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ABSTRACT
This study examines H1N1 and seasonal flu vaccination behaviors using machine learning models and explainable artificial intelligence 

(XAI) techniques. Utilizing data from the National 2009 H1N1 Influenza Survey, we developed a predictive framework employing models 

such as CatBoost, XGBoost, and LightGBM. CatBoost outperformed others with an accuracy of 0.696 and an F1 score of 0.688. SHAP 

(Shapley Additive Explanations) was used for interpretability, providing both global insights, such as the critical role of doctor 

recommendations, and local insights, highlighting individual decision factors. Our findings underscore the importance of addressing 

vaccine skepticism and improving healthcare communication to enhance vaccination uptake. These results contribute to public health 

strategies aimed at increasing immunization coverage and preparing for future pandemics.
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INTRODUCTION
Vaccination remains one of the most effective 

public health measures to prevent infectious diseases and 
reduce morbidity and mortality globally. Despite its proven 
efficacy, vaccine hesitancy continues to pose significant 
challenges in achieving widespread immunization 
coverage (Larson et al., 2014). Understanding the factors 
driving vaccine hesitancy is critical for designing targeted 
interventions and improving vaccination uptake (Lincoln et 
al., 2022). This study focuses on predicting vaccination 
behavior for H1N1 and seasonal flu vaccines, leveraging 
machine learning models and explainable artificial 
intelligence (XAI) techniques to provide both predictive 
accuracy and transparency.

The emergence of the H1N1 influenza virus in 
2009 highlighted the urgent need for effective vaccination 
campaigns to control pandemics. It is estimated that 
between 151,000 to 575,000 deaths occurred globally 
within the first year of the outbreak (Harding & Heaton, 

2018). Despite the rapid development and deployment of 
the H1N1 vaccine, vaccine uptake was hindered by factors 
such as public distrust, misinformation, and logistical 
barriers (Ayachit et al., 2020). Similar challenges persist 
with seasonal influenza, as rapid antigenic drift 
necessitates annual updates to vaccine formulations, 
complicating public health efforts to achieve adequate 
coverage (Harding & Heaton, 2018).

The One Health perspective, emphasizing the 
interconnectedness of human, animal, and environmental 
health, is particularly relevant in understanding the 
dynamics of influenza pandemics like H1N1. Influenza A 
viruses, which can circulate between humans, swine, and 
avian hosts, are a significant zoonotic threat, as 
demonstrated by the 2009 H1N1 pandemic (Pappaioanou 
& Gramer, 2010). The ability of these viruses to undergo 
genetic reassortment across species underscores the 
critical need for integrated surveillance systems and 
collaborative efforts in pandemic preparedness (Kim, 
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2018). Additionally, mislabeling such events as "swine flu" 
during the pandemic led to significant economic 
consequences for the pork industry, further highlighting the 
necessity for accurate communication and intersectoral 
cooperation (Pappaioanou & Gramer, 2010). Vaccination, 
both in humans and animals, plays a crucial role in 
mitigating these risks. For instance, efforts to control avian 
influenza through poultry vaccination and enhanced 
biosecurity measures have proven essential in preventing 
spillovers into human populations (Kim, 2018). The One 
Health framework supports these integrative strategies, 
advocating for collaborative research and policymaking to 
address zoonotic disease risks comprehensively (Monath, 
2013).

Machine learning (ML) techniques have emerged 
as powerful tools to predict vaccination behavior by 
analyzing large datasets with complex, multidimensional 
variables. Studies have demonstrated the effectiveness of 
ensemble models like CatBoost and XGBoost in capturing 
critical predictors of vaccine hesitancy, including 
socioeconomic, demographic, and behavioral factors 
(Altarawneh, 2023; Ahmed et al., 2022). Additionally, 
SHAP (Shapley Additive Explanations) has been widely 
used to enhance the interpretability of these models, 
providing actionable insights for public health stakeholders 
(Lundberg & Lee, 2017).

