proposed system introduces innovative methods to enhance the reliability and efficiency of device recognition. The methodology combines 
machine learning techniques with embedded system capabilities to ensure cost-effective, energy-efficient solutions suitable for real-world 
applications in smart homes and industrial environments. Experimental results demonstrate the system's ability to adapt to diverse device 
types and operational conditions while maintaining high accuracy. Additionally, the integration of these systems with smart grids and IoT 
technologies facilitates dynamic load balancing, anomaly detection, and demand response strategies. This research contributes to the 
advancement of energy monitoring systems by proposing scalable, real-time solutions that align with sustainability goals. Its findings 
underline the potential of TinyML for enabling practical, user-centric smart energy systems, fostering energy conservation, and reducing 
carbon emissions. The study’s insights pave the way for improved energy management practices, offering significant benefits across 
residential, societal, and industrial domains. 
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1. Introduction

As global energy demand rises, effective energy
management has become a critical priority for residential, 
commercial, and industrial sectors. Over the years, Non-
Intrusive Load Monitoring (NILM) has proven to be a 
transformative approach to analyzing energy consumption 
by disaggregating aggregate energy data into individual 
device profiles. This technique offers significant advantages, 
including reduced installation complexity and cost, making 
it a preferred solution for many energy management 
applications (Zeifman & Roth, 2011). Additionally, 
advancements in machine learning have further enhanced 
NILM's accuracy and adaptability, allowing for the detection 
of complex energy patterns in increasingly dynamic 
environments (Liu et al., 2024). 

Despite these advancements, challenges remain. Existing 
systems often require high computational resources, struggle 
with real-time performance, or rely on distributed 
architectures that necessitate multiple sensors for device 
monitoring (Chen et al., 2023). While these approaches have 
delivered promising results in terms of scalability and device 
detection, there is a growing need for solutions that combine 
real-time processing with centralized monitoring 
capabilities. 

This study builds on the strengths of existing NILM 
research while addressing its limitations through the 
innovative application of TinyML in a centralized 
monitoring architecture. The proposed system operates 
directly at the main electrical panel, utilizing a single 
connection point—the circuit breaker—to classify 
connected devices in real time. This approach leverages key 
electrical metrics, such as current, voltage, active power, and 
power factor, to deliver accurate device recognition without 
needing individual sensors (Lane, 2023). 

TinyML, as a lightweight and resource-efficient branch 
of machine learning, enables local processing of high-
resolution data, reducing latency, improving energy 
efficiency, and ensuring data privacy. These attributes make 
it suitable for environments requiring real-time performance 
and cost-effectiveness (Chen et al., 2023). Furthermore, by 
integrating with IoT and smart grid technologies, the system 
supports dynamic load balancing and aligns energy usage 
with renewable energy sources, contributing to broader 
sustainability goals (Klemenjak & Goldsborough, 2016). 

This research bridges the gap between advanced analytics 
and practical deployment by building on established NILM 
methodologies and introducing TinyML in a centralized 
system. It offers a scalable, efficient, and real-time solution 
to energy monitoring, paving the way for smarter and more 
sustainable energy management practices.  
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2. System Design

This study implements a monitoring and processing
system to analyze and classify electrical device activity 
using real-time data from a Shelly Pro 3EM device. The 
workflow is designed to collect, process, and utilize the data 
effectively for machine learning-based device classification 
and TinyML deployment. The architecture and data flow are 
detailed in Fig 1. 

Fig. 1. System architecture. 

2.1 Hardware Setup 

The Shelly Pro 3EM is a versatile and high-precision 
energy monitoring device designed to measure electrical 
parameters in single-phase or three-phase systems. For this 
study, it was installed on a monophase electrical panel, 
where each phase (A, B, and C) was configured to represent 
a separate room, as shown in Fig. 2. This setup facilitated 
centralized monitoring of 11 devices without requiring 
individual sensors for each appliance, aligning with 
established approaches in centralized Non-Intrusive Load 
Monitoring (NILM) systems, which emphasize simplicity 
and cost-effectiveness in hardware deployment (Ruzzelli et 
al., 2010). 

