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ABSTRACT. This study delves into energy-efficient training strategies, emphasizing their alignment
with green computing principles. In particular, it highlights the utility of early stopping mechanisms
in optimizing the training process of deep learning models. Early stopping works by monitoring per-
formance metrics, such as validation accuracy or loss, and halting the training process once these
metrics stabilize or show no improvement over a predefined number of epochs. This approach elim-
inates redundant computations, leading to significant reductions in energy consumption and compu-
tational costs while preserving model accuracy. The research is centered on transfer learning models,
specifically MobileNetV2, InceptionV3, ResNet50V2, and Xception, which are well-regarded for their
versatility and performance in image classification tasks. By systematically varying patience criteria,
the study explores their impact on training duration, model accuracy, and computational efficiency.
Each patience criteria determine how many epochs the training continues without improvement be-
fore stopping, allowing for a nuanced examination of its effects across different architectures. Ad-
ditionally, the Rock Paper Scissors dataset, used for this study, is thoroughly described, including
its structure, size, and pre-processing steps applied. The findings reveal that early stopping not only
streamlines the training process but also aligns well with the broader goals of sustainable artificial
intelligence development. Supported by statistical analyses, such as Kruskal-Wallis H and Conover-
Iman tests, the results demonstrate that early stopping significantly reduces training time without
compromising accuracy. By effectively balancing computational efficiency with performance opti-
mization, this strategy exemplifies how environmentally responsible practices can be integrated into
AI workflows. This study contributes valuable insights into how adopting such techniques can miti-
gate the environmental impact of AI model training, highlighting their importance in the context of
advancing green computing initiatives.

1. INTRODUCTION

The development and application of technology increasingly demand environmentally conscious ap-
proaches, particularly in response to the global challenges of sustainability and energy consumption [1],
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[2]. In this context, green computing emerges as a critical paradigm, aiming to minimize the environ-
mental footprint of computational processes by enhancing energy efficiency and reducing operational
costs. Its applications span diverse areas, including power management, server virtualization, data center
optimization, and energy-efficient resource utilization, significantly influencing fields such as business,
environmental management, and artificial intelligence (AI) [3], [4].

AI, while transformative across numerous industries, presents a considerable environmental challenge
due to its high energy demands. Since the success of AlexNet in the 2012 ImageNet competition [5], the
computational requirements for model training have grown exponentially, leading to substantial energy
consumption [4], [6]. Addressing these challenges necessitates strategies that align AI development with
sustainability goals. Recent advancements in AI training have highlighted the critical role of energy-
efficient strategies. For instance, studies on large-scale language models such as GPT-3 have shown
significant energy demands, emphasizing the necessity of integrating green computing principles into AI
workflows [7]. Among these, early stopping—a technique that halts training once performance metrics
stabilize—has shown promise. Early stopping is a regularization technique used to terminate training
when performance on a validation set ceases to improve. This prevents over-fitting by halting before the
model memorizes training data. By curbing unnecessary computations, early stopping not only enhances
computational efficiency but also embodies the principles of green computing, offering a pathway toward
sustainable AI practices [8].

Another critical aspect of green computing is the efficient management of energy distribution and
usage, as exemplified by smart grid technologies. These systems manage renewable energy sources
more effectively, boosting energy efficiency while reducing greenhouse gas emissions. However, en-
suring reductions in energy costs and CO2 emissions remains a priority. Research in commercial and
institutional buildings demonstrates that human intervention, supported by energy-saving techniques and
information systems, can significantly minimize energy losses. Similarly, sorting tasks based on time
and power requirements exemplifies strategies for reducing power consumption during decision-making
processes [6], [9], [10].

In AI, early stopping stands out as a pivotal approach to mitigating the environmental impact of train-
ing processes. This method halts the training process when performance metrics, such as validation
accuracy, plateau or decline. By reducing computational demands, early stopping directly addresses the
sustainability challenges of AI, balancing computational efficiency with model performance [11], [12].
Such optimization techniques illustrate how green computing principles can be effectively integrated into
AI workflows, fostering a future where technological progress aligns with environmental responsibility.

The increasing demand for energy-efficient solutions in AI underscores the need for interdisciplinary
approaches that prioritize sustainability without sacrificing performance. As global concerns about cli-
mate change and resource scarcity grow, embedding green computing principles into emerging tech-
nologies becomes imperative. Innovations like energy-efficient consensus mechanisms, smart grids, and
energy-aware training strategies enable technological advancements to align with the objectives of sus-
tainable development, ensuring that progress benefits both society and the environment [4], [6], [12], [13].
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This study specifically investigates the application of early stopping mechanisms in the training of
deep learning models, focusing on their energy efficiency and impact on model performance. Trans-
fer learning architectures—MobileNetV2, InceptionV3, ResNet50V2, and Xception—were selected for
their versatility and strong performance in image classification tasks. These architectures are system-
atically evaluated by varying patience criteria (PC), which define thresholds for halting training in the
absence of performance improvements, facilitating an analysis of training duration, model accuracy, and
computational efficiency [11].

The Rock Paper Scissors dataset [14] serves as the basis for evaluation, with detailed descriptions
of its structure, size, and pre-processing steps ensuring clarity and reproducibility. Statistical analyses,
including Kruskal-Wallis H [15], Mann-Whitney U [16], and Conover-Iman [17] tests, validate the results
rigorously.

The novelty of this work lies in its comparative analysis of multiple deep learning architectures, under-
pinned by statistical rigor. By employing Kruskal-Wallis H and Conover-Iman tests, the study ensures the
reliability and generalizability of its findings. This approach establishes a benchmark for future research
on energy-aware AI methodologies.

Furthermore, this research underscores the interdisciplinary nature of integrating green computing
principles into AI model training. By fostering collaboration across fields such as computer science,
environmental science, and data engineering, it paves the way for innovations that prioritize sustainability
without compromising technological advancements.

2. BACKGROUND

The rising demand for machine learning (ML)-enabled systems has significantly increased energy
consumption across various computational tasks. As ML applications proliferate, their environmental
impact becomes a growing concern. To address this, researchers and practitioners have emphasized green
computing practices, which focus on minimizing energy usage while maintaining model performance
[13].

Xu et al. [12], empirically evaluated the impact of experimental design on the energy efficiency of the
training process by analyzing three different convolutional neural network (CNN) architectures across
two large image classification datasets. The training sessions were assessed using three efficiency met-
rics: CO2 emissions produced, total energy consumed, and the number of floating-point operations
(FLOPs) required. Statistical evidence revealed that carbon emissions and energy consumption are
closely linked to the experimental design of neural network architectures. Furthermore, external fac-
tors, such as the geographical location of cloud-hosted services, also influence the computational impact,
highlighting challenges beyond the researcher’s control. These findings emphasize the importance of in-
corporating energy-efficient strategies into deep learning research to ensure that advancements in model
performance align with sustainable computing practices.

A catalog of green architectural tactics for ML-enabled systems highlights a structured approach to
energy efficiency. These tactics span multiple dimensions, including data-centric methods, algorithm
design, model optimization, model training, deployment, and management. Among these, energy-aware
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training strategies, such as quantization-aware training, leveraging checkpoints, and designing for mem-
ory constraints, are pivotal in reducing computational overhead during the training phase [8], [13].

Recent studies emphasize the importance of addressing over-parameterization in pre-trained CNN
models to enhance energy efficiency and computational performance. For example, a systematic analysis
of 27 pre-trained models identified EfficientNetB0 as the most energy-efficient candidate for Eimeria
parasite detection, reducing parameter counts by up to 8% through pruning without sacrificing classifica-
tion accuracy. This approach not only saves energy but also demonstrates the potential for holistic model
design, combining multiple species into a single model for improved efficiency [18].

In this context, early stopping emerges as a key energy-aware training method that halts model training
once a predefined performance threshold is met. By preventing unnecessary computations, this approach
not only conserves energy but also accelerates the development cycle of ML models [13]. While early
stopping has been widely studied in the context of energy-aware machine learning, its comparative effects
across diverse transfer learning architectures remain underexplored. This study addresses this gap by
systematically evaluating multiple architectures using a standardized dataset and statistical rigor.

Early exit strategies in deep learning have emerged as an effective approach to balancing model per-
formance and computational efficiency. These strategies allow intermediate predictions within neural
networks, enabling the termination of computations for certain inputs when a confident prediction is
achieved. This approach has been extensively studied across various domains and tasks, including image
classification, machine translation, text ranking, and quality enhancement [11], [19].

Recent studies on early existing, as summarized in [20], highlight the diversity of applications and
metrics employed to evaluate these strategies. For instance, Teerapittayanon et al. [21], [22] applied
early exit strategies to image classification tasks using datasets such as MNIST and CIFAR-10, with base
models like LeNet-5, AlexNet, and ResNet, focusing on metrics like accuracy and latency. Similarly,
Wang et al. [23] and Li et al. [24] investigated the efficiency of early exits in large-scale datasets like
ImageNet, employing models such as ResNet, DenseNet, and MSDNet. Notably, energy consumption
was explicitly considered in several works, such as those by Laskaridis et al. [25] and Wang et al. [23],
underscoring the role of early exits in energy-efficient computing.

By reducing latency, computational complexity, and energy consumption, early exit strategies align
with green computing principles, offering a pathway to sustainable deep learning practices. Integrating
these strategies into model design and training processes could significantly reduce the environmental
footprint of machine learning applications. Future research in this area is expected to expand the scope
of early exits to additional tasks and domains, further advancing the synergy between performance opti-
mization and energy efficiency in deep learning [11].

In line with the objectives outlined in the introduction, this study underscores the necessity of interdis-
ciplinary efforts to integrate green computing principles into the life-cycle of emerging technologies. By
prioritizing energy efficiency and sustainability, we pave the way for innovations that are not only tech-
nically advanced but also environmentally responsible. A key focus of this research is the application of
early stopping strategies within the context of deep learning, specifically exploring how these strategies
influence model performance across various deep learning architectures. By investigating different PC,
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this study provides a comparative analysis that highlights the impact of early stopping on both training
time and model accuracy.

The primary goal of this study is to explore how early stopping strategies can affect the training pro-
cess of deep learning models, offering a comprehensive analysis of different model architectures and
their performance under varying parameters. While this study does not focus on directly measuring en-
ergy consumption or computational resources, it does provide valuable insights into how early stopping
can influence training time and model performance. By halting training when the performance metrics,
such as validation accuracy or loss, no longer show significant improvement, early stopping reduces
unnecessary epochs, which in turn decreases training time.

Validation loss measures the model’s error on the validation dataset after each training epoch. It serves
as a key indicator of over-fitting, where a rising validation loss suggests that the model is no longer
generalizing well to unseen data. Similarly, validation accuracy measures the proportion of correctly
predicted instances in the validation dataset after each training epoch, providing insight into the model’s
generalization performance. A stagnating or declining validation accuracy, despite improvements in
training accuracy, may suggest over-fitting.

This research examines the relationship between the number of epochs before stopping, the final test
accuracy, and the time taken for training. By analyzing different PC (such as 3, 5, 7, 10, and 15 epochs),
we determine the optimal stopping point for achieving a good balance between model performance and
training duration. The comparative analysis focuses on how these parameters impact the test accuracy
and the training time, ultimately showing that early stopping can be a practical technique to improve the
efficiency of deep learning processes.