Recent advancements in ML and XAI have 
enabled a deeper understanding of vaccine hesitancy, 
highlighting the role of trust, socioeconomic factors, and 
cultural perceptions in shaping individual decisions 
(Ebulue et al., 2024; Alharbi et al., 2024). For instance, 
studies have shown that lack of trust in government and 
healthcare institutions significantly correlates with lower 
vaccination rates (Lincoln et al., 2022). Moreover, the 
influence of socioeconomic factors, such as income and 
education, underscores the need for equitable access to 
vaccination resources, particularly in underserved 
populations (Ebulue et al., 2024).

This study contributes to the growing body of 
literature by employing a new and robust methodological 
framework that integrates predictive modeling with 
interpretability. By analyzing data from the National 2009 
H1N1 Influenza Survey, we aim to identify key factors 
influencing vaccination decisions and provide a 
transparent understanding of model predictions. The 
findings are expected to inform strategies for improving 
vaccine uptake and addressing barriers to immunization, 
ensuring better preparedness for future public health 
crises. 

MATERIAL AND METHODS

Study Design and Ethical Statement
This study is a secondary data analysis utilizing 

the publicly available National 2009 H1N1 Influenza 
Survey dataset (CDC, 2012), which was conducted to 
assess public attitudes, behaviors, and vaccination uptake 
during the H1N1 pandemic. The study employs a mixed-
methods approach, integrating machine learning 
techniques with explainable artificial intelligence (XAI) 
methods to predict and interpret vaccination behaviors. 
The target variable is formulated as a 3-class classification 
system, representing "No vaccination received," "Single 
vaccination" and "Double vaccination." (“Single 
vaccination” means patient got just one of the vaccines.) 
The dataset used in this study is anonymized and publicly 
accessible, ensuring compliance with ethical standards for 
secondary data analysis. Since the data does not include 
identifiable personal information, ethical approval was not 
required for its use. The principles of the Declaration of 
Helsinki were adhered to throughout the research, 
ensuring respect for the autonomy and confidentiality of 
respondents.
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Figure 1: Framework for Generating Predictions and 
Interpreting Model Explanations
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The methodological workflow for predicting and 
interpreting vaccination behavior is shown in the flowchart 
(Figure 1). The process begins with dataset acquisition, 
including features like demographics, opinions on vaccine 
effectiveness, risks, and doctor recommendations. After 
preprocessing to handle missing values, encode 
categorical variables, and remove irrelevant features, 
predictive models classify vaccination status into three 
categories: No vaccination, Single vaccination, and Double 
vaccination. Interpretability is enhanced with SHAP, 
providing local insights through waterfall plots for individual 
predictions and global explanations via summary plots to 
rank feature importance. This transparent framework aids 
public health officials in designing informed vaccination 
strategies.

Details of the Dataset
The dataset used in this study originates from the 

National 2009 H1N1 Flu Survey, conducted during late 
2009 and early 2010. This large-scale survey was 
designed to assess public vaccination behaviors and 
attitudes in response to the H1N1 pandemic and seasonal 
influenza. The dataset provides critical insights into 
vaccination decisions, including demographic, socio-
economic, behavioral, and health-related factors 
influencing individual vaccination outcomes.

The dataset comprises 36 columns and a multi-
label target variable, reformulated as a 3-class 
classification structure for this study. The target variable 
combines information on two separate vaccination 
statuses—H1N1 vaccine and seasonal flu vaccine—into 
three categories:
• 0: No vaccination received
• 1: Single vaccination (either H1N1 or seasonal flu 

vaccine).
• 2: Double vaccination (both H1N1 and seasonal flu 

vaccines).

Each row corresponds to a unique respondent, 
identified by a respondent_id column, and includes 35 
additional features capturing demographic, behavioral, 
and opinion-based data (Table 1).