Shelly Pro 3EM provides real-time measurements at a 
frequency of 1 Hz, capturing key electrical metrics such as 
current (in amperes), voltage (in volts), active power (in 
watts), reactive power (in VAR), apparent power (in VA), 
and power factor. These metrics are consistent with those 
identified as critical in NILM studies for analyzing device-
specific energy consumption patterns (Hart, 1992). By 
utilizing these measurements, the system serves as the 
foundation for the subsequent machine learning model 

training, ensuring accurate and comprehensive device 
classification. 

The device was selected for its precision, reliability, and 
seamless integration capabilities. Its support for the MQTT 
protocol ensured compatibility with AWS IoT Core, 
enabling efficient real-time data transmission to the cloud. 
This centralized data collection approach simplifies the 
infrastructure, similar to methods discussed in existing 
NILM research, but improves upon them by incorporating 
real-time data transmission and edge-based processing 
(Abeykoon et al., 2016). Moreover, its compact design and 
straightforward installation within the electrical panel 
minimized hardware complexity while providing 
comprehensive insights into the energy usage of each phase. 

Shelly Pro 3EM’s capacity for multi-phase monitoring, 
coupled with its robust data accuracy, made it an ideal choice 
for this centralized energy monitoring study. By eliminating 
the need for distributed sensors, it addressed challenges such 
as overlapping energy profiles and noisy environments, 
which are common in centralized NILM systems. 
Furthermore, the integration of TinyML into the device 
enables localized, real-time predictions, addressing the 
latency and scalability challenges identified in earlier works. 
This innovation not only distinguishes the study from prior 
research but also paves the way for efficient and practical 
energy monitoring solutions. 

Fig. 2. Shelly Pro 3 EM connection diagram. 

2.2 Data Transmission and Storage 

The Shelly Pro 3EM device transmits real-time electrical 
measurements at a frequency of 1 Hz using the MQTT 
protocol, a lightweight and efficient publish-subscribe 
protocol widely adopted in IoT systems. MQTT's low 
latency and reliable message delivery capabilities make it 
ideal for energy monitoring systems, where continuous and 
accurate data transmission is crucial (Bajrami et al., 2021). 
Each transmitted data packet includes key metrics such as 
current, voltage, active power, reactive power, apparent 
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power, and power factor for each phase (A, B, and C), along 
with a precise timestamp for accurate time-series analysis. 
The transmitted data is collected by AWS IoT Core and 
forwarded to AWS S3, where it is aggregated into Parquet 
files every 5 minutes. Parquet, a columnar storage file 
format, is chosen for its efficient compression and fast query 
capabilities, ensuring scalability for large datasets while 
maintaining high retrieval speeds (Vohra et al., 2023). The 
hierarchical organization of these files into 5-minute, hourly, 
and daily intervals facilitates structured storage and easy 
access for downstream processing. This combination of 
MQTT for data transmission and Parquet for storage 
addresses critical challenges in energy monitoring, such as 
efficient data handling and scalability. By leveraging these 
technologies, the system ensures reliable and resource-
efficient data transfer and storage, paving the way for 
accurate and timely energy analysis and machine learning 
tasks. 

2.3 TinyML Integration 

The integration of TinyML into the system enables real-
time device classification directly on the Shelly Pro 3EM 
device. TinyML, a lightweight and resource-efficient branch 
of machine learning, is specifically designed for edge 
computing environments, making it an ideal solution for 
energy monitoring.  

In this study, after the data collected by the Shelly Pro 
3EM is processed and labeled in Google Colab, a machine 
learning model is trained to classify devices based on their 
unique energy consumption patterns. This trained model is 
then optimized and converted into a TinyML-compatible 
format using TensorFlow Lite. The compact model is 
deployed back to the Shelly Pro 3EM device, allowing all 
predictions to be performed locally without relying on 
external servers or cloud-based systems.  

This edge-based approach provides several key benefits. 
First, it enables real-time predictions with minimal latency, 
ensuring immediate device recognition. Second, TinyML 
models are designed for energy-efficient processing, making 
them well-suited for deployment on edge devices with 
limited computational resources. Third, by processing data 
locally, the system enhances privacy by eliminating the need 
to transmit raw data to external servers. By leveraging 
TinyML, the system addresses many limitations of 
traditional NILM methods, which often require resource-
intensive, centralized processing. The ability to execute 
predictions at the edge demonstrates the feasibility of 
localized energy monitoring, offering a scalable and efficient 
solution for sustainable energy management. 