Ultimately, this study aims to demonstrate how early stopping can optimize deep learning workflows
by reducing unnecessary training time, allowing researchers and practitioners to achieve efficient models
without over-fitting. By offering a framework for understanding how different PC influence model ac-
curacy and training duration, this research supports the integration of efficiency-oriented strategies into
machine learning practices, contributing to more sustainable development cycles.

3. MATERIALS AND METHODS

3.1. Transfer Learning Methods:
To investigate the impact of early stopping strategies on different model architectures, we utilize

transfer learning with four well-established transfer learning models [26]: MobileNetV2, InceptionV3,
ResNet50V2, and Xception. These pre-trained models are fine-tuned on the Rock Paper Scissors Dataset
[14]. Transfer learning is particularly beneficial for tasks with limited labeled data, as the models have
already learned relevant features from large-scale datasets such as ImageNet. The fine-tuning process
adapts the pre-trained models to the specific classification task, thus accelerating the training process
and potentially enhancing model performance. Each of these models has been selected due to its proven
effectiveness in image classification tasks, providing a diverse range of model architectures to assess the
generalizability and performance of early stopping strategies.
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FIGURE 1. Early stopping parameter configuration and monitoring across transfer
learning models.

Figure 1 illustrates the experimental setup for evaluating the impact of different PC on four trans-
fer learning models: MobileNetV2, InceptionV3, ResNet50V2, and Xception. The monitored criteria,
including validation loss and validation accuracy, are analyzed to determine the effects of early stop-
ping strategies on key performance metrics: test accuracy, training time, and stopped epoch. The visual
framework emphasizes the systematic evaluation process to identify optimal PC settings for efficient and
effective model training.

3.2. Dataset:
The Rock Paper Scissors Dataset [14] is used for this study and consists of labeled images categorized

into different types. Each category contains 975 images, resulting in a total of 2,925 images. The dataset
is divided into two main subsets: 80% (2,340 images) for the training dataset (70% for training and 10%
for validation), and 20% (585 images) for the test dataset (Figure 2). This division ensures that the model
is trained on a substantial portion of the data, while also leaving a portion for validation and testing to
evaluate its performance on unseen data. Moreover, to account for potential variability and to ensure that
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FIGURE 2. The distribution of each class.

the models are assessed fairly, 5-fold cross-validation (CV) is employed. CV is a statistical method used
to evaluate a model’s generalization performance by splitting the dataset into complementary subsets for
training and testing. This ensures that the evaluation is robust and not overly dependent on a single split.
This method ensures that each fold of the CV process maintains a proportional distribution of the classes,
providing a more reliable estimate of the model’s generalization ability. In each fold, a different partition
is used for training, validation, and testing, and the process is repeated for each fold, allowing the model
to be trained and tested on all available data [27], [28].

The dataset serves as the basis for evaluation, with detailed descriptions of its structure, size, and
pre-processing steps ensuring clarity and reproducibility. In selecting the dataset, this study aims to ana-
lyze model performance on a medium-scale dataset that allows for efficient experimentation with various
early stopping strategies. The dataset is well-suited for evaluating energy-efficient training techniques,
as it provides a manageable size for computational experiments while maintaining enough complexity
to demonstrate key differences in performance. This choice also facilitates reproducibility and compa-
rability with other studies in the field. Future research will consider larger and more complex datasets,
enabling the examination of early stopping strategies on a broader range of tasks and more demanding
computational settings.

Figure 3 displays samples from different classes of the dataset, which represent the classic game of
Rock, Paper, or Scissors. Each class corresponds to one of the three possible moves in the game: Rock,
Paper, or Scissors. These samples are crucial for training machine learning models, as they help the
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FIGURE 3. Samples from different classes of the dataset.

algorithm distinguish between the various input categories. The dataset likely includes images or repre-
sentations of each move, enabling the model to learn patterns and make predictions based on the visual
features associated with Rock, Paper, or Scissors.

3.3. Statistical Analysis:
The performance of early stopping strategies is evaluated using several metrics, including classifica-

tion accuracy, training time, and validation loss. To determine whether early stopping strategies lead to
statistically significant differences in performance, a Kruskal-Wallis H test [15] is employed. This non-
parametric test is appropriate for comparing multiple independent groups—such as different PC—across
performance metrics, as it does not assume the data to be normally distributed. If the Kruskal-Wallis H
test yields a significant result, indicating differences in performance across groups, a post-hoc Conover-
Iman Test [17] is conducted. This test is particularly suitable when sample sizes within groups are small,
providing a robust method for pairwise comparisons while controlling for the family-wise error rate. Ad-
ditionally, for pairwise comparisons between groups of PC, the Mann-Whitney U test [16] is utilized.
This test is a non-parametric alternative to the t-test and is applied when comparing two independent
groups, such as specific pairs. It assesses whether the distributions of the two groups differ significantly.
The Mann-Whitney U test provides a complementary approach to the Conover-Iman Test by offering
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more granular insights into pairwise differences [17]. All statistical tests are conducted with a signifi-
cance level of and a = 0.05. If the p-value from any test is less than 0.05, the null hypothesis is rejected,
indicating statistically significant differences between the groups being compared. This rigorous statisti-
cal approach ensures that the conclusions drawn from the analysis are reliable and valid. By evaluating
the impact of early stopping strategies on model performance through Kruskal-Wallis H, Conover-Iman,
and Mann-Whitney U tests, this study aims to identify optimal training configurations that balance com-
putational efficiency with model accuracy.

3.4. Common Specifications:
The common specifications for the model are outlined in Table 1. CV is employed with a fold size

of 5 to ensure balanced class representation. Data shuffling is enabled with a random state set to 1 for
reproducibility. The base model is configured with an input shape of 96x96, utilizes pre-trained weights
from the ImageNet dataset. and is set as non-trainable. The model architecture includes a dense layer
with 64 units, using the Rectified Linear Unit (ReLU) activation function [29] followed by a dropout
layer with a rate of 0.05 to mitigate over-fitting and improve generalization. The Adam optimizer is used
during compilation, with a learning rate of 0.0001. Training is conducted using a batch size of 32 and
spans a maximum of 50 epochs.

TABLE 1. Common specifications for each transfer learning models

Category Name Value

Monitor Criteria Validation Loss Metric val loss
Validation Accuracy Metric val accuracy

Patience Criteria Stopped Epochs 3, 5, 7, 10, 15

CV
Number of Folds 5
Shuffle True
Random Seed 1

Base Model
Input Shape 96*96
Weights ImageNet
Trainable False

Dense Layer Units 64
Activation Function ReLU

Dropout Layer Dropout Rate 0.50

Compile Optimizer Adam
Learning Rate 0.0001

Model Training Batch Size 32
Number of Epochs 50
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To improve efficiency and avoid over-fitting, early stopping is applied based on the monitoring cri-
teria (MC). Specifically, the training process monitors validation loss and validation accuracy, stopping
automatically if no improvement is observed across consecutive epochs. The evaluation is performed at
specific checkpoints (epochs 3. 5. 7. 10. and 15), offering insights into model performance at different
stages of training. These configurations aim to balance computational efficiency, model generalization,
and robustness. ensuring reliable results across all folds of the CV process.

4. RESULTS

The performance of four deep learning models—MobileNetV2, InceptionV3, ResNet50V2, and Xcep-
tion—was evaluated based on several key metrics, including training accuracy, training loss, validation
accuracy, validation loss, test accuracy, test loss, and training time. These metrics were averaged over
various early stop criteria, such as val loss and val accuracy, with results reported for different PC. Table
2 summarizes the average performance across these models for each validation criterion.

In general, MobileNetV2 consistently demonstrated high training and test accuracies with relatively
low training and test losses. Similarly, InceptionV3 and ResNet50V2 achieved competitive results, al-
though with some variations in performance depending on the validation criteria. Xception, on the other
hand, showed a robust performance, especially in terms of validation accuracy and test accuracy, though
with higher training and test losses in comparison to the other models. The average training times for all
models were also considered, providing an indication of computational efficiency.

The analysis of model performance (Table 3), grouped by MC and PC, revealed distinct patterns in the
test accuracy, training time, and early stopping behavior for each architecture.

For MobileNetv2, the test accuracy did not show a statistically significant difference (p=0.382, p>0.05),
indicating consistent performance across groups. However, both training time (p=0.000, p<0.05) and the
stopped epoch count (p=0.000, p<0.05) exhibited significant variations, suggesting the model’s sensitiv-
ity to these parameters.

Similarly, InceptionV3 displayed no significant difference in test accuracy (p=0.403, p>0.05), while
training time (p=0.000, p<0.05) and stopped epoch count (p=0.000, p<0.05) were significantly im-
pacted, reflecting comparable trends to MobileNetv2.

For ResNet50V2, test accuracy remained consistent (p=0.269, p<0.05) without notable variation.
However, as observed with the other models, both training time (p=0.000, p<0.05) and stopped epoch
count (p=0.000, p<0.05) varied significantly, reinforcing the importance of these parameters in model
training dynamics.

In contrast, Xception demonstrated a significant difference in test accuracy (p=0.030, p<0.05). indicat-
ing variability in performance across groups. Additionally, training time (p=0.000, p<0.05) and stopped
epoch count (p=0.000, p<0.05) also showed significant variation, further emphasizing the model’s sen-
sitivity to MC and PC.

The Kruskal-Wallis H test results, summarized in Table 4, show the comparison of different monitor
parameters across various deep learning architectures. For most models, including MobileNetV2, Incep-
tionV3, and ResNet50V2, the test results for test accuracy did not show significant differences (p > 0.05),

117



TABLE 2. Average performance metrics for MobileNetV2, InceptionV3,
ResNet50V2, and Xception models

MN MC PC SE TE Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss TT (s)

M
ob

ile
N

et
V

2

val loss 3 9.4 50 0.995 0.028 0.841 0.414 0.984 0.056 25.055
val loss 5 13.4 50 0.998 0.017 0.848 0.414 0.983 0.051 33.112
val loss 7 18 50 0.999 0.011 0.870 0.390 0.986 0.046 42.814
val loss 10 19 50 0.999 0.009 0.863 0.429 0.987 0.049 48.824
val loss 15 25 50 0.999 0.007 0.827 0.518 0.981 0.061 61.902
val acc 3 8.8 50 0.994 0.034 0.831 0.419 0.979 0.068 22.719
val acc 5 11.6 50 0.997 0.021 0.857 0.390 0.986 0.054 32.113
val acc 7 15 50 0.997 0.017 0.863 0.421 0.985 0.064 39.614
val acc 10 18.4 50 0.998 0.011 0.829 0.461 0.980 0.062 48.845
val acc 15 25.2 50 0.999 0.006 0.859 0.440 0.986 0.063 75.320
Original No No 50 1 0.002 0.840 0.580 0.978 0.070 121.674