Feature Engineering
Feature engineering was a critical step in 

preparing the dataset for machine learning. Missing values 
were addressed by replacing continuous variables with 
column means and filling categorical features with "No 
Category." Key categorical variables, such as age_group 
and education, were label-encoded, while non-informative 

columns like respondent_id and employment_occupation 
were removed to reduce noise. Feature selection 
combined domain expertise with statistical methods, 
including Random Forest for feature importance analysis 
and PCA for exploratory purposes. The refined dataset 
included demographic, behavioral, health-related, and 
opinion-based variables, offering a comprehensive 
foundation for modeling vaccination behavior.

Machine Learning Models
To predict vaccination status, the dataset was 

modeled as a 3-class classification problem with target 
labels representing no vaccination, single vaccination, and 
double vaccination. The following machine learning 
models were evaluated for their predictive performance:

• Random Forest Classifier: By aggregating the output 
of individual decision trees, the Random Forest 
Classifier combines several decision trees to get high 
accuracy. This paradigm works especially well with 
complicated data structures. Studies by Putri et al., 
(2021) and Qorib et al.(2023) demonstrate its success 
across different fields.

• K-Nearest Neighbors (KNN): A data point's class is 
predicted by the KNN model using the majority class of 
its closest neighbors. Studies by Suprayogi et al. 
(2022), Goswami & Sebastian (2022), demonstrate 
how well KNN works with a variety of datasets.

• XGBoost: XGBoost, which is well-known for its speed 
and effectiveness, builds a potent classifier by 
applying gradient boosting to decision trees. Studies 
by Cheong et al. (2021), and Nikhil et al.(2024) 
demonstrate the efficacy of XGBoost in a range of 
applications.

• LightGBM: Using a tree-based gradient boosting 
algorithm, LightGBM provides quick training and 
memory efficiency, making it ideal for huge datasets. 
Its scalability and efficiency on huge data are 
highlighted in studies by Ing et al. (2021), Gupta & 
Verma (2023).

• Support Vector Machine (SVM): To divide data points 
for classification, SVM creates a hyperplane that 
maximizes the margin between classes. It is frequently 
employed for assignments that call for a clear division 
of classes. The efficacy of SVM on a variety of 
datasets is demonstrated by studies by, To et al. 
(2021), and Du et al. (2017).

• CatBoost: Using a gradient boosting technique based 
on decision trees, CatBoost is made to effectively 



handle category features. CatBoost's versatility for 
categorical data is demonstrated in studies by Ayachit 
et al. (2020), and Kim (2021).

We used accuracy, recall, precision, and F1 score 
as evaluation criteria to evaluate each model's 

performance. Every statistic offers a different viewpoint on 
how well the model predicts the likelihood of pet adoption.

Table 1: Vaccine Dataset Feature Descriptions  

Demographic Features
age_group: Respondent's age group.
education: Education level.
race: Race of the respondent.
sex: Gender.
income_poverty: Household income relative to the 2008 Census poverty thresholds.
marital_status: Marital status.
rent_or_own: Housing situation.
employment_status: Employment status.
hhs_geo_region: Geographic region defined by the U.S. Dept. of Health and Human Services.
census_msa: Metropolitan statistical area classification.
employment_industry: Employment industry (categorical).
employment_occupation: Employment occupation (categorical).

Health-Related Factor Features:
chronic_med_condition: Presence of chronic medical conditions.
child_under_6_months: Regular close contact with children under six months.
health_worker: Healthcare worker status.
health_insurance: Health insurance status.

Behavioral Factors:
behavioral_wash_hands: Frequently washed hands or used hand sanitizer.
behavioral_large_gatherings: Reduced time at large gatherings.
behavioral_antiviral_meds: Usage of antiviral medications.
behavioral_avoidance: Avoided close contact with individuals showing flu-like symptoms.
behavioral_face_mask: Purchased face masks.
behavioral_outside_home: Reduced contact with people outside their household.
behavioral_touch_face: Avoided touching eyes, nose, or mouth.