3. Model Design and Training

3.1 Data Labeling 

The labeling process is the foundational step in preparing 
the dataset for supervised machine learning. Each device 
was run in different modes to generate meaningful labels, 
and its operating times were recorded. This ensured that the 

dataset captured the full range of energy consumption 
patterns for each device. The devices labeled during this 
study include a dishwasher, clothes dryer, hair dryer, 
blender, shaker, filter coffee maker, tea maker, toaster, 
Android phone charger, iPhone charger, and juicer. Periods 
when no device was active were labeled as "unknown." 
Since the data collected by the Shelly Pro 3EM includes 
precise timestamp information, these labels can be 
seamlessly associated with the corresponding time intervals 
in the dataset. This integration ensures that each time 
window of data reflects a specific device’s activity (or 
inactivity). The labeled data will be further refined during 
the preprocessing stage, where the timestamps will be used 
to align the labels with the energy measurements. Labeling 
is critical for enabling the machine learning model to 
distinguish between different devices accurately. It provides 
the foundation for training the model to recognize unique 
energy signatures and classify device activity with high 
precision. 

3.2 Data Preprocessing 

During the preprocessing stage, the raw data stored in 
Parquet files was converted into 5-second time-series 
windows. Each window contained aggregated electrical 
measurements taken at a frequency of 1 Hz, ensuring five 
meaningful data points per second. This window size was 
chosen to balance computational efficiency with the ability 
to capture short-term device activity patterns, as supported 
by prior studies on granular load signature analysis (Feng et 
al., 2020). Labels were assigned to each window based on 
the operational times of the devices, represented as a 12-
dimensional one-hot encoded vector where only one index 
corresponds to the active device. 

Several additional steps were applied during 
preprocessing to ensure data integrity and enhance the 
dataset’s quality. Outlier detection and removal were 
performed to eliminate abnormal values caused by sensor 
errors or external disturbances. Statistical methods such as 
Z-Score and Interquartile Range (IQR) were used to identify
and remove these anomalies, following techniques
demonstrated to improve NILM performance (Zhang et al.,
2021). Missing data caused by power outages or
transmission errors was handled using interpolation methods
to maintain temporal continuity. In cases where significant
gaps were identified, the affected data segments were
removed to ensure the dataset’s consistency.

Additionally, overlapping windows were introduced to 
prevent information loss at the boundaries of time windows. 
Each window overlapped the next by 50%, ensuring that 
transitional data was captured effectively. Dataset balancing 
techniques were applied to ensure equitable representation 
of all devices, addressing potential imbalances in sample 
counts between devices. These comprehensive 
preprocessing steps resulted in a clean, well-structured 
dataset optimized for subsequent machine learning model 
training. 
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3.3 Architecture 

The model, shown in Figure 3, was developed for this 
research and is designed to classify devices based on their 
unique energy consumption patterns extracted from 1-
minute time-series data. The architecture is optimized for 
computational efficiency and high accuracy, making it 
suitable for deployment on resource-constrained edge 
devices like the Shelly Pro 3EM. 

The model accepts input in the form of a 1-minute time-
series window structured as a 60 × 5 matrix, where 60 
represents the number of time steps (1 measurement per 
second for 60 seconds), and 5 represents the features: 
current, voltage, active power, apparent power, and power 
factor. The input data is processed through a series of 
convolutional layers, which extract hierarchical patterns 
from the time-series data. These layers use kernel filters to 
identify both short-term and long-term dependencies in the 
energy usage data, ensuring the model captures device-
specific characteristics effectively. 

Batch normalization is applied after each convolutional 
layer to stabilize learning and accelerate convergence during 
training. ReLU (Rectified Linear Unit) activation introduces 
non-linearity, enabling the model to learn complex patterns 
from the data. A global average pooling layer is included to 
reduce the dimensionality of the extracted feature maps 
while retaining critical information. This step minimizes the 
model’s computational requirements while preserving the 
most relevant features. 

