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Abstract

This paper presents a finite difference method to solve a novel type fourth-order boundary value problem with

impulsive conditions. These differential equations, which model deflections in beams, provide insights into various

applications in fields such as civil, mechanical, and aeronautical engineering. Analytical solutions to boundary

value problems are often challenging to derive, highlighting the need for robust numerical methods. In this study,

a formula for finite difference approximation is derived by using Taylor series expansions at selected grid points.

By transforming differential equations into algebraic systems, the unknown solutions are determined based on the

grid points. The proposed method is validated through a numerical example involving a fourth-order impulsive

linear boundary value problem, and the results demonstrate its effectiveness.

Keywords: The finite difference method, fourth order boundary value problem, impulse conditions, approximate

solutions

Dördüncü Mertebe İmpulsiv Sturm-Liouville Sınır Değer Problemleri için Sonlu Fark
Yaklaşımı

Öz

Bu makale, impulsiv koşullara sahip yeni bir dördüncü dereceden sınır değer problemini çözmek için sonlu farklar

yöntemini sunmaktadır. Kirişlerdeki sapmaları modelleyen bu diferansiyel denklemler, inşaat, makine ve havacılık

mühendisliği gibi alanlardaki çeşitli uygulamaların aydınlatılmasını sağlar. Sınır değer problemlerine yönelik anal-

itik çözümlerin elde edilmesi çoğu zaman zorlayıcıdır ve bu durum sağlam sayısal yöntemlere olan ihtiyacı vurgu-

lamaktadır. Bu çalışmada, seçili grid noktalarında Taylor serisi açılımları kullanılarak sonlu farklar yaklaşımı için

bir formül ortaya çıkarılmıştır. Diferansiyel denklemler cebirsel denklem sistemlere dönüştürülerek, bilinmeyen

çözümler grid noktalarına göre belirlenmiştir. Önerilen yöntem, dördüncü dereceden impulsiv doğrusal sınır değer

problemini içeren sayısal bir örnek üzerinden doğrulanmış ve sonuçlar yöntemin etkinliğini göstermiştir.

Anahtar Kelimeler: Sonlu fark yöntemi, dördüncü mertebe sınır değer problemi, impuls şartlar, yaklaşık

çözümler
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1. Introduction

Fourth-order boundary value problems commonly arise in the mathematical modeling of beam and plate

deformations, deflection theories, viscoelastic and inelastic flows, as well as numerous other applications in ap-

plied sciences. The theory of impulsive differential equations is significantly more complex than that of ordinary

differential equations and has captivating applications in various fields. The interest of researchers in this domain is

rapidly growing. Analytical solutions for such boundary value problems (BVP) are rarely attainable, which makes

it necessary to study fundamental properties such as existence and uniqueness of solutions, linear dependence and

independence, stability, and the existence of periodic solutions [1-17]

The theory of impulsive differential equations is essential for understanding real-life problems, where discon-

tinuities in physical phenomena have considerable impacts on many applied problems in nature. For instance, in

real processes, effects occurring over a short time and initially deemed negligible can induce sudden changes in

the state of a system. Even minuscule, abrupt changes can lead to substantial differences in system behavior.

Examples of such phenomena include epidemic outbreaks that lead to rapid declines in the population of

a species, sudden changes in the velocity of an oscillating object when an external force is applied, or sudden

deflections in beams under various conditions. The mathematical models that incorporate these impulsive effects

are expressed as impulsive differential equations. Solving these equations yields results that most closely align

with real-world observations. Furthermore, realistic outcomes can be achieved through models applied to many

fields, including theoretical physics, biotechnology, industrial robotics, medicine, and economics [18-27].

Over time, a variety of analytical and numerical methods have been developed to tackle these problems. Meth-

ods include spectral analysis [1-17], finite difference methods [18-21], variational approaches [22], Hermite and

conforming finite elements [23, 24], compact finite difference methods [25], the differential transform method

[26], and the Galerkin method [27], among others. The development of new methods continues to advance the

field.

In this paper, we present the finite difference method as a means to solve fourth-order boundary value problems

with impulsive conditions. This type of problem has not been previously addressed in the literature. We derive

the finite difference formulations necessary for the solution, apply these formulations to specific problems, and

illustrate the solutions using graphical representations.