In
ce

pt
io

nV
3

val loss 3 8.4 50 0.986 0.057 0.758 0.743 0.965 0.125 33.622
val loss 5 17 50 0.996 0.023 0.798 0.720 0.976 0.093 70.758
val loss 7 17.2 50 0.994 0.027 0.814 0.683 0.972 0.117 82.924
val loss 10 30.6 50 0.998 0.010 0.825 0.678 0.982 0.077 182.771
val loss 15 30.6 50 0.998 0.009 0.823 0.726 0.981 0.077 181.658
val acc 3 10.8 50 0.988 0.049 0.814 0.659 0.969 0.128 68.307
val acc 5 19.4 50 0.996 0.017 0.799 0.767 0.979 0.086 125.599
val acc 7 27.8 50 0.999 0.008 0.816 0.735 0.979 0.077 191.087
val acc 10 31.8 50 0.999 0.008 0.857 0.595 0.983 0.075 223.856
val acc 15 36.2 50 0.999 0.005 0.847 0.695 0.982 0.075 256.737
Original No No 50 0.999 0.004 0.835 0.772 0.979 0.0991 416.361

R
es

N
et

50
V

2

val loss 3 17.8 50 0.995 0.025 0.958 0.121 0.993 0.026 139.693
val loss 5 16 50 0.993 0.032 0.918 0.194 0.991 0.044 127.430
val loss 7 26.6 50 0.997 0.018 0.923 0.166 0.993 0.026 197.787
val loss 10 26.2 50 0.997 0.016 0.891 0.232 0.987 0.040 201.758
val loss 15 41.6 50 0.998 0.008 0.934 0.133 0.996 0.019 364.172
val acc 3 11.6 50 0.985 0.053 0.939 0.1401 0.983 0.056 151.258
val acc 5 16.2 50 0.993 0.031 0.939 0.132 0.990 0.037 176.910
val acc 7 19.2 50 0.994 0.028 0.941 0.137 0.991 0.040 238.396
val acc 10 23.4 50 0.997 0.018 0.955 0.106 0.991 0.036 303.144
val acc 15 36.4 50 0.997 0.009 0.919 0.166 0.992 0.025 520.313
Original No No 50 0.999 0.004 0.911 0.209 0.985 0.033 723.026

X
ce

pt
io

n

val loss 3 9.4 50 0.975 0.116 0.691 0.653 0.942 0.184 71.368
val loss 5 15.4 50 0.990 0.065 0.719 0.660 0.958 0.138 118.122
val loss 7 16.4 50 0.990 0.068 0.704 0.663 0.951 0.150 125.397
val loss 10 22.8 50 0.995 0.042 0.719 0.699 0.958 0.137 175.587
val loss 15 28.8 50 0.998 0.025 0.741 0.702 0.965 0.113 233.605
val acc 3 10 50 0.974 0.125 0.701 0.648 0.940 0.218 95.685
val acc 5 16 50 0.988 0.066 0.716 0.664 0.956 0.140 129.949
val acc 7 21.6 50 0.992 0.052 0.698 0.757 0.956 0.159 171.013
val acc 10 26.8 50 0.997 0.029 0.722 0.752 0.963 0.116 219.265
val acc 15 37.4 50 0.998 0.019 0.728 0.823 0.966 0.105 313.890
Original No No 50 0.999 0.010 0.732 0.874 0.965 0.120 429.153

*MN: Transfer Learning Model Name. MC: Monitor Criteria. PC: Patience Criteria. SE: Stopped epoch. TE: Total Number
of Epochs. TT: Training Times in Seconds. Note: All results except TE are mean of each fold. See Appendix A for details.
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TABLE 3. Summary of each model by groups

# Group Name Test Statistic p-value Result

MobileNetV2
Test Accuracy 10.693 0.382 +
Training Time 42.263 0.000 x
Stopped Epoch 40.643 0.000 x

InceptionV3
Test Accuracy 10.434 0.403 +
Training Time 42.982 0.000 x
Stopped Epoch 43.074 0.000 x

ResNet50V2
Test Accuracy 12.251 0.269 +
Training Time 43.426 0.000 x
Stopped Epoch 41.092 0.000 x

Xception
Test Accuracy 19.895 0.030 x
Training Time 41.517 0.000 x
Stopped Epoch 41.719 0.000 x

Note: ”+”: H0 is accepted (p > 0.05), ”x”: H0 is rejected (p < 0.05).

meaning the null hypothesis (H0) was accepted. However, for training time and the number of stopped
epochs, significant differences were observed (p < 0.05), leading to the rejection of the null hypothe-
sis (H0) for those parameters, indicating that early stopping significantly affected these factors. Only
Xception model’s test accuracy did show a significant result (p < 0.05), while other models exhibited
no significant difference in test accuracy. Overall, the results suggest that early stopping strategies had a
noticeable impact on training time and number of epochs, but did not always affect the test accuracy in a
significant way.

The Mann-Whitney U Test was conducted to evaluate the pairwise differences in performance metrics
across four transfer learning architectures: MobileNetV2, ResNet50V2, InceptionV3, and Xception. The
metrics analyzed included test accuracy, training time, and stopped epoch under various early stopping
PC (Table 5).

The test accuracy results across all comparisons yielded p > 0.05, indicating that the null hypothe-
sis (H0) could not be rejected. This signifies that there were no statistically significant differences in
test accuracy between the models across the considered PC. The early stopping strategies employed do
not significantly affect the accuracy of the models. This consistency suggests that the transfer learning
architectures are robust to changes in PC with respect to test accuracy.

For most pairwise comparisons, the p > 0.05, indicating no significant differences in training time
across architectures and PC. At a PC of 7, the comparison involving MobileNetV2 resulted in a p-value =
0.008, which is statistically significant (p < 0.05). This suggests that the training time for MobileNetV2
is significantly different compared to another model for this specific PC. While early stopping does not
generally lead to significant differences in training time, the significant result for MobileNetV2 indicates
that certain architectures may exhibit more sensitivity to specific PC in terms of computational efficiency.
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TABLE 4. Summary of Kruskal-Wallis Test results for two different MC

MC= val loss MC= val accuracy

# Group Name Test Statistic p-value Result Test Statistic p-value Result

MobileNetV2
Test Accuracy 5.515 0.356 + 7.881 0.163 +
Training Time 23.885 0.000 x 24.474 0.000 x
Stopped Epoch 25.137 0.000 x 23.540 0.000 x

InceptionV3
Test Accuracy 6.147 0.292 + 4.715 0.452 +
Training Time 22.925 0.000 x 24.025 0.000 x
Stopped Epoch 23.655 0.000 x 24.159 0.000 x

ResNet50V2
Test Accuracy 8.418 0.135 + 4.632 0.462 +
Training Time 24.561 0.000 x 23.622 0.000 x
Stopped Epoch 23.698 0.000 x 22.883 0.000 x

Xception
Test Accuracy 12.703 0.026 x 8.430 0.134 +
Training Time 25.552 0.000 x 22.533 0.000 x
Stopped Epoch 25.493 0.000 x 22.943 0.000 x

Note: ”+”: H0 is accepted (p > 0.05), ”x”: H0 is rejected (p < 0.05).

For most pairwise comparisons of stopped epochs, the p > 0.05, meaning no significant differences
were observed between the models. At a PC of 3, one comparison yielded a p = 0.020, which is statis-
tically significant (p < 0.05). This indicates a significant difference in the number of epochs at which
training is halted for smaller PC between the models. Early stopping with smaller PC may result in
varying training dynamics across architectures, influencing the point at which training is terminated. The
boxplot (Figure 4) illustrates the test accuracy of the Xception model across various MC and PC. Each
group represents a specific monitoring criterion (e.g. validation loss or validation accuracy) evaluated at
different epochs, as well as a no-monitoring baseline. The mean and median test accuracies are annotated
for each group, providing insights into consistency and performance variations.

The results highlight that the val accuracy 15 and no monitoring No groups achieved the highest me-
dian and mean test accuracies (0.97), while val loss 3 and val accuracy 3 showed comparatively lower
performance, with median values around 0.94. This indicates that MC and the choice of PC significantly
influence the model’s ability to generalize effectively.

Although the test accuracy results for the Xception model suggest that there is a statistically significant
difference between at least one pair of monitoring groups (p < 0.05), further pairwise analysis using the
Conover-Iman test reveals a nuanced interpretation (Table 6). Specifically, while some groups, such
as no strategy vs. val loss 3 (p = 0.046) and val accuracy 3 vs. val accuracy 15 (p = 0.046) show p-
values below the significance threshold of 0.05, these values are very close to the threshold. Additionally,
other comparisons, such as val loss 3 vs. val loss 5 (p = 0.297) and val accuracy 5 vs. val accuracy 7
(p=0.687), yield much higher p-values, indicating no statistically significant difference.
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TABLE 5. Summary of Mann-Whitney U Test results for pair comparison by moni-
toring strategy

PC Group Name Test Statistic p-value Result Test Statistic p-value Result

3
Test Accuracy 8.5 0.462 + 6 0.206 +
Training Time 10 0.690 + 15 0.690 +
Stopped Epoch 10.5 0.747 + 1 0.020 x

5
Test Accuracy 16 0.523 + 11 0.829 +
Training Time 12 1.000 + 22 0.056 +
Stopped Epoch 9 0.522 + 10.5 0.750 +

7
Test Accuracy 13 1.000 + 8 0.395 +
Training Time 10 0.690 + 16 0.548 +
Stopped Epoch 8.5 0.461 + 5 0.151 +

10
Test Accuracy 4 0.090 + 10 0.671 +
Training Time 12 1.000 + 20 0.151 +
Stopped Epoch 12.5 1.000 + 7.5 0.340 +

15
Test Accuracy 15.5 0.600 + 5 0.134 +
Training Time 15 0.690 + 19 0.222 +
Stopped Epoch 10 0.674 + 8.5 0.462 +

3
Test Accuracy 16 0.530 + 10.5 0.753 +
Training Time 20 0.151 + 14 0.841 +
Stopped Epoch 17 0.421 + 10 0.675 +

5
Test Accuracy 13 1.000 + 16 0.530 +
Training Time 22 0.056 + 17 0.421 +
Stopped Epoch 17 0.402 + 15.5 0.599 +

7
Test Accuracy 14 0.832 + 17.5 0.344 +
Training Time 25 0.008 x 18 0.310 +
Stopped Epoch 22 0.059 + 16.5 0.458 +

10
Test Accuracy 12.5 1.000 + 16 0.530 +
Training Time 17 0.421 + 18 0.310 +
Stopped Epoch 14 0.841 + 16.5 0.463 +

15
Test Accuracy 15.5 0.599 + 14 0.834 +
Training Time 21 0.095 + 21 0.095 +
Stopped Epoch 16 0.530 + 17.5 0.344 +

Note: • MobileNetV2, • ResNet50V2, • InceptionV3, • Xception, PC: Patience Criteria,
”+”: H0 is accepted (p > 0.05), ”x”: H0 is rejected (p < 0.05).

Given these findings, while some differences appear significant at first glance, the proximity of the p-
values to the threshold in certain cases, along with the consistency across most comparisons, suggests that
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FIGURE 4. Boxplot of test accuracy for different PC with Xception model.

these results may not represent meaningful differences in practical terms. As such, the overall outcomes
can be interpreted as lacking substantial evidence for significant performance differences between the
monitoring strategies. This indicates that the choice of MC might not critically impact the Xception
model’s test accuracy under the conditions evaluated.

5. DISCUSSION

The results from the application of early stopping strategies to various transfer learning models reveal
significant insights into balancing computational efficiency and model performance. In this section, we
interpret the findings, their implications for green computing.