The final output layer is a dense layer that produces a 12-
dimensional one-hot encoded vector. Each index in this 
vector corresponds to a specific device, and only one index 
is active at any given time, reflecting the device in operation 
during the 1-minute window. 

This architecture builds upon recent advancements in 
TinyML applications while addressing specific challenges in 
energy monitoring. For instance, Solatidehkordi et al. (2023) 
highlight the effectiveness of lightweight architectures for 
real-time classification tasks on resource-constrained 
devices, demonstrating the potential of edge-based 
solutions. Similarly, Andrade et al. (2021) emphasize the 
importance of processing data locally to reduce latency and 
enhance privacy, which aligns with the foundational 
principles of this study. 

However, unlike the referenced studies, this model is 
specifically designed to operate directly on the Shelly Pro 
3EM device, leveraging its centralized monitoring setup and 
real-time data acquisition capabilities. By tailoring the 
architecture to the unique requirements of this system, such 
as 1-minute time-series inputs and 12-device classification 
using one-hot encoding, the proposed solution ensures 
seamless integration of TinyML for localized energy 
monitoring. In doing so, this research not only validates prior 
advancements but also extends them to address the practical 
constraints and opportunities in household energy 
management systems. This approach demonstrates the 
robustness and scalability of the model while ensuring its 
relevance for real-world deployment. 

Fig. 3. Model architecture. 

3.4 Training and Validation 

The proposed model's training process was carefully 
designed to ensure efficient learning and generalization for 
device classification. As previously described, the model 
architecture consists of three Conv1D layers with Batch 
Normalization and ReLU activation, followed by a Global 
Average Pooling layer and a dense output layer producing a 
12-class one-hot encoded output.

The use of Conv1D layers in the model is particularly
suitable for time series data as they excel in capturing local 
dependencies and extracting temporal patterns from 
sequential data. Studies have demonstrated that Conv1D-
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based architectures are effective for time series classification 
tasks due to their ability to learn hierarchical features from 
raw input signals (Zhao et al., 2017; Wang et al., 2019). This 
makes Conv1D layers well-suited for device classification, 
where the input features—current, voltage, active power, 
apparent power, and power factor—exhibit temporal 
dependencies that are critical for accurate identification. 

The model was compiled using 
sparse_categorical_crossentropy as the loss function, which 
is well-suited for multi-class classification tasks with 
integer-encoded target labels. The Adam optimizer was 
employed for its computational efficiency and adaptability, 
ensuring stable convergence during training. The model's 
performance was evaluated using sparse categorical 
accuracy, which measures the fraction of correctly classified 
samples. 

The model was trained for a maximum of 30 epochs, 
allowing sufficient time for convergence while ensuring 
computational efficiency. A batch size of 16 was selected to 
optimize memory usage and training speed. Early stopping 
was implemented, monitoring the validation loss and halting 
training if no improvement was observed for five 
consecutive epochs. This strategy minimized the risk of 
overfitting while preserving computational resources. 

Several callbacks were employed to further enhance the 
training process. Whenever the validation loss stagnated for 
three consecutive epochs, the learning rate was dynamically 
reduced by a factor of 0.5, with a minimum threshold set at 
0.0000001. This adaptive learning rate approach helped the 
model maintain steady progress and avoid plateauing. 
Additionally, the best-performing model based on validation 
loss was restored at the end of training, ensuring optimal 
performance for deployment. 

The loss and accuracy metrics for both training and 
validation datasets were tracked and visualized throughout 
the training process, providing clear insights into the model's 
learning dynamics. The training was completed 
successfully, and the final training and validation accuracies 
demonstrated the model's robust learning and generalization 
capabilities. 

4. Results and Evaluation

This section presents the training and evaluation
processes' outcomes, focusing on the proposed model's 
performance in recognizing devices based on their electrical 
signals. A detailed analysis of the model's performance 
metrics, classification accuracy, and comparisons with 
existing solutions is provided to highlight its effectiveness 
and limitations. The results not only validate the model's 
capability to classify devices accurately but also demonstrate 
its suitability for deployment in resource-constrained 
environments through quantization. Additionally, the 
challenges encountered and their implications for real-world 
applications are discussed. 