Opinions and Perceptions:
h1n1_concern: Level of concern about H1N1 flu (0-3 scale).
h1n1_knowledge: Level of knowledge about H1N1 flu (0-2 scale).
opinion_h1n1_vacc_effective: Perceived effectiveness of the H1N1 vaccine (1-5 scale).
opinion_h1n1_risk: Perceived risk of contracting H1N1 without vaccination (1-5 scale).
opinion_h1n1_sick_from_vacc: Worry about sickness from H1N1 vaccine (1-5 scale).
opinion_seas_vacc_effective: Perceived effectiveness of the seasonal flu vaccine (1-5 scale).
opinion_seas_risk: Perceived risk of contracting seasonal flu without vaccination (1-5 scale).
opinion_seas_sick_from_vacc: Worry about sickness from seasonal flu vaccine (1-5 scale).

Healthcare Access:
doctor_recc_h1n1: Doctor's recommendation to get H1N1 vaccine.
doctor_recc_seasonal: Doctor's recommendation to get seasonal flu vaccine.

Household Characteristics:
household_adults: Number of adults in the household (capped at 3).
household_children: Number of children in the household (capped at 3).
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Post-Explainability Techniques
The field of explainable artificial intelligence 

encompasses many methods that allow humans to 
interpret the output of artificial intelligence. In this way, 
people's opinions on the reasons behind and techniques 
used by artificial intelligence to generate prediction scores 
are influenced. To interpret the high-performing model's 
predictions both locally and globally, we applied SHAP 
(Shapley Additive Explanations), a well-liked explainability 
technique in explainable AI (Lundberg & Lee, 2017). We 
can understand how each feature affects predictions 
generally over the entire dataset (global explanation) and 
how particular qualities contribute to each prediction (local 
explanation) with the use of SHAP values.

Global Explanation
Global understanding is crucial for public health 

professionals and policymakers, as it highlights the most 
influential factors, such as medical recommendations, 
perceived vaccine efficacy, and underlying health 
conditions, in driving vaccination decisions. Such insights 
can guide more targeted health campaigns and 
interventions to improve vaccination uptake and enhance 
public health outcomes.

In Equation 5, x is the sample of interest, j is the 
attribute index, f is the machine learning model, and M is 
the number of iterations. The prediction for x is "f ̂(x_(+j)^m 
)". However, a random number of attribute values were 
substituted with attribute values from a random z data 
points, except for the corresponding value of attribute j.To 
obtain all Shapley values, the process needs to be 
repeated for every feature.

Local Explanation
SHAP values, which illustrate the precise 

contribution of each feature to the vaccination likelihood for 
an individual respondent, provide insights into predictions 

at a local level. This approach is particularly valuable for 
case-by-case analysis, as SHAP can reveal, for example, 
how factors like a doctor's recommendation, perceived 
vaccine efficacy, or the presence of a chronic medical 
condition influence an individual's vaccination decision. 
These localized insights allow public health professionals 
to understand why the model assigned a specific 
vaccination probability to a particular respondent. Such 
transparency facilitates more personalized health 
communication strategies, enabling targeted interventions 
tailored to the unique concerns and circumstances of each 
individual.

The local SHAP value for a feature i for an 
instance x is given by :

where:
|S| is the number of features in subset S, f_x (S) is 

the model prediction using only the features in subset S, 

f_x (S∪{i})-f_x (S) is the marginal contribution of feature i 
when it is added to subset S, and N is the set of all 
features. 

This formula generates a SHAP value that 
represents the feature's influence on the particular 
prediction by calculating the weighted average of feature 
I's contribution over all potential feature subsets.