5.1. Impact on Training Time and Computational Efficiency:
Hussein et al. [11] highlighted the critical interplay between early stopping PC and the number of

epochs in deep learning models, demonstrating that higher PC values often require more epochs to
achieve optimal validation accuracy. Conversely, lower PC values can lead to premature stopping and
suboptimal model performance. Importantly, they also noted that prolonged training times do not neces-
sarily enhance validation accuracy, reinforcing the utility of early stopping in mitigating over-fitting and
conserving computational resources. These findings underscore the necessity of carefully calibrating PC
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TABLE 6. Pairwise comparisons of monitoring strategies for the Xception model Us-
ing Conover-Iman Test

Group Name no
st
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gy

va
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cc
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ur
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7

va
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ur
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cc
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15

va
ll
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s

3

va
ll

os
s

5

va
ll

os
s

7

va
ll

os
s

10

va
ll

os
s

15

no strategy
(original no) 1.000 0.049 0.425 0.687 0.690 0.935 0.046 0.383 0.236 0.425 0.991
val accuracy 3 0.049 1.000 0.297 0.140 0.136 0.046 0.934 0.383 0.565 0.297 0.049
val accuracy 5 0.425 0.297 1.000 0.687 0.687 0.383 0.236 0.934 0.687 0.991 0.425
val accuracy 7 0.687 0.140 0.687 1.000 0.991 0.685 0.110 0.685 0.406 0.687 0.687
val accuracy 10 0.690 0.136 0.687 0.991 1.000 0.687 0.110 0.653 0.383 0.687 0.687
val accuracy 15 0.935 0.046 0.383 0.685 0.687 1.000 0.046 0.342 0.202 0.383 0.936
val loss 3 0.046 0.934 0.236 0.110 0.110 0.046 1.000 0.297 0.434 0.236 0.046
val loss 5 0.383 0.383 0.934 0.685 0.653 0.342 0.297 1.000 0.712 0.934 0.383
val loss 7 0.236 0.565 0.687 0.406 0.383 0.202 0.434 0.712 1.000 0.687 0.236
val loss 10 0.425 0.297 0.991 0.687 0.687 0.383 0.236 0.934 0.687 1.000 0.425
val loss 15 0.991 0.049 0.425 0.687 0.687 0.936 0.046 0.383 0.236 0.425 1.000

to achieve a balance between computational efficiency and model performance. Building upon this, our
results further confirm that early stopping consistently reduced training time across all four models (Mo-
bileNetV2, InceptionV3, ResNet50V2, and Xception), with statistically significant reductions observed
in most cases. This demonstrates that early stopping effectively prevents unnecessary computations,
contributing to energy conservation and aligning with the principles of green computing. However, the
sensitivity of training time reduction to PC underscores the importance of carefully tuned parameters. For
instance, shorter PCs drastically reduce epochs but may compromise the achievement of optimal weights
for certain architectures, as evidenced by the significant test accuracy variations observed in Xception.
These findings align with Chen’s [8] assertion that ”Algorithms aimed at early termination of training
or dynamic adjustment of model complexity based on performance can prevent over-computation and
conserve resources.”

5.2. Consistency of Model Accuracy:
The findings underline that early stopping does not significantly degrade test accuracy for most mod-

els. Models like MobileNetV2 and ResNet50V2 exhibited stable performance across varying PCs, reaf-
firming the robustness of these architectures. However, Xception’s test accuracy displayed significant
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variability, indicating that the model’s performance is more sensitive to the choice of PC and monitor-
ing criteria. These results resonate with Patterson et al.’s perspective that prioritizing metrics beyond
accuracy, such as training efficiency and carbon footprint, could foster innovations in ML algorithms,
systems, and hardware, ultimately advancing both performance consistency and sustainability [7].

5.3. Implications for Green AI:.
The study supports the hypothesis that early stopping strategies contribute to reducing the environmen-

tal impact of AI training. By halting the training process earlier, models consume less energy, thereby
reducing carbon footprints. This aligns with sustainable development goals and emphasizes the role of
energy-efficient practices in AI research.

5.4. Limitations and Challenges:
While the findings are promising, several challenges remain:
Dataset Dependency: The experiments were conducted on the Rock Paper Scissors dataset. The

generalizability of these findings to more complex datasets with higher feature dimensionality requires
further exploration.

Model Sensitivity: The variability in performance for Xception suggests that some architectures might
require additional adaptive mechanisms to ensure consistent accuracy while leveraging early stopping.

Energy Measurement: Although training time reductions imply energy savings, the study does not
provide direct measurements of energy consumption, limiting the precision of conclusions about envi-
ronmental impact.

6. CONCLUSION AND FUTURE STUDIES

The results of this study underscore the effectiveness of early stopping as a practical approach to
enhancing the energy efficiency of deep learning model training. By preventing unnecessary epochs,
early stopping significantly reduces training time and computational resources. The comparative analy-
sis across multiple transfer learning architectures demonstrated consistent performance in accuracy, with
substantial gains in energy savings. These outcomes highlight the role of energy-aware strategies in
addressing the environmental challenges posed by the growing computational demands of artificial in-
telligence. Early stopping represents a straightforward yet impactful optimization that aligns well with
global sustainability objectives, such as the United Nations’ Sustainable Development Goals. This re-
search provides a foundation for integrating such strategies into standard deep learning practices, paving
the way for environmentally responsible AI development. To further advance the insights from this study,
future research could focus on the following areas:

Broader Dataset Evaluation: Expand experiments to include larger and more diverse datasets, ensur-
ing the generalizability of early stopping strategies across various domains and data types.

Direct Energy Measurement: Develop and employ methodologies to directly measure energy con-
sumption during training, enabling a more precise assessment of energy savings.
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Advanced Early Stopping Criteria: Investigate more sophisticated stopping mechanisms, such as adap-
tive PC thresholds and hybrid criteria combining multiple performance metrics.

Renewable Energy Integration: Evaluate the performance and energy efficiency of early stopping in
data centers powered by renewable energy sources, providing insights into its sustainability impact under
different energy scenarios.

Interdisciplinary Approaches: Collaborate across fields to incorporate principles of green computing
into AI research, exploring synergies with smart grid technologies and sustainable data center designs.

Optimization for Real-Time Systems: Explore early stopping strategies in real-time AI applications,
such as edge computing and Internet of Things (IoT) systems, where energy constraints are critical.

By addressing these areas, future studies could expand the application of energy-aware training strate-
gies and enhance their effectiveness in promoting sustainable computing practices. This will not only
benefit the AI community but also contribute to broader efforts toward reducing the environmental im-
pact of advanced technologies.
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APPENDIX (A)

TABLE A.1. Detailed results for MobileNetV2 with various MC and PC (Appendix A.1)

PC MC Fold Stop Epoch Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time (s)
3 loss 1 10 0.998046 0.02271 0.716724 0.61063 0.97265 0.07408 24.89913
3 loss 2 8 0.989741 0.039663 0.897611 0.407444 0.991453 0.046021 21.42021
3 loss 3 10 0.998046 0.02114 0.829352 0.383397 0.977778 0.058188 31.18301
3 loss 4 12 0.996092 0.0236 0.863481 0.39339 0.984615 0.052646 31.40667
3 loss 5 7 0.994138 0.034424 0.897611 0.27528 0.991453 0.046647 16.36674
5 loss 1 12 0.994626 0.022884 0.836177 0.407061 0.977778 0.061897 40.35201
5 loss 2 13 0.998046 0.017082 0.8157 0.505994 0.991453 0.037977 31.8802
5 loss 3 13 0.998534 0.017046 0.805461 0.482879 0.97265 0.070374 27.50178
5 loss 4 12 0.999023 0.018486 0.887372 0.335181 0.981197 0.054642 30.86905
5 loss 5 17 1 0.011072 0.894198 0.338853 0.989744 0.031267 34.95643
7 loss 1 20 0.999023 0.008709 0.829352 0.448269 0.982906 0.050633 48.03739
7 loss 2 13 0.998534 0.014379 0.853242 0.470612 0.984615 0.048726 29.33452
7 loss 3 15 0.998534 0.013665 0.921502 0.284624 0.984615 0.0479 35.74343
7 loss 4 26 1 0.006078 0.856655 0.471619 0.982906 0.059258 54.84729
7 loss 5 16 0.999023 0.010669 0.887372 0.27569 0.996581 0.025798 46.10693
10 loss 1 18 0.999023 0.009387 0.866894 0.40527 0.982906 0.061318 44.18391
10 loss 2 16 0.999511 0.009909 0.866894 0.479844 0.996581 0.032309 40.4024
10 loss 3 16 1 0.009493 0.846416 0.489362 0.982906 0.068769 48.54023
10 loss 4 22 0.999511 0.007761 0.860068 0.441097 0.981197 0.054182 56.33341
10 loss 5 23 0.999511 0.008148 0.87372 0.329433 0.991453 0.029512 54.65796
15 loss 1 34 1 0.003683 0.836177 0.465539 0.979487 0.054873 90.97743
15 loss 2 23 0.999023 0.006659 0.788396 0.644614 0.991453 0.044725 51.89995
15 loss 3 24 0.999511 0.007204 0.713311 0.718376 0.957265 0.098596 51.59951
15 loss 4 25 0.998046 0.007837 0.918089 0.349919 0.986325 0.04279 69.64649
15 loss 5 19 0.999023 0.00891 0.877133 0.413882 0.989744 0.062436 45.38881
3 accuracy 1 8 0.995115 0.035462 0.812287 0.452551 0.977778 0.075911 19.19615
3 accuracy 2 7 0.991695 0.03949 0.750853 0.558056 0.969231 0.086702 22.83207
3 accuracy 3 8 0.990718 0.044302 0.890785 0.298727 0.986325 0.06379 22.52161
3 accuracy 4 10 0.995603 0.028642 0.883959 0.357354 0.981197 0.063921 23.85584
3 accuracy 5 11 0.996092 0.022401 0.8157 0.428575 0.982906 0.049576 25.19012
5 accuracy 1 9 0.997557 0.02813 0.924915 0.235847 0.989744 0.052855 26.95682
5 accuracy 2 14 0.997069 0.01464 0.897611 0.355202 0.991453 0.031014 35.12124
5 accuracy 3 14 0.999023 0.014261 0.778157 0.556217 0.981197 0.0605 34.65687
5 accuracy 4 9 0.995115 0.028258 0.887372 0.304796 0.984615 0.071368 23.06869
5 accuracy 5 12 0.995603 0.019862 0.798635 0.499943 0.981197 0.054467 40.76033
7 accuracy 1 10 0.995603 0.027834 0.843003 0.472188 0.989744 0.073563 30.75511
7 accuracy 2 10 0.99658 0.025613 0.849829 0.40949 0.988034 0.07837 26.90913
7 accuracy 3 21 0.998534 0.007147 0.880546 0.373008 0.982906 0.051573 47.40013
7 accuracy 4 21 0.999511 0.00838 0.87372 0.394475 0.977778 0.060484 48.73546
7 accuracy 5 13 0.997069 0.016314 0.866894 0.455652 0.986325 0.056186 44.27132
10 accuracy 1 13 0.99658 0.018139 0.808874 0.418347 0.974359 0.100734 39.47001
10 accuracy 2 17 0.997069 0.011614 0.78157 0.638499 0.988034 0.051562 40.93397
10 accuracy 3 25 0.999511 0.00633 0.866894 0.357318 0.981197 0.046204 57.84523
10 accuracy 4 18 0.999511 0.010149 0.83959 0.434623 0.976068 0.061002 41.20016
10 accuracy 5 19 0.999511 0.006501 0.849829 0.45403 0.981197 0.050926 64.77641
15 accuracy 1 40 0.999511 0.002785 0.856655 0.440164 0.981197 0.055093 123.3092
15 accuracy 2 23 1 0.005775 0.822526 0.555798 0.993162 0.035381 66.58583
15 accuracy 3 24 1 0.005983 0.836177 0.522272 0.976068 0.063149 65.34113