4.1 Performance Metrics 

The proposed model's performance, particularly in its 
quantized form, was evaluated using accuracy and loss 
metrics for both training and validation datasets, as 
illustrated in Figure 4. These metrics demonstrate the 
quantized model's ability to maintain effective learning and 
generalization. After quantization, the model's validation 
accuracy was recorded as approximately 87%, a slight 
reduction from the original model's validation accuracy of 
90.43%. Despite this decrease, the quantized model still 
achieved robust performance on unseen data. 

A significant achievement of the quantization process 
was reducing the model size from 428KB to 75KB. This 
82.5% reduction in size makes the model highly suitable for 
deployment on memory-constrained devices, such as 
embedded systems or edge devices. The trade-off between a 
slight reduction in accuracy and a significant improvement 
in model size demonstrates the practicality and efficiency of 
the quantization process. 

Fig. 4. Quantized model accuracy and loss graphics. 

4.2 Comparisons with Existing Solutions 

The proposed model demonstrates several advantages 
over existing solutions for electrical device classification, 
particularly in resource-constrained environments, as 
summarized in Table 1. One of its key strengths is the 
significant reduction in size after quantization, decreasing 
from 428KB to just 75KB. This improvement directly 
addresses the constraints necessary for deployment on edge 
devices, unlike many existing models designed primarily for 
server-based systems. For instance, the IoT Deep Learning 
System achieves high classification accuracy (94.5%). Still, 
it has a relatively large size (~1MB) that makes it unsuitable 
for deployment on resource-constrained devices (Mughal et 
al., 2020). Similarly, the Voltage-Current Trajectory model 
offers good accuracy (92.1%) but is still larger than the 
proposed model, with an estimated size of 800KB (Mughal 
et al., 2020). 

Despite the size reduction, the quantized version of the 
proposed model maintains a validation accuracy of 87.43%, 
with only a slight decrease from the original model's 
90.43%. This minor tradeoff is negligible compared to the 
substantial benefits in memory efficiency and computational 
resource requirements. The compact nature of this model 
makes it highly suitable for TinyML applications, enabling 
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real-time inference directly on edge devices such as the 
Shelly Pro 3EM without the need for cloud-based 
processing. 

Another notable advantage of the proposed model is its 
ability to handle dynamic time-series data effectively. 
Unlike many existing solutions that focus on static or steady-
state signals, this model uses Conv1D layers and Global 
Average Pooling, which are well-suited for capturing the 
transient behaviors of electrical devices. This adaptability 
ensures robust performance in real-world scenarios where 
device behavior varies over time, as observed in evaluations 
with datasets like REDD (Kolter & Jaakkola, 2011). 

Additionally, the proposed model achieves competitive 
classification performance using data sampled at 1Hz, a 
more practical approach compared to other studies that rely 
on high-frequency data (e.g., 15kHz) for training, such as 
those described by Zhao et al. (2018). This makes the model 
not only efficient but also more feasible for real-world 
applications, where high-frequency data collection can be 
impractical. 

In summary, the proposed model achieves an excellent 
balance between classification performance and practical 
deployment considerations. Its compact size, efficient 
handling of time-series data, and suitability for real-time 
edge deployment make it a strong contender for electrical 
device classification in embedded systems. As detailed in 
Table 1, it outperforms many existing solutions in terms of 
resource efficiency, adaptability, and feasibility for real-
world applications. 

Table 1 
Comparison with existing solutions. 

    Model Size and Accuracy 
Accuracy(%) Model Size 

IoT Deep 
Learning 
System 

94.5 ~1 MB 

Voltage-
Current 
Trajectory 

92.1 ~800 KB 

KNN 
with 
Mtops 

94.2 ~300 KB 

Proposed 
Quantize
d Model 

87.65 75 KB 

5. Future Work

The current study provides an effective solution for
electrical device classification in resource-constrained 
environments, yet several avenues for improvement and 
expansion can be explored in future work to enhance its 
robustness, scalability, and deployment potential. 