2. Derivation of The Finite Difference Method for Solving of Fourth Order Impulsive
BVP

Consider the fourth-order linear boundary value problem given by:

p(x)η(4)(x) + q(x)η
′′′
(x) + r(x)η

′′
(x) + s(x)η

′
(x) + t(x)η(x) = f(x), x ∈ [a,m) ∪ (m, b] (1)

with the impulsive conditions at x = m:

η(m− 0) = αη(m+ 0), ηx(m− 0) = βηx(m+ 0)
ηxx(m− 0) = γηxx(m+ 0), ηxxx(m− 0) = δηxxx(m+ 0)

(2)

and boundary conditions:

η(a) = A0, η(b) = B0, ηx(a) = A1, ηx(b) = B1 (3)
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where a,m, b, A0, B0, A1, B1, and α, β, γ, δ > 0 are constants, and p, q, r, s, t, and f are smooth functions. To

discretize problem (1), (3), the interval [a, b] is divided into N equal sub-intervals [x0, x1], [x1, x2], ..., [xN−1, xN ]

such that:

a = x0 < x1 < ... < xN = b, xi = a+ ih, h =
b− a

N

The values corresponding to η are denoted as η(xi) = ηi = η(x0 + ih), i ∈ {0, 1, 2, ..., N}.

Using Taylor series expansion, we obtain the forward, backward, and central difference expressions for η
′
(x)

at x = xi:

η
′

i =
ηi+1 − ηi

h
, η

′

i =
ηi − ηi−1

h

η
′

i =
ηi+1 − ηi−1

2h
(4)

Higher-order derivatives are derived by repeatedly applying first-order differences. The following approaches can

be used:

D+η(x) =
η(x+ h)− η(x)

h
, D−η(x) =

η(x)− η(x− h)

h

D0η(x) =
η(x+ h)− η(x− h)

2h

where D+η(x), D−η(x), and D0η(x) denote the forward, backward, and centered finite differences of η(x),

respectively. The second-order derivative D2η(x) can be defined as the difference of first differences:

D2η(x) = D+(D−η(x)) =
1

h
[D−η(x+ h)−D−η(x)]

=
1

h2
[η(x+ h)− 2η(x) + η(x− h)]

Hence, the forward, backward, and central differences for the second-order derivative are:

η
′′

i =
ηi−1 − 2ηi + ηi+1

h2
, η

′′

i =
ηi−2 − 2ηi−1 + ηi

h2

η
′′

i =
ηi − 2ηi+1 + ηi+2

h2
(5)

The third-order derivative D3η(x) can be expressed as:

D3η(x) = D+D
2η(x) =

1

h3
[η(x+ 2h)− 3η(x+ h) + 3η(x)− η(x− h)]

which yields the forward, backward, and central differences for the third-order derivative:

η
′′′

i =
1

h3
[ηi+3 − 3ηi+2 + 3ηi+1 − ηi], η

′′′

i =
1

h3
[ηi+1 − 3ηi + 3ηi−1 − ηi−2] (6)

η
′′′

i =
1

h3
[ηi+2 − 3ηi+1 + 3ηi − ηi−1]

The fourth-order derivative D4η(x) is defined by:

D4η(x) = D+D
3η(x) = 1

h4 [η(x+ 3h)− 4η(x+ 2h) + 6η(x+ h)− 4η(x) + η(x− h)]
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and the corresponding finite difference expressions for the fourth-order derivative are:

η
(4)
i =

1

h4
[ηi+4 − 4ηi+3 + 6ηi+2 − 4ηi+1 + ηi]

η
(4)
i =

1

h4
[ηi+2 − 4ηi+1 + 6ηi − 4ηi−1 + ηi−2] (7)

η
(4)
i =

1

h4
[ηi+3 − 4ηi+2 + 6ηi+1 − 4ηi + ηi−1]