(Continued on next page)
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(Table A.1 Continued from previous page)
PC MC Fold Stop Epoch Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time (s)
15 accuracy 4 17 0.998534 0.009715 0.911263 0.307966 0.988034 0.120658 42.9821
15 accuracy 5 22 0.999511 0.006387 0.870307 0.375544 0.991453 0.04107 78.37715
- no monitoring 1 N/A 1 0.001575 0.880546 0.457774 0.977778 0.075568 148.2634
- no monitoring 2 N/A 1 0.002043 0.771331 0.749586 0.981197 0.048413 117.9772
- no monitoring 3 N/A 1 0.001433 0.822526 0.563311 0.97265 0.091081 113.3214
- no monitoring 4 N/A 1 0.001629 0.866894 0.492891 0.977778 0.079798 114.794
- no monitoring 5 N/A 1 0.001867 0.856655 0.635862 0.982906 0.056227 114.0149

TABLE A.2. Descriptive statistics for MobileNetV2 model performance (Appendix A.2)

MC PC Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time
val loss 3 count 5 5 5 5 5 5 5
val loss 3 mean 0.995 0.028 0.841 0.414 0.984 0.056 25.055
val loss 3 std 0.003 0.008 0.075 0.122 0.008 0.011 6.454
val loss 3 min 0.990 0.021 0.717 0.275 0.973 0.046 16.367
val loss 3 25% 0.994 0.023 0.829 0.383 0.978 0.047 21.420
val loss 3 50% 0.996 0.024 0.863 0.393 0.985 0.053 24.899
val loss 3 75% 0.998 0.034 0.898 0.407 0.991 0.058 31.183
val loss 3 max 0.998 0.040 0.898 0.611 0.991 0.074 31.407
val loss 5 count 5 5 5 5 5 5 5
val loss 5 mean 0.998 0.017 0.848 0.414 0.983 0.051 33.112
val loss 5 std 0.002 0.004 0.041 0.079 0.008 0.016 4.844
val loss 5 min 0.995 0.011 0.805 0.335 0.973 0.031 27.502
val loss 5 25% 0.998 0.017 0.816 0.339 0.978 0.038 30.869
val loss 5 50% 0.999 0.017 0.836 0.407 0.981 0.055 31.880
val loss 5 75% 0.999 0.018 0.887 0.483 0.990 0.062 34.956
val loss 5 max 1.000 0.023 0.894 0.506 0.991 0.070 40.352
val loss 7 count 5 5 5 5 5 5 5
val loss 7 mean 0.999 0.011 0.870 0.390 0.986 0.046 42.814
val loss 7 std 0.001 0.003 0.036 0.101 0.006 0.012 10.181
val loss 7 min 0.999 0.006 0.829 0.276 0.983 0.026 29.335
val loss 7 25% 0.999 0.009 0.853 0.285 0.983 0.048 35.743
val loss 7 50% 0.999 0.011 0.857 0.448 0.985 0.049 46.107
val loss 7 75% 0.999 0.014 0.887 0.471 0.985 0.051 48.037
val loss 7 max 1.000 0.014 0.922 0.472 0.997 0.059 54.847
val loss 10 count 5 5 5 5 5 5 5
val loss 10 mean 1.000 0.009 0.863 0.429 0.987 0.049 48.824
val loss 10 std 0.000 0.001 0.010 0.065 0.007 0.018 6.763
val loss 10 min 0.999 0.008 0.846 0.329 0.981 0.030 40.402
val loss 10 25% 1.000 0.008 0.860 0.405 0.983 0.032 44.184
val loss 10 50% 1.000 0.009 0.867 0.441 0.983 0.054 48.540
val loss 10 75% 1.000 0.009 0.867 0.480 0.991 0.061 54.658
val loss 10 max 1.000 0.010 0.874 0.489 0.997 0.069 56.333
val loss 15 count 5 5 5 5 5 5 5
val loss 15 mean 0.999 0.007 0.827 0.518 0.981 0.061 61.902
val loss 15 std 0.001 0.002 0.080 0.157 0.014 0.023 18.603
val loss 15 min 0.998 0.004 0.713 0.350 0.957 0.043 45.389
val loss 15 25% 0.999 0.007 0.788 0.414 0.979 0.045 51.600
val loss 15 50% 0.999 0.007 0.836 0.466 0.986 0.055 51.900
val loss 15 75% 1.000 0.008 0.877 0.645 0.990 0.062 69.646
val loss 15 max 1.000 0.009 0.918 0.718 0.991 0.099 90.977

129



Table A.2 Continued from previous page
MC PC Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time
val accuracy 3 count 5 5 5 5 5 5 5
val accuracy 3 mean 0.994 0.034 0.831 0.419 0.979 0.068 22.719
val accuracy 3 std 0.002 0.009 0.058 0.099 0.007 0.014 2.228
val accuracy 3 min 0.991 0.022 0.751 0.299 0.969 0.050 19.196
val accuracy 3 25% 0.992 0.029 0.812 0.357 0.978 0.064 22.522
val accuracy 3 50% 0.995 0.035 0.816 0.429 0.981 0.064 22.832
val accuracy 3 75% 0.996 0.039 0.884 0.453 0.983 0.076 23.856
val accuracy 3 max 0.996 0.044 0.891 0.558 0.986 0.087 25.190
val accuracy 5 count 5 5 5 5 5 5 5
val accuracy 5 mean 0.997 0.021 0.857 0.390 0.986 0.054 32.113
val accuracy 5 std 0.002 0.007 0.065 0.134 0.005 0.015 7.048
val accuracy 5 min 0.995 0.014 0.778 0.236 0.981 0.031 23.069
val accuracy 5 25% 0.996 0.015 0.799 0.305 0.981 0.053 26.957
val accuracy 5 50% 0.997 0.020 0.887 0.355 0.985 0.054 34.657
val accuracy 5 75% 0.998 0.028 0.898 0.500 0.990 0.060 35.121
val accuracy 5 max 0.999 0.028 0.925 0.556 0.991 0.071 40.760
val accuracy 7 count 5 5 5 5 5 5 5
val accuracy 7 mean 0.997 0.017 0.863 0.421 0.985 0.064 39.614
val accuracy 7 std 0.002 0.010 0.016 0.042 0.005 0.011 10.067
val accuracy 7 min 0.996 0.007 0.843 0.373 0.978 0.052 26.909
val accuracy 7 25% 0.997 0.008 0.850 0.394 0.983 0.056 30.755
val accuracy 7 50% 0.997 0.016 0.867 0.409 0.986 0.060 44.271
val accuracy 7 75% 0.999 0.026 0.874 0.456 0.988 0.074 47.400
val accuracy 7 max 1.000 0.028 0.881 0.472 0.990 0.078 48.735
val accuracy 10 count 5 5 5 5 5 5 5
val accuracy 10 mean 0.998 0.011 0.829 0.461 0.980 0.062 48.845
val accuracy 10 std 0.001 0.005 0.034 0.106 0.005 0.022 11.659
val accuracy 10 min 0.997 0.006 0.782 0.357 0.974 0.046 39.470
val accuracy 10 25% 0.997 0.007 0.809 0.418 0.976 0.051 40.934
val accuracy 10 50% 1.000 0.010 0.840 0.435 0.981 0.052 41.200
val accuracy 10 75% 1.000 0.012 0.850 0.454 0.981 0.061 57.845
val accuracy 10 max 1.000 0.018 0.867 0.638 0.988 0.101 64.776
val accuracy 15 count 5 5 5 5 5 5 5
val accuracy 15 mean 1.000 0.006 0.859 0.440 0.986 0.063 75.319
val accuracy 15 std 0.001 0.002 0.034 0.102 0.007 0.034 29.723
val accuracy 15 min 0.999 0.003 0.823 0.308 0.976 0.035 42.982
val accuracy 15 25% 1.000 0.006 0.836 0.376 0.981 0.041 65.341
val accuracy 15 50% 1.000 0.006 0.857 0.440 0.988 0.055 66.586
val accuracy 15 75% 1.000 0.006 0.870 0.522 0.991 0.063 78.377
val accuracy 15 max 1.000 0.010 0.911 0.556 0.993 0.121 123.309
no monitoring No count 5 5 5 5 5 5 5
no monitoring No mean 1.000 0.002 0.840 0.580 0.978 0.070 121.674
no monitoring No std 0.000 0.000 0.044 0.117 0.004 0.018 14.970
no monitoring No min 1.000 0.001 0.771 0.458 0.973 0.048 113.321
no monitoring No 25% 1.000 0.002 0.823 0.493 0.978 0.056 114.015
no monitoring No 50% 1.000 0.002 0.857 0.563 0.978 0.076 114.794
no monitoring No 75% 1.000 0.002 0.867 0.636 0.981 0.080 117.977
no monitoring No max 1.000 0.002 0.881 0.750 0.983 0.091 148.263
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APPENDIX (B)

TABLE B.1. Detailed results for InceptionV3 with various MC and PC (Appendix B.1)