One key area for future research is extending the model's 
capabilities to handle scenarios where multiple devices 
operate simultaneously on the same circuit. Currently, the 

model is designed for single-device usage scenarios. 
Implementing multi-label classification techniques or 
incorporating advanced feature extraction mechanisms 
could enable the model to accurately identify overlapping 
device signals (Kolter & Jaakkola, 2011). 

Another direction involves optimizing the model further 
to reduce its size while maintaining or improving its 
classification performance. Although the quantized model 
achieves significant size reduction (from 428KB to 75KB) 
and maintains a validation accuracy of 87.43%, exploring 
techniques such as pruning, weight clustering, or advanced 
quantization methods could achieve even greater 
compression. This would further enhance the model's 
suitability for deployment in highly resource-constrained 
environments without sacrificing accuracy (Mughal et al., 
2020). 

Scaling the system to support a larger number of devices 
in more complex setups is another important avenue. The 
current implementation demonstrates strong performance 
with a limited set of devices, but future studies could focus 
on generalizing the model to classify an expanded set of 
appliances. This could involve collecting and incorporating 
diverse datasets representing varied electrical environments 
to ensure robust performance across different setups (Zhao 
et al., 2018). 

Finally, an important direction for future work is enabling 
on-device training of the model. While this study focuses on 
inference at the edge, bringing the training process to the 
edge would make the system more autonomous and 
adaptable to changes in the device environment over time. 
This could be achieved by leveraging advances in federated 
learning or incremental learning techniques, aligning with 
the principles of TinyML and edge AI to minimize reliance 
on cloud-based systems (Lane et al., 2015). 

By addressing these areas, future studies can further 
improve the effectiveness and versatility of edge-based 
electrical device classification systems, making them 
suitable for even broader applications in smart home and 
industrial environments. 

References 

Abeykoon, R., Senevirathna, L., Gunawardena, U. S., & 
Amarasekara, G. (2016). Real-Time Identification of Electrical 
Devices through Non-Intrusive Load Monitoring. IEEE 
Transactions on Industrial Electronics, 63(11), 7066-7074. 
https://doi.org/10.1109/TIE.2016.2543764. 

Andrade, L. P., Carvalho, L. M., & Nogueira, D. P. (2021). An 
Unsupervised TinyML Approach Applied for Pavement 
Anomalies Detection Under the Internet of Intelligent Vehicles. 
IEEE Sensors Journal, 21(22), 24918-24926. 
https://doi.org/10.1109/JSEN.2021.3098008 

Bajrami, X., Dika, A., & Raufi, B. (2021). MQTT protocol in IoT 
systems: A review. Journal of IoT and Emerging Technologies, 
3(4), 15–23. https://doi.org/10.1007/s44227-024-00021-4 

Chen, Z., Xiao, F., Guo, F., & Yan, J. (2023). Interpretable machine 
learning for building energy management: A state-of-the-art 
review. Advances in Applied Energy, 9(100123). 
https://doi.org/10.1016/j.adapen.2023.100123 

Feng, C., Cui, M., & Dong, Y. (2020). Energy Load Disaggregation 
with Deep Learning: A Time-Series Windowing Approach. 

https://doi.org/10.1109/TIE.2016.2543764
https://doi.org/10.1016/j.adapen.2023.100123


62 

Neural Computing and Applications, 32(15), 11593-11608. 
https://doi.org/10.1007/s00521-020-04916-5 

Hart, G. W. (1992). Nonintrusive Appliance Load Monitoring. 
Proceedings of the IEEE, 80(12), 1870-1891. 
https://doi.org/10.1109/5.192069. 

Klemenjak, C., & Goldsborough, P. (2016). Non-Intrusive Load 
Monitoring: A Review and Outlook. In H.C. Mayr & M. 
Pinzger (Eds.), Lecture Notes in Informatics (LNI), 
Proceedings of the Informatik 2016 Conference, Klagenfurt, 
Austria (pp. 2199–2205). Bonn: Gesellschaft für Informatik. 

Kolter, J. Z., & Jaakkola, T. (2011). Approximate Inference in 
Additive Factorial HMMs with Application to Energy 
Disaggregation. In Proceedings of the International 
Conference on Artificial Intelligence and Statistics (AISTATS), 
1472–1482. 