To solve the boundary value problem (1), (3) in the interval [a, b], we substitute the finite difference expressions

from (4), (5), (6), and (7) into the equations to obtain the following system of linear algebraic equations:{
2piηi+2 + (−8pi + 2hqi + 2h2ri + h3si)ηi+1 + (12pi − 6hqi − 4h2ri + 2h4ti)ηi
+(−8pi + 6hqi + 2h2ri − h3si)ηi−1 + (2pi − 2hqi)ηi−2 = 2h4fi, i ∈ {1, 2, · · · N − 1} (8)

with the boundary conditions:

η(a) = A0, η(b) = B0

ηx(a) =
ηi+1 − ηi−1

2h
= A1, ηx(b) =

ηi+1 − ηi−1

2h
= B1 (9)

where η(xi), p(xi), q(xi), r(xi), s(xi), t(xi), and f(xi) are represented as ηi, pi, qi, ri, si, ti, and fi, respectively.

3. The Solution of Problem with Impulsive Conditions

To find the solution to the boundary value problem (1), (3) that satisfies the impulsive conditions:

η(m− 0) = αη(m+ 0), ηx(m− 0) = βηx(m+ 0)
ηxx(m− 0) = γηxx(m+ 0), ηxxx(m− 0) = δηxxx(m+ 0)

(10)

in the interval [a,m) ∪ (m, b], we divide the definition range [a, b] into N equal sub-intervals using grid points:

xi = a+ ih, i ∈ {0, 1, ..., N}

where h = b−a
N is the mesh width, representing the distance between consecutive grid points. The values

pi, qi, ri, si, ti, and fi correspond to the function values of p, q, r, s, t, and f at the grid point x = xi. The

approximate solution at xi is denoted by ηi [18, 19]. Thus, we can numerically solve the impulsive boundary value

problem, which includes the values η0, η1, ..., ηN−1, ηN .

From the boundary conditions (2.3), we have:

η(a) = A0, η(b) = B0

ηx(a) =
ηi+1 − ηi−1

2h
= A1, ηx(b) =

ηi+1 − ηi−1

2h
= B1 (11)

Approximate values at the impulsive conditions (10) can be determined as:

η(m− 0) = η(xk), η(m+ 0) = η(xk+1) (12)

ηx(m− 0) =
1

h
[η(xk)− η(xk−1)], ηx(m+ 0) =

1

h
[η(xk+2)− η(xk+1)] (13)

ηxx(m− 0) = 1
h2 [η(xk−2)− 2η(xk−1) + η(xk)]

ηxx(m+ 0) = 1
h2 [η(xk+1)− 2η(xk+2 + η(xk+3)]

(14)
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ηxxx(m− 0) = 1
h3 [η(xk+1)− 3η(xk) + 3η(xk−1)− η(xk−2)]

ηxxx(m+ 0) = 1
h3 [η(xk+4)− 3η(xk+3) + 3η(xk+2)− η(xk+1)]

(15)

Using the finite difference approximations for a sufficiently large N and at points xk and xk+1, we derive the

following from the impulse conditions (12)-(15):

ηk = αηk+1 (16)

1

h
[ηk − ηk−1] =

β

h
[ηk+2 − ηk+1] (17)

1
h2 [ηk−2 − 2ηk−1 + ηk] =

γ
h2 [ηk+1 − 2ηk+2 + ηk+3] (18)

1
h3 [ηk+1 − 3ηk + 3ηk−1 − ηk−2] =

δ
h3 [ηk+4 − 3ηk+3 + 3ηk+2 − ηk+1] (19)

In the impulsive boundary value problem (1)-(3), considering (11) and the finite difference approximations

(16)-(19), the resulting system of linear algebraic equations is:

2piηi+2 + (−8pi + 2hqi + 2h2ri + h3si)ηi+1 + (12pi − 6hqi − 4h2ri + 2h4ti)ηi
+(−8pi + 6hqi + 2h2ri − h3si)ηi−1 + (2pi − 2hqi)ηi−2 = 2h4fi, i ∈ {1, 2, · · · , k − 1}
ηi − αηi+1 = 0, i ∈ {k}
−ηi−1 + ηi + βηi+1 − βηi+2 = 0, i ∈ {k + 1}
ηi−2 − 2ηi−1 + ηi − γηi+1 + 2γηi+2 − γηi+3 = 0, i ∈ {k + 2}
−ηi−2 + 3ηi−1 − 3ηi + (1 + δ)ηi+1 − 3δηi+2 + 3δηi+3 − δηi+4 = 0, i ∈ {k + 3}
2piηi+2 + (−8pi + 2hqi + 2h2ri + h3si)ηi+1 + (12pi − 6hqi − 4h2ri + 2h4ti)ηi
+(−8pi + 6hqi + 2h2ri − h3si)ηi−1 + (2pi − 2hqiηi−2 = 2h4fi, i ∈ {k + 4, k + 5, · · · , N − 1}