PC MC Fold Stop Epoch Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time (s)
3 loss 1 9 0.983878851 0.063424252 0.788395882 0.691795886 0.962393165 0.137821734 34.0100146
3 loss 2 8 0.989252567 0.040872496 0.733788371 0.860006809 0.979487181 0.088228665 29.8984313
3 loss 3 13 0.994137764 0.030255197 0.825938582 0.536911786 0.974358976 0.092576943 47.7669581
3 loss 4 7 0.986809969 0.060364712 0.679180861 0.84068495 0.960683763 0.123133942 28.6042797
3 loss 5 5 0.974596977 0.090318508 0.761092126 0.78642565 0.948717952 0.182484463 27.8326678
5 loss 1 32 0.999022961 0.00739672 0.853242338 0.577991843 0.984615386 0.070216581 117.0095957
5 loss 2 9 0.988764048 0.043512646 0.709897637 1.017861128 0.960683763 0.128654212 37.7095276
5 loss 3 14 0.997557402 0.02145461 0.726962447 0.860041678 0.970940173 0.120089293 53.3798204
5 loss 4 15 0.996580362 0.021638783 0.815699637 0.625344396 0.982905984 0.062162023 79.2635385
5 loss 5 15 0.997068882 0.019070214 0.883959055 0.518541694 0.982905984 0.08363767 66.42613
7 loss 1 19 0.996091843 0.019235797 0.771331072 0.681577265 0.977777779 0.080463678 78.0538619
7 loss 2 8 0.982901812 0.066090435 0.791808903 0.86845696 0.938461542 0.24873282 36.247579
7 loss 3 15 0.995114803 0.025213875 0.832764506 0.57030046 0.981196582 0.105363898 64.5173208
7 loss 4 15 0.997068882 0.019120131 0.849829376 0.585848749 0.979487181 0.069590084 88.7693096
7 loss 5 29 1 0.005879726 0.825938582 0.708134949 0.982905984 0.080251314 147.0300085
10 loss 1 20 0.997557402 0.015320398 0.788395882 0.742725492 0.979487181 0.077499501 78.6837716
10 loss 2 17 0.995603323 0.016541081 0.713310599 1.11474967 0.969230771 0.117452495 68.8851666
10 loss 3 35 0.99951148 0.005891902 0.829351544 0.576556921 0.981196582 0.094332993 153.3307557
10 loss 4 47 0.99951148 0.004547769 0.883959055 0.550591946 0.988034189 0.03828479 375.8302146
10 loss 5 34 0.999022961 0.005897738 0.91126281 0.403910398 0.98974359 0.057163749 237.1262536
15 loss 1 31 0.999022961 0.008081561 0.866894186 0.523374856 0.981196582 0.068272196 184.3225278
15 loss 2 26 0.999022961 0.010207516 0.761092126 1.104023457 0.976068377 0.084269352 121.4915938
15 loss 3 33 0.99951148 0.006300624 0.825938582 0.654499173 0.981196582 0.093615212 140.6734394
15 loss 4 26 0.994137764 0.017620478 0.781569958 0.797062635 0.974358976 0.081692502 121.4853378
15 loss 5 37 1 0.004083774 0.877133131 0.553094745 0.991452992 0.059600405 340.3184283
3 accuracy 1 17 0.995114803 0.0206411 0.808873713 0.725548565 0.970940173 0.102678411 140.3074823
3 accuracy 2 11 0.992183685 0.034354091 0.76791811 0.876152992 0.976068377 0.092387527 65.2484093
3 accuracy 3 4 0.965315104 0.124897584 0.815699637 0.536990285 0.933333337 0.271629155 25.8223064
3 accuracy 4 12 0.991695166 0.028814746 0.829351544 0.577801764 0.986324787 0.071021616 58.943908
3 accuracy 5 10 0.993649244 0.034925677 0.846416354 0.57682842 0.976068377 0.10173586 51.2127445
5 accuracy 1 20 0.995603323 0.015065268 0.829351544 0.646792293 0.981196582 0.082639068 154.8791887
5 accuracy 2 21 0.996091843 0.014288138 0.713310599 1.207827926 0.979487181 0.074940607 145.3536055
5 accuracy 3 22 0.997068882 0.01275574 0.798634827 0.676660776 0.972649574 0.118803278 137.5336144
5 accuracy 4 24 0.998534441 0.009583861 0.883959055 0.497871906 0.98974359 0.032772083 133.823382
5 accuracy 5 10 0.991206646 0.035472624 0.771331072 0.80417043 0.972649574 0.119832106 56.4036108
7 accuracy 1 28 0.998045921 0.007867916 0.798634827 0.770256519 0.981196582 0.089092769 154.7163437
7 accuracy 2 31 0.998534441 0.006880392 0.771331072 0.958002925 0.974358976 0.072101355 162.4083133
7 accuracy 3 22 0.997557402 0.010819421 0.860068262 0.450244308 0.974358976 0.093822978 190.629765
7 accuracy 4 36 1 0.003621859 0.819112599 0.797214568 0.981196582 0.05228468 278.316256
7 accuracy 5 22 0.99951148 0.009172016 0.829351544 0.701360941 0.986324787 0.077255376 169.3633921
10 accuracy 1 40 1 0.003867939 0.846416354 0.548633695 0.979487181 0.082988761 284.900779
10 accuracy 2 25 0.999022961 0.010678066 0.808873713 0.794085383 0.977777779 0.069033876 173.9952877
10 accuracy 3 39 0.99951148 0.0046171 0.849829376 0.599616289 0.977777779 0.11157576 247.5588835
10 accuracy 4 24 0.998045921 0.010440554 0.873720109 0.534663856 0.98974359 0.043696053 141.4675116
10 accuracy 5 31 0.998045921 0.009225765 0.907849848 0.497515827 0.98974359 0.068952538 271.3575743
15 accuracy 1 28 1 0.005100978 0.832764506 0.671540976 0.977777779 0.089632653 226.8121977
15 accuracy 2 50 1 0.002206131 0.778156996 1.169290781 0.976068377 0.07546217 379.2302903
15 accuracy 3 30 0.998534441 0.007315609 0.863481224 0.531567454 0.982905984 0.089072227 207.6188399

(Continued on next page)
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(Table B.1 Continued from previous page)
PC MC Fold Stop Epoch Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time (s)
15 accuracy 4 44 1 0.00308408 0.877133131 0.580116212 0.986324787 0.046814781 282.2350076
15 accuracy 5 29 0.998534441 0.009574798 0.883959055 0.522773325 0.988034189 0.071746752 187.7881733
- no monitoring 1 N/A 0.998534441 0.00314847 0.907849848 0.450603038 0.982905984 0.085012116 317.1966538
- no monitoring 2 N/A 0.999022961 0.003437786 0.812286675 1.013028383 0.977777779 0.075830355 344.6338879
- no monitoring 3 N/A 0.99951148 0.003941682 0.78498292 0.774207115 0.976068377 0.136283711 544.4648693
- no monitoring 4 N/A 0.999022961 0.004351126 0.788395882 1.109158397 0.970940173 0.12248259 494.416349
- no monitoring 5 N/A 0.99951148 0.002637709 0.883959055 0.515361607 0.98974359 0.076655284 381.0932598

TABLE B.2. Descriptive statistics for InceptionV3 model performance (Appendix B.2)

MC PC Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time
val loss 3 count 5 5 5 5 5 5 5
val loss 3 mean 0.986 0.057 0.758 0.743 0.965 0.125 33.622
val loss 3 std 0.007 0.023 0.056 0.132 0.012 0.038 8.258
val loss 3 min 0.975 0.030 0.679 0.537 0.949 0.088 27.833
val loss 3 25% 0.984 0.041 0.734 0.692 0.961 0.093 28.604
val loss 3 50% 0.987 0.060 0.761 0.786 0.962 0.123 29.898
val loss 3 75% 0.989 0.063 0.788 0.841 0.974 0.138 34.010
val loss 3 max 0.994 0.090 0.826 0.860 0.979 0.182 47.767
val loss 5 count 5 5 5 5 5 5 5
val loss 5 mean 0.996 0.023 0.798 0.720 0.976 0.093 70.758
val loss 5 std 0.004 0.013 0.077 0.211 0.010 0.030 30.102
val loss 5 min 0.989 0.007 0.710 0.519 0.961 0.062 37.710
val loss 5 25% 0.997 0.019 0.727 0.578 0.971 0.070 53.380
val loss 5 50% 0.997 0.021 0.816 0.625 0.983 0.084 66.426
val loss 5 75% 0.998 0.022 0.853 0.860 0.983 0.120 79.264
val loss 5 max 0.999 0.044 0.884 1.018 0.985 0.129 117.010
val loss 7 count 5 5 5 5 5 5 5
val loss 7 mean 0.994 0.027 0.814 0.683 0.972 0.117 82.924
val loss 7 std 0.007 0.023 0.032 0.120 0.019 0.075 40.881
val loss 7 min 0.983 0.006 0.771 0.570 0.938 0.070 36.248
val loss 7 25% 0.995 0.019 0.792 0.586 0.978 0.080 64.517
val loss 7 50% 0.996 0.019 0.826 0.682 0.979 0.080 78.054
val loss 7 75% 0.997 0.025 0.833 0.708 0.981 0.105 88.769
val loss 7 max 1.000 0.066 0.850 0.868 0.983 0.249 147.030
val loss 10 count 5 5 5 5 5 5 5
val loss 10 mean 0.998 0.010 0.825 0.678 0.982 0.077 182.771
val loss 10 std 0.002 0.006 0.079 0.272 0.008 0.031 127.375
val loss 10 min 0.996 0.005 0.713 0.404 0.969 0.038 68.885
val loss 10 25% 0.998 0.006 0.788 0.551 0.979 0.057 78.684
val loss 10 50% 0.999 0.006 0.829 0.577 0.981 0.077 153.331
val loss 10 75% 1.000 0.015 0.884 0.743 0.988 0.094 237.126
val loss 10 max 1.000 0.017 0.911 1.115 0.990 0.117 375.830
val loss 15 count 5 5 5 5 5 5 5
val loss 15 mean 0.998 0.009 0.823 0.726 0.981 0.077 181.658
val loss 15 std 0.002 0.005 0.051 0.237 0.007 0.013 92.332
val loss 15 min 0.994 0.004 0.761 0.523 0.974 0.060 121.485
val loss 15 25% 0.999 0.006 0.782 0.553 0.976 0.068 121.492
val loss 15 50% 0.999 0.008 0.826 0.654 0.981 0.082 140.673
val loss 15 75% 1.000 0.010 0.867 0.797 0.981 0.084 184.323
val loss 15 max 1.000 0.018 0.877 1.104 0.991 0.094 340.318
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Table B.2 Continued from previous page
MC PC Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time
val accuracy 3 count 5 5 5 5 5 5 5
val accuracy 3 mean 0.988 0.049 0.814 0.659 0.969 0.128 68.307
val accuracy 3 std 0.013 0.043 0.029 0.141 0.020 0.081 42.948
val accuracy 3 min 0.965 0.021 0.768 0.537 0.933 0.071 25.822
val accuracy 3 25% 0.992 0.029 0.809 0.577 0.971 0.092 51.213
val accuracy 3 50% 0.992 0.034 0.816 0.578 0.976 0.102 58.944
val accuracy 3 75% 0.994 0.035 0.829 0.726 0.976 0.103 65.248
val accuracy 3 max 0.995 0.125 0.846 0.876 0.986 0.272 140.307
val accuracy 5 count 5 5 5 5 5 5 5
val accuracy 5 mean 0.996 0.017 0.799 0.767 0.979 0.086 125.599
val accuracy 5 std 0.003 0.010 0.064 0.270 0.007 0.036 39.515
val accuracy 5 min 0.991 0.010 0.713 0.498 0.973 0.033 56.404
val accuracy 5 25% 0.996 0.013 0.771 0.647 0.973 0.075 133.823
val accuracy 5 50% 0.996 0.014 0.799 0.677 0.979 0.083 137.534
val accuracy 5 75% 0.997 0.015 0.829 0.804 0.981 0.119 145.354
val accuracy 5 max 0.999 0.035 0.884 1.208 0.990 0.120 154.879
val accuracy 7 count 5 5 5 5 5 5 5
val accuracy 7 mean 0.999 0.008 0.816 0.735 0.979 0.077 191.087
val accuracy 7 std 0.001 0.003 0.033 0.185 0.005 0.016 50.563
val accuracy 7 min 0.998 0.004 0.771 0.450 0.974 0.052 154.716
val accuracy 7 25% 0.998 0.007 0.799 0.701 0.974 0.072 162.408
val accuracy 7 50% 0.999 0.008 0.819 0.770 0.981 0.077 169.363
val accuracy 7 75% 1.000 0.009 0.829 0.797 0.981 0.089 190.630
val accuracy 7 max 1.000 0.011 0.860 0.958 0.986 0.094 278.316
val accuracy 10 count 5 5 5 5 5 5 5
val accuracy 10 mean 0.999 0.008 0.857 0.595 0.983 0.075 223.856
val accuracy 10 std 0.001 0.003 0.037 0.117 0.006 0.025 62.886
val accuracy 10 min 0.998 0.004 0.809 0.498 0.978 0.044 141.468
val accuracy 10 25% 0.998 0.005 0.846 0.535 0.978 0.069 173.995
val accuracy 10 50% 0.999 0.009 0.850 0.549 0.979 0.069 247.559
val accuracy 10 75% 1.000 0.010 0.874 0.600 0.990 0.083 271.358
val accuracy 10 max 1.000 0.011 0.908 0.794 0.990 0.112 284.901
val accuracy 15 count 5 5 5 5 5 5 5
val accuracy 15 mean 0.999 0.005 0.847 0.695 0.982 0.075 256.737
val accuracy 15 std 0.001 0.003 0.043 0.272 0.005 0.017 77.001
val accuracy 15 min 0.999 0.002 0.778 0.523 0.976 0.047 187.788
val accuracy 15 25% 0.999 0.003 0.833 0.532 0.978 0.072 207.619
val accuracy 15 50% 1.000 0.005 0.863 0.580 0.983 0.075 226.812
val accuracy 15 75% 1.000 0.007 0.877 0.672 0.986 0.089 282.235
val accuracy 15 max 1.000 0.010 0.884 1.169 0.988 0.090 379.230
no monitoring No count 5 5 5 5 5 5 5
no monitoring No mean 0.999 0.004 0.835 0.772 0.979 0.099 416.361
no monitoring No std 0.000 0.001 0.057 0.292 0.007 0.028 98.394
no monitoring No min 0.999 0.003 0.785 0.451 0.971 0.076 317.197
no monitoring No 25% 0.999 0.003 0.788 0.515 0.976 0.077 344.634
no monitoring No 50% 0.999 0.003 0.812 0.774 0.978 0.085 381.093
no monitoring No 75% 1.000 0.004 0.884 1.013 0.983 0.122 494.416
no monitoring No max 1.000 0.004 0.908 1.109 0.990 0.136 544.465
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APPENDIX (C)