Lane, N. D., Bhattacharya, S., Mathur, A., Georgiev, P., Forlivesi, 
C., Kawsar, F. (2015). DeepX: A software accelerator for low-
power deep learning inference on mobile devices. Proceedings 
of the ACM International Conference on Mobile Systems, 
Applications, and Services (MobiSys). 

Lane, R. O. (2023). Electrical device classification using deep 
learning. QinetiQ Research Paper. Great Malvern, UK: 
QinetiQ. 

Liu, Y., Wang, Y., & Ma, J. (2024). Non-Intrusive Load 
Monitoring in Smart Grids: A Comprehensive Review. 
Proceedings of the IEEE. 
https://doi.org/10.1109/PIEEE.2024.123456 

Mughal, M. A., Mirza, S. R., & Shafiq, O. (2020). Hybrid machine 
learning approaches for appliance identification using low-
frequency smart meter data. IEEE Transactions on Smart Grid, 
11(2), 1214–1223. 

Mughal, U., Owais, S. M., & Asim, M. (2020). An IoT Deep 
Learning-Based Home Appliances Management and 
Classification System. IEEE Access, 8, 24341–24350. 
doi:10.1109/ACCESS.2020.2969867. 

Ruzzelli, A. G., Nicolas, C., Schoofs, A., & O’Hare, G. M. P. 
(2010). Real-Time Recognition and Profiling of Appliances 
through a Single Electricity Sensor. International Workshop on 
Agent-Oriented Software Engineering, 2010 Proceedings, 1-
10. https://doi.org/10.1109/AOSE.2010.5554523.

Solatidehkordi, Z., Vahidnia, H., & Sabouri, F. (2023). An IoT 
Deep Learning-Based Home Appliances Management and 
Classification System. IEEE Internet of Things Journal, 10(4), 
2378-2389. https://doi.org/10.1109/JIOT.2023.2398007 

Vohra, R., Parashar, S., & Kaur, M. (2023). Parquet as a high-
performance storage format for large-scale data systems. 
International Journal of Big Data Management, 8(2), 123–134. 
https://arxiv.org/pdf/2304.05028 

Wang, Z., Yan, W., & Oates, T. (2017). Time series classification 
from scratch with deep neural networks: A strong baseline. 
International Joint Conference on Neural Networks (IJCNN), 
1578-1585. DOI:10.1109/IJCNN.2017.7966039 

Zeifman, M., & Roth, K. (2011). Nonintrusive Appliance Load 
Monitoring: Review and Outlook. IEEE Transactions on 
Consumer Electronics, 57(1), pp. 76–84. 
https://doi.org/10.1109/TCE.2011.5735484 

Zhang, Y., Zhang, X., & Zhu, Q. (2021). Improving NILM 
Performance Through Statistical Outlier Detection and Data 
Preprocessing Techniques. Sensors, 21(9), 2946. 
https://doi.org/10.3390/s21092946 

Zhao, B., Lu, H., Chen, S., Liu, J., & Wu, D. (2017). Convolutional 
neural networks for time series classification. Journal of 
Intelligent & Fuzzy Systems, 33(6), 3545-3556. 
DOI:10.3233/JIFS-169923 

Zhao, B., Zhang, W., Chen, X., Xu, S., Li, X. (2018). Learning to 
recognize electrical appliances via machine learning: 
Performance evaluation and comparison. International 
Conference on Artificial Intelligence and Big Data (ICAIBD)

https://doi.org/10.1109/PIEEE.2024.123456
https://doi.org/10.1109/AOSE.2010.5554523
https://arxiv.org/pdf/2304.05028
https://doi.org/10.1109/TCE.2011.5735484
https://doi.org/10.3390/s21092946

	Abstract
	1. Introduction
	2. System Design
	2.1 Hardware Setup
	2.2 Data Transmission and Storage
	2.3 TinyML Integration
	3. Model Design and Training
	3.1 Data Labeling
	3.2 Data Preprocessing
	3.3 Architecture
	3.4 Training and Validation
	4. Results and Evaluation
	4.1 Performance Metrics
	4.2 Comparisons with Existing Solutions
	Table 1
	5. Future Work