Computational Tools
This study leveraged Python and its ecosystem of 

libraries for data analysis, model development, evaluation, 
and explainability. pandas and numpy were employed for 
efficient data manipulation and numerical computations, 
while matplotlib and seaborn were used for data 
visualization. For preprocessing, scikit-learn facilitated 
tasks such as label encoding, missing value imputation, 
and train-test splitting, and was also utilized for 
implementing various machine learning models. Ensemble 
and boosting models, including XGBoost, LightGBM, and 
CatBoost, were developed using their respective 
specialized libraries. Lastly, the SHAP library was 
integrated to provide both local and global explanations of 
model predictions, ensuring transparency and 
interpretability.

RESULTS
The study evaluated multiple machine learning 

models for predicting vaccination status. CatBoost 
emerged as the best-performing model, achieving an 



accuracy of 0.696 and an F1 score of 0.688, effectively 
handling the dataset's complexities. Gradient boosting 
models, XGBoost and LightGBM, followed closely with 
accuracy scores of 0.686 and 0.684, respectively, 
showcasing strong recall and precision. SVM 
demonstrated competitive performance with an accuracy 
of 0.683, while Random Forest showed balanced results 
with an accuracy of 0.680 and an F1 score of 0.672. KNN, 
though suitable for simpler tasks, achieved lower metrics, 
emphasizing its limitations with high-dimensional data

SHAP Global Interpretation
SHAP (Shapley Additive Explanations) values 

were calculated to provide a global interpretation of the 
CatBoost model's predictions for the "No vaccination 
received" group, as visualized in the summary plot (Figure 
2). This analysis highlights the influence of each feature on 
the model’s predictions, revealing both the direction and 
magnitude of their impact. Features like opinion_seas_
risk, opinion_seas_vacc_effective, and doctor_recc_
seasonal emerged as the most influential, reflecting their 
strong association with vaccination behavior.

High values of opinion_seas_risk (indicating a 
perceived low risk of seasonal flu) and opinion_seas_
vacc_effective (skepticism about vaccine effectiveness) 
were positively associated with the prediction of not 
vaccinating. Conversely, the absence of doctor 
recommendations (doctor_recc_seasonal and doctor_
recc_h1n1) strongly increased the likelihood of no 
vaccination, emphasizing the critical role of healthcare 
providers. Demographic factors like age_group and 
health_worker also contributed, with younger individuals 
and non-healthcare workers being less likely to vaccinate. 
Additionally, socioeconomic factors such as income and 
education showed smaller yet consistent effects, with 

higher levels generally reducing the likelihood of no 
vaccination.

SHAP Local Interpretation

Two samples were selected for local interpretation: 
one with the target variable "Single vaccination" and the 
other with "No vaccination received," as these groups are 
critical for understanding decision patterns. The SHAP 
values for each sample were visualized using waterfall 
plots, which display the cumulative effect of each feature 
on the baseline prediction (mean model prediction). 
Features with positive contributions (red bars) increase the 

Table 2. Evaluation results of ML models

Models AccuracyScore RecallScore PrecisionScore F1Score

1 CatBoost 0.696 0.696 0.689 0.688

2 XGBoost 0.686 0.686 0.677 0.675

3 LGBM 0.684 0.684 0.676 0.672

4 SVM 0.683 0.683 0.674 0.669

5 Random Forest 0.680 0.680 0.672 0.672

6 KNN 0.624 0.624 0.608 0.605
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Figure 2. SHAP summary plot for global explanation of the 
prediction model



likelihood of the predicted outcome, while negative 
contributions (blue bars) decrease it, with bar lengths 
reflecting the magnitude of their impact (Molnar, 2020).

For the "No vaccination received" sample (Figure 
3), the baseline prediction (E[f(x)] = 0.443) was adjusted by 
individual features to yield a final probability of f(x) = 0.83. 
Key factors included opinion_seas_risk, which had the 
largest positive contribution (+0.13), reflecting the 

individual's perception of low seasonal flu risk, and 
opinion_seas_vacc_effective (+0.07), indicating 
skepticism about vaccine effectiveness. The absence of 
doctor recommendations for both seasonal and H1N1 
vaccines also strongly reinforced this outcome. Other 
features, such as age group and non-healthcare worker 
status, further contributed to the prediction.