TABLE C.1. Detailed results for ResNet50V2 with various MC and PC (Appendix C.1)

PC MC Fold Stop Epoch Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time (s)
3 loss 1 18 0.998046 0.02271 0.716724 0.61063 0.97265 0.07408 24.89913
3 loss 2 18 0.989741 0.039663 0.897611 0.407444 0.991453 0.046021 21.42021
3 loss 3 18 0.998046 0.02114 0.829352 0.383397 0.977778 0.058188 31.18301
3 loss 4 20 0.996092 0.0236 0.863481 0.39339 0.984615 0.052646 31.40667
3 loss 5 15 0.994138 0.034424 0.897611 0.27528 0.991453 0.046647 16.36674
5 loss 1 16 0.994626 0.022884 0.836177 0.407061 0.977778 0.061897 40.35201
5 loss 2 16 0.998046 0.017082 0.8157 0.505994 0.991453 0.037977 31.8802
5 loss 3 21 0.998534 0.017046 0.805461 0.482879 0.97265 0.070374 27.50178
5 loss 4 12 0.999023 0.018486 0.887372 0.335181 0.981197 0.054642 30.86905
5 loss 5 15 1 0.011072 0.894198 0.338853 0.989744 0.031267 34.95643
7 loss 1 18 0.999023 0.008709 0.829352 0.448269 0.982906 0.050633 48.03739
7 loss 2 37 0.998534 0.014379 0.853242 0.470612 0.984615 0.048726 29.33452
7 loss 3 19 0.998534 0.013665 0.921502 0.284624 0.984615 0.0479 35.74343
7 loss 4 23 1 0.006078 0.856655 0.471619 0.982906 0.059258 54.84729
7 loss 5 36 0.999023 0.010669 0.887372 0.27569 0.996581 0.025798 46.10693
10 loss 1 27 0.999023 0.009387 0.866894 0.40527 0.982906 0.061318 44.18391
10 loss 2 27 0.999511 0.009909 0.866894 0.479844 0.996581 0.032309 40.4024
10 loss 3 27 1 0.009493 0.846416 0.489362 0.982906 0.068769 48.54023
10 loss 4 18 0.999511 0.007761 0.860068 0.441097 0.981197 0.054182 56.33341
10 loss 5 32 0.999511 0.008148 0.87372 0.329433 0.991453 0.029512 54.65796
15 loss 1 50 1 0.003683 0.836177 0.465539 0.979487 0.054873 90.97743
15 loss 2 48 0.999023 0.006659 0.788396 0.644614 0.991453 0.044725 51.89995
15 loss 3 33 0.999511 0.007204 0.713311 0.718376 0.957265 0.098596 51.59951
15 loss 4 49 0.998046 0.007837 0.918089 0.349919 0.986325 0.04279 69.64649
15 loss 5 28 0.999023 0.00891 0.877133 0.413882 0.989744 0.062436 45.38881
3 accuracy 1 17 0.995115 0.035462 0.812287 0.452551 0.977778 0.075911 19.19615
3 accuracy 2 8 0.991695 0.03949 0.750853 0.558056 0.969231 0.086702 22.83207
3 accuracy 3 9 0.990718 0.044302 0.890785 0.298727 0.986325 0.06379 22.52161
3 accuracy 4 10 0.995603 0.028642 0.883959 0.357354 0.981197 0.063921 23.85584
3 accuracy 5 14 0.996092 0.022401 0.8157 0.428575 0.982906 0.049576 25.19012
5 accuracy 1 16 0.997557 0.02813 0.924915 0.235847 0.989744 0.052855 26.95682
5 accuracy 2 14 0.997069 0.01464 0.897611 0.355202 0.991453 0.031014 35.12124
5 accuracy 3 14 0.999023 0.014261 0.778157 0.556217 0.981197 0.0605 34.65687
5 accuracy 4 25 0.995115 0.028258 0.887372 0.304796 0.984615 0.071368 23.06869
5 accuracy 5 12 0.995603 0.019862 0.798635 0.499943 0.981197 0.054467 40.76033
7 accuracy 1 17 0.995603 0.027834 0.843003 0.472188 0.989744 0.073563 30.75511
7 accuracy 2 20 0.99658 0.025613 0.849829 0.40949 0.988034 0.07837 26.90913
7 accuracy 3 16 0.998534 0.007147 0.880546 0.373008 0.982906 0.051573 47.40013
7 accuracy 4 30 0.999511 0.00838 0.87372 0.394475 0.977778 0.060484 48.73546
7 accuracy 5 13 0.997069 0.016314 0.866894 0.455652 0.986325 0.056186 44.27132
10 accuracy 1 26 0.99658 0.018139 0.808874 0.418347 0.974359 0.100734 39.47001
10 accuracy 2 15 0.997069 0.011614 0.78157 0.638499 0.988034 0.051562 40.93397
10 accuracy 3 18 0.999511 0.00633 0.866894 0.357318 0.981197 0.046204 57.84523
10 accuracy 4 25 0.999511 0.010149 0.83959 0.434623 0.976068 0.061002 41.20016
10 accuracy 5 33 0.999511 0.006501 0.849829 0.45403 0.981197 0.050926 64.77641
15 accuracy 1 50 0.999511 0.002785 0.856655 0.440164 0.981197 0.055093 123.3092
15 accuracy 2 26 1 0.005775 0.822526 0.555798 0.993162 0.035381 66.58583
15 accuracy 3 26 1 0.005983 0.836177 0.522272 0.976068 0.063149 65.34113

(Continued on next page)
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(Table C.1 Continued from previous page)
PC MC Fold Stop Epoch Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time (s)
15 accuracy 4 45 0.998534 0.009715 0.911263 0.307966 0.988034 0.120658 42.9821
15 accuracy 5 35 0.999511 0.006387 0.870307 0.375544 0.991453 0.04107 78.37715
- no monitoring 1 N/A 1 0.001575 0.880546 0.457774 0.977778 0.075568 148.2634
- no monitoring 2 N/A 1 0.002043 0.771331 0.749586 0.981197 0.048413 117.9772
- no monitoring 3 N/A 1 0.001433 0.822526 0.563311 0.97265 0.091081 113.3214
- no monitoring 4 N/A 1 0.001629 0.866894 0.492891 0.977778 0.079798 114.794
- no monitoring 5 N/A 1 0.001867 0.856655 0.635862 0.982906 0.056227 114.0149

TABLE C.2. Descriptive statistics for ResNet50V2 model performance (Appendix C.2)