(20)

The solution of the system (20) can be obtained using computational software such as Maple, Matlab, or

Mathematica.

In numerical methods, if the approximate solutions closely match the real solution, this property is known

as convergence. However, convergence depends on specific conditions, and it may not always be guaranteed

[18, 19, 21].

4. Numerical Example

In this section, the proposed method is applied to a linear boundary value problem with impulsive condi-

tions. The approximate solutions obtained are compared with the exact solution.

We consider the following linear boundary value problem:

η(4)(x) + η
′′
(x) = x, x ∈ [0, 1) ∪ (1, 2] (21)

subject to the boundary conditions:

η(0) = 0, η(2) = 0, ηx(0) = 0, ηx(2) = 0 (22)

and with impulsive conditions at x = 1:

η(1− 0) = η(1 + 0), ηx(1− 0) = ηx(1 + 0),
ηxx(1− 0) = 2ηxx(1 + 0), ηxxx(1− 0) = 2ηxxx(1 + 0)

(23)

Such equations are based on the analysis of elastic beam deflections. If η = η(x) represents the deflection

of the beam at x, the differential equation characterizes the transverse displacement of the beam under buckling

[8, 13, 21, 22].
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First, we examine the solution of this problem without impulsive conditions in the interval [0, 2] using the finite

difference method (FDM). We show that the approximate solutions align closely with the analytical solution of the

boundary value problem (21), (22):

η(x) = 1
6(cos(2)+sin(2)−1) [(cos(2) + sin(2)− 1)x3 + (6 cos(2) + 4 sin(2)− 6) sin(x)

+(4 cos(2)− 6 sin(2) + 8) cos(x)− (6 cos(2) + 4 sin(2)− 6)x− 4 cos(2) + 6 sin(2)− 8]

We take a uniform cartesian grid xi = 0 + ih, where i ∈ {0, 1, ..., 20}, and h = 2−0
20 = 0.1. Here, x0 = 0,

x20 = 0, with boundary values η0 = 0 and η20 = 0. Applying the finite difference method at a typical grid point

xi, we get:

ηi+2 + (h2 − 4)ηi+1 + (6− 2h2)ηi + (h2 − 4)ηi−1 + ηi−2 = h4xi, i ∈ {1, ..., 19} (24)

Thus, the finite difference solutions ηi ∼ η(xi) for the linear system (24) are obtained. This system is solved

using software such as Maple, Matlab, or Mathematica. The results demonstrate a strong agreement, as illustrated

in Figure 1.

Figure 1: Graph of the FDM and Exact solution for N = 20

Then, we consider the boundary value problem (21), (22) with impulsive conditions (23) at the interface point

x = 1. Selecting N = 64 and defining η32 = η(1 − 0), η33 = η(1 + 0), we apply the impulsive conditions (23)

and obtain four additional algebraic equations:
η32 − η33 = 0
η30 − η32 − η33 + η35 = 0
η28 − η32 − 2η33 + 2η37 = 0
η26 − η32 − 2η33 + η39 = 0

(25)

The algebraic system (24) combined with (25) can be solved using computational tools like Maple, Matlab, or

Mathematica. The solution for the impulsive boundary value problem (21)-(23) is shown in Figure 2.
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Figure 2: Graph of the FDM solution for impulsive BVP for N = 64