SHAP waterfall graph in Figure 4 explains the 
contribution of features to predicting "Single vaccination 
received" for a specific respondent. Starting from the 
baseline value (E[f(x)] = 0.349), feature contributions led to 

a final probability of f(x) = 0.95. The strongest predictor 
was the doctor's recommendation for seasonal vaccination 
(+0.15), followed by a belief in the high effectiveness of the 
seasonal vaccine (+0.11) and the respondent's age group 
(+0.10), which aligns with groups more likely to vaccinate. 
While the absence of an H1N1 vaccine recommendation 
contributed positively (+0.08), the perceived low risk of 
seasonal flu slightly decreased the likelihood (-0.04). Other 
factors, such as a positive perception of vaccine 
effectiveness and minimal concern about vaccine side 
effects, added minor but consistent positive impacts.

DISCUSSION
In our study, we utilized machine learning models 

and explainable artificial intelligence (XAI) methods to 
predict and interpret behaviors related to H1N1 and 
seasonal flu vaccinations. These approaches provided 
critical insights into the factors influencing both individual 
and population-level vaccination decisions. The results, 
derived from the CatBoost model, highlighted the 
importance of perceptions of vaccine effectiveness, doctor 
recommendations, and demographic characteristics in 
shaping vaccination behaviors. SHAP analyses offered 
both global and local interpretations, contributing not only 
to understanding model performance but also to 
uncovering the underlying reasons behind vaccination 
decisions.

The global SHAP analysis revealed that doctor 
recommendations (for both seasonal and H1N1 vaccines), 
opinions on vaccine effectiveness, and demographic 
factors such as age group were the most influential 
features. These findings align with prior studies 
emphasizing the pivotal role of healthcare providers in 
vaccination uptake and the impact of public perceptions of 
vaccine efficacy (Pappaioanou & Gramer, 2010; Kim, 
2021). Such insights suggest that targeted public health 
interventions should focus on enhancing doctor-patient 
communication and addressing vaccine skepticism 
through educational campaigns. For instance, training 
healthcare providers to proactively recommend 
vaccinations and effectively communicate their benefits 
could directly improve vaccination rates.

The local interpretation of a sample classified as 
"No vaccination received" highlighted specific barriers to 
vaccination, including a low perceived risk of seasonal flu, 
skepticism about vaccine effectiveness, and the absence 
of doctor recommendations. These results are consistent 
with findings from Ebulue et al. (2024), which noted that 
perceived risks alone are insufficient to motivate 

Figure 4. SHAP Waterfall plot of Sample 2 (Single 
vaccination)

Figure 2. SHAP Waterfall plot of Sample 1 (No 
vaccination)
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preventive actions. Addressing these barriers may involve 
tailored educational initiatives that counteract 
misinformation about vaccine efficacy and targeted 
outreach efforts in communities with low vaccination 
uptake.

In contrast, the local interpretation for a "Single 
vaccination received" case underscored the critical role of 
positive interactions with healthcare providers and trust in 
vaccine effectiveness. The individual's decision was 
strongly influenced by the recommendation of a seasonal 
vaccine and a belief in its efficacy. These insights suggest 
strategies such as implementing reminder systems for 
individuals who receive one vaccine to encourage follow-
up vaccinations, and emphasizing the complementary 
benefits of both seasonal and H1N1 vaccinations in public 
health messaging.

CONCLUSION
In conclusion, the integration of global and local 

insights through SHAP provides actionable strategies to 
improve vaccination rates. Globally, the findings support 
the prioritization of doctor recommendations and efforts to 
combat vaccine skepticism. Locally, personalized 
interventions, such as reminders and tailored messages, 
can address individual concerns. Together, these 
approaches offer a robust framework for enhancing public 
health strategies and preparing for future pandemics.
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