5. Conclusions

In this study, the finite difference approach was applied to obtain approximate solutions for a fourth-order

boundary value problem with impulse conditions. These problems hold significant importance in practical appli-

cations and are commonly encountered in the analysis of elastic beam deflections. The problem examined in this

study is distinct from those addressed in existing literature. The results obtained were illustrated through graphi-

cal representations, demonstrating the development and applicability of finite difference formulations for solving

boundary value problems with impulse conditions. Mathematical models like these frequently appear in nonlinear

oscillations, numerous physical phenomena, and real-life applications. Therefore, it is thought that the numerical

method developed for the solution of the fourth-order impulsive differential equation would make valuable con-

tributions to the existing literature. Future research could extend this method to nonlinear impulsive differential

equations. It could also be adapted to fractional impulsive differential equations. Additionally, these problems

could be studied under various initial and boundary conditions.
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[2] Faydaoğlu, Ş., Guseinov, G. Sh., (2010) An expansion result for a Sturm-Liouville eigenvalue problem with

impulse, Turkish Journal of Mathematics 34 (3) 355-366.

[3] Ozturk, S.N., Mukhtarov, O., Aydemir, K., (2023) Non-classical periodic boundary value problems with

impulsive conditions, Journal of New Results in Science 12 (1) 1-8.

[4] Mukhtarov, O. Sh., Aydemir, K., (2022) Comparison criteria for three-interval Sturm-Liouville equations,

Turkish Journal of Mathematics and Computer Science 14(2) 229–234.

[5] Faydaoğlu, Ş., Yakhno, V. G., (2021) Computation of the regularized Green’s function for vibration transport

in two-layered rods, Journal of Modern Technology and Engineering 6 (3) 205-218.

[6] Zhang, N., Ao, J. J., (2023) Finite spectrum of fourth-order boundary value problems with boundary and

transmission conditions dependent on the spectral parameter, Open Mathematics 21 (1) 20230110.

[7] Yaslan Karaca, I., Aksoy, S., (2022) Positive solutions for second order impulsive differential equations with

integral boundary conditions on an infinite interval, Miskolc Mathematical Notes 23 (1) 253–269.

[8] Rao, R., Jonnalagadda, J. M., (2024) Existence of a unique solution to a fourth-order boundary value problem

and elastic beam analysis, Mathematical Modelling and Control 4 (3) 297–306.

[9] Khanfer, A., Bougo, L., (2021) On the fourth-order nonlinear beam equation of a small deflection with

nonlocal conditions, AIMS Mathematics 6 (9) 9899-9910.

[10] Yuea, Y., Tiana, Y., Zhanga, M., Liua, J., (2018) Existence of infinitely many solutions for fourth-order

impulsive differential equations, Applied Mathematics Letters 81 72-82.

[11] Kandemir, M., (2017) Asympotic distribution of eigenvalues for fourth-order boundary value problem with

discontinious coefficient and transmission conditions, Communications Faculty of Sciences University of

Ankara Series A1: Mathematics and Statistics 66 (1) 133-152.

[12] Dou, J., Zhou, D., Pang, H., (2016) Existence and multiplicity of positive solutions to a fourth-order impulsive

integral boundary value problem with deviating argument, Boundary Value Problems 166.

[13] Liu, J., Yu, W., (2021) Two solutions to Kirchhoff-type fourth-order implusive elastic beam equations, Bound-

ary Value Problems 38.

[14] Akbarov, S. D., Valiyev, G.J., Aliyev, S.A., Khankishiyev, Z. F., (2024) The influence of the inhomogeneous

initial stresses in the hollow cylinder containing an inviscid fluid on the dispersion of the Quasi-Scholte waves

propagating in this cylinder, Applied and Computational Mathematics 23 (1) 18-39.

[15] Pankratov, E.L., (2020) On estimation of distribution of temperature in ventilated facades an analytical ap-

proach for prognosis, Journal of Modern Technology and Engineering 5 (2) 151-156.

8

Finite Difference Approach for Fourth-Order Impulsive Sturm-Liouville Boundary Value Problems



[16] Amirov, R., Durak, S., (2022) Half inverse problems for the singular Sturm-Liouville operator, International

Journal of Nonlinear Analysis and Applications 13 (2) 3161–3171.

[17] Amirova, R., (2024) Reconstruction of the Sturm-Liouville operator from nodal data, Filomat 38 (14)

5051–5060.
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