MC PC Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time
val loss 3 count 5 5 5 5 5 5 5
val loss 3 mean 0.995 0.026 0.958 0.121 0.994 0.026 139.693
val loss 3 std 0.002 0.005 0.007 0.010 0.004 0.006 14.402
val loss 3 min 0.993 0.017 0.949 0.108 0.988 0.020 126.999
val loss 3 25% 0.994 0.026 0.952 0.117 0.990 0.020 132.744
val loss 3 50% 0.996 0.026 0.959 0.123 0.995 0.023 133.583
val loss 3 75% 0.996 0.029 0.962 0.123 0.997 0.031 141.364
val loss 3 max 0.998 0.030 0.966 0.136 0.998 0.033 163.777
val loss 5 count 5 5 5 5 5 5 5
val loss 5 mean 0.993 0.032 0.918 0.194 0.991 0.044 127.430
val loss 5 std 0.004 0.012 0.034 0.069 0.006 0.018 26.791
val loss 5 min 0.988 0.018 0.884 0.107 0.983 0.029 89.900
val loss 5 25% 0.991 0.024 0.887 0.153 0.986 0.029 112.390
val loss 5 50% 0.995 0.031 0.925 0.183 0.995 0.037 134.345
val loss 5 75% 0.997 0.041 0.928 0.256 0.995 0.060 141.700
val loss 5 max 0.997 0.046 0.966 0.271 0.995 0.066 158.813
val loss 7 count 5 5 5 5 5 5 5
val loss 7 mean 0.997 0.015 0.923 0.166 0.993 0.026 197.787
val loss 7 std 0.002 0.007 0.031 0.046 0.002 0.008 60.948
val loss 7 min 0.996 0.007 0.870 0.131 0.990 0.017 140.188
val loss 7 25% 0.996 0.007 0.922 0.142 0.991 0.021 150.817
val loss 7 50% 0.996 0.017 0.935 0.151 0.993 0.022 173.366
val loss 7 75% 0.999 0.020 0.939 0.162 0.995 0.033 247.801
val loss 7 max 1.000 0.022 0.949 0.246 0.995 0.037 276.762
val loss 10 count 5 5 5 5 5 5 5
val loss 10 mean 0.997 0.016 0.891 0.232 0.987 0.040 201.758
val loss 10 std 0.001 0.006 0.091 0.204 0.017 0.038 38.513
val loss 10 min 0.996 0.010 0.730 0.115 0.957 0.020 142.963
val loss 10 25% 0.996 0.011 0.908 0.127 0.993 0.023 201.046
val loss 10 50% 0.997 0.016 0.932 0.139 0.993 0.025 203.378
val loss 10 75% 0.999 0.018 0.939 0.184 0.995 0.025 210.735
val loss 10 max 0.999 0.024 0.949 0.593 0.997 0.109 250.669
val loss 15 count 5 5 5 5 5 5 5
val loss 15 mean 0.999 0.008 0.934 0.133 0.996 0.019 364.172
val loss 15 std 0.001 0.003 0.025 0.033 0.003 0.008 78.947
val loss 15 min 0.996 0.003 0.894 0.104 0.991 0.013 273.448
val loss 15 25% 0.999 0.006 0.928 0.112 0.995 0.015 287.525
val loss 15 50% 0.999 0.007 0.939 0.121 0.997 0.015 392.789
val loss 15 75% 1.000 0.011 0.949 0.141 0.997 0.016 419.770
val loss 15 max 1.000 0.011 0.959 0.187 1.000 0.034 447.328
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Table C.2 Continued from previous page
MC PC Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time
val accuracy 3 count 5 5 5 5 5 5 5
val accuracy 3 mean 0.985 0.053 0.939 0.141 0.983 0.056 151.258
val accuracy 3 std 0.009 0.025 0.042 0.062 0.011 0.023 33.598
val accuracy 3 min 0.972 0.027 0.891 0.074 0.974 0.029 120.028
val accuracy 3 25% 0.982 0.034 0.904 0.093 0.976 0.040 133.953
val accuracy 3 50% 0.986 0.053 0.939 0.126 0.976 0.062 139.552
val accuracy 3 75% 0.991 0.065 0.980 0.197 0.990 0.063 155.989
val accuracy 3 max 0.995 0.088 0.983 0.214 0.998 0.088 206.765
val accuracy 5 count 5 5 5 5 5 5 5
val accuracy 5 mean 0.993 0.031 0.939 0.132 0.990 0.037 176.910
val accuracy 5 std 0.003 0.013 0.021 0.043 0.003 0.009 53.507
val accuracy 5 min 0.989 0.012 0.915 0.095 0.986 0.027 142.929
val accuracy 5 25% 0.992 0.031 0.922 0.097 0.988 0.035 146.108
val accuracy 5 50% 0.993 0.031 0.945 0.113 0.990 0.037 147.014
val accuracy 5 75% 0.994 0.035 0.949 0.165 0.991 0.037 179.683
val accuracy 5 max 0.998 0.049 0.966 0.189 0.995 0.050 268.818
val accuracy 7 count 5 5 5 5 5 5 5
val accuracy 7 mean 0.994 0.028 0.941 0.137 0.991 0.040 238.396
val accuracy 7 std 0.004 0.013 0.046 0.084 0.005 0.019 100.550
val accuracy 7 min 0.988 0.012 0.860 0.075 0.986 0.021 162.213
val accuracy 7 25% 0.991 0.019 0.949 0.084 0.986 0.030 190.180
val accuracy 7 50% 0.995 0.028 0.962 0.110 0.991 0.032 193.103
val accuracy 7 75% 0.996 0.034 0.962 0.134 0.991 0.045 234.178
val accuracy 7 max 0.999 0.046 0.969 0.280 0.998 0.071 412.303
val accuracy 10 count 5 5 5 5 5 5 5
val accuracy 10 mean 0.997 0.018 0.955 0.106 0.991 0.036 303.144
val accuracy 10 std 0.002 0.009 0.010 0.021 0.006 0.020 103.501
val accuracy 10 min 0.994 0.010 0.945 0.073 0.981 0.020 185.947
val accuracy 10 25% 0.997 0.013 0.945 0.102 0.991 0.023 217.471
val accuracy 10 50% 0.999 0.015 0.956 0.113 0.991 0.028 315.892
val accuracy 10 75% 0.999 0.020 0.959 0.121 0.993 0.038 356.140
val accuracy 10 max 0.999 0.034 0.969 0.124 0.998 0.069 440.271
val accuracy 15 count 5 5 5 5 5 5 5
val accuracy 15 mean 0.999 0.009 0.919 0.166 0.992 0.025 520.313
val accuracy 15 std 0.002 0.007 0.040 0.071 0.003 0.006 152.293
val accuracy 15 min 0.997 0.002 0.874 0.089 0.988 0.019 356.875
val accuracy 15 25% 0.998 0.005 0.891 0.092 0.991 0.020 384.393
val accuracy 15 50% 0.999 0.007 0.911 0.189 0.991 0.025 514.190
val accuracy 15 75% 1.000 0.015 0.952 0.227 0.993 0.030 651.946
val accuracy 15 max 1.000 0.018 0.969 0.234 0.997 0.033 694.159
no monitoring No count 5 5 5 5 5 5 5
no monitoring No mean 1.000 0.004 0.911 0.209 0.985 0.033 723.026
no monitoring No std 0.000 0.001 0.057 0.147 0.010 0.026 41.621
no monitoring No min 0.999 0.004 0.829 0.102 0.969 0.014 694.063
no monitoring No 25% 1.000 0.004 0.874 0.103 0.985 0.016 705.354
no monitoring No 50% 1.000 0.004 0.942 0.128 0.988 0.021 707.042
no monitoring No 75% 1.000 0.005 0.949 0.271 0.991 0.035 712.132
no monitoring No max 1.000 0.005 0.962 0.440 0.993 0.076 796.537

136



APPENDIX (D)

TABLE D.1. Detailed results for Xception with various MC and PC (Appendix D.1)

PC MC Fold Stop Epoch Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time (s)
3 loss 1 9 0.972642899 0.129837066 0.648464143 0.726279438 0.94700855 0.195763454 64.5046287
3 loss 2 9 0.965803623 0.145221606 0.713310599 0.582341194 0.940170944 0.190947622 66.8170586
3 loss 3 8 0.969711781 0.121941559 0.662116051 0.679573655 0.931623936 0.209745377 62.8957683
3 loss 4 11 0.98534441 0.084378332 0.737201393 0.631100476 0.938461542 0.164128602 86.5575404
3 loss 5 10 0.979482174 0.099705689 0.69624573 0.643902957 0.952136755 0.161598474 76.0659985
5 loss 1 14 0.98583293 0.070808701 0.692832768 0.699655771 0.95726496 0.147542983 108.2439275
5 loss 2 12 0.989252567 0.076574892 0.709897637 0.663573325 0.964102566 0.136994839 91.7473245
5 loss 3 16 0.990229607 0.064519256 0.69624573 0.740498126 0.960683763 0.13576889 122.3358252
5 loss 4 21 0.993649244 0.04727627 0.757679164 0.623574436 0.945299149 0.132990971 162.5682723
5 loss 5 14 0.989741087 0.066146471 0.740614355 0.570958138 0.962393165 0.135764197 105.715716
7 loss 1 19 0.994137764 0.043756392 0.720136523 0.658100367 0.95726496 0.122135416 145.7735281
7 loss 2 12 0.979482174 0.105163231 0.668941975 0.66026026 0.928205132 0.212660953 96.5790529
7 loss 3 17 0.992672205 0.058356903 0.648464143 0.803342044 0.95726496 0.13514547 127.8505467
7 loss 4 15 0.989741087 0.064322673 0.757679164 0.545565844 0.943589747 0.165480867 119.8481848
7 loss 5 19 0.995603323 0.042332146 0.726962447 0.64823091 0.969230771 0.11589212 136.9359018
10 loss 1 23 0.996580362 0.032822847 0.716723561 0.705110371 0.965811968 0.111317508 172.6875957
10 loss 2 25 0.996091843 0.037626501 0.692832768 0.806456029 0.972649574 0.096915461 192.6734316
10 loss 3 16 0.991206646 0.064496234 0.713310599 0.656079113 0.950427353 0.195622265 122.5274311
10 loss 4 33 0.998045921 0.023534197 0.757679164 0.660158396 0.953846157 0.11040625 262.3697482
10 loss 5 17 0.992183685 0.052593071 0.713310599 0.668919325 0.94700855 0.171621963 127.6774122
15 loss 1 29 0.998534441 0.023043793 0.757679164 0.580849946 0.967521369 0.108793311 214.6257377
15 loss 2 23 0.996580362 0.036374774 0.713310599 0.73689121 0.962393165 0.131636575 174.2537773
15 loss 3 32 0.997557402 0.022166649 0.747440279 0.742685497 0.970940173 0.097075753 252.1042346
15 loss 4 30 0.999022961 0.022557253 0.754266202 0.713742137 0.953846157 0.121158503 250.3157561
15 loss 5 30 0.998534441 0.023030076 0.730375409 0.734522462 0.972649574 0.107649416 276.7263841
3 accuracy 1 15 0.993649244 0.061796885 0.69624573 0.670105934 0.962393165 0.130404502 142.4387054
3 accuracy 2 5 0.957498789 0.191257089 0.621160388 0.741892576 0.928205132 0.319094092 50.9358952
3 accuracy 3 7 0.966780663 0.159885839 0.737201393 0.562528431 0.935042739 0.244990811 65.6215291
3 accuracy 4 17 0.994137764 0.045600958 0.774744034 0.577316344 0.952136755 0.127913699 154.4101072
3 accuracy 5 6 0.959941387 0.16798079 0.675767899 0.688473523 0.921367526 0.265415251 65.0164075
5 accuracy 1 16 0.990718126 0.060059696 0.692832768 0.812040746 0.965811968 0.127139732 149.1743443
5 accuracy 2 10 0.975085497 0.113430224 0.651877105 0.691287875 0.931623936 0.21590881 76.2116969
5 accuracy 3 15 0.989741087 0.065249637 0.744027317 0.619207919 0.965811968 0.122518174 123.6166012
5 accuracy 4 22 0.994137764 0.040192954 0.761092126 0.607570052 0.948717952 0.125213459 170.1709438
5 accuracy 5 17 0.991695166 0.052661575 0.730375409 0.589609325 0.969230771 0.109279864 130.5702227
7 accuracy 1 25 0.996091843 0.032614194 0.69624573 0.786663473 0.967521369 0.111560121 190.436003
7 accuracy 2 17 0.991206646 0.05449627 0.682593882 0.746500134 0.969230771 0.112729013 130.1836983
7 accuracy 3 19 0.992672205 0.047206469 0.672354937 0.820098698 0.962393165 0.125569016 162.6656513
7 accuracy 4 9 0.980459213 0.111395694 0.69624573 0.665015817 0.907692313 0.355802476 74.0074007
7 accuracy 5 38 0.999022961 0.015742909 0.740614355 0.766431868 0.970940173 0.089645736 297.7733321
10 accuracy 1 34 0.997557402 0.020063197 0.675767899 0.878209054 0.969230771 0.105710268 277.3612384
10 accuracy 2 31 0.999022961 0.020484067 0.686006844 0.948435187 0.969230771 0.086290933 252.9607732
10 accuracy 3 22 0.995114803 0.037949301 0.737201393 0.683958352 0.958974361 0.119537391 187.3716481
10 accuracy 4 30 0.99951148 0.022190876 0.78498292 0.569951594 0.952136755 0.123341084 241.4252356
10 accuracy 5 17 0.995114803 0.043765735 0.726962447 0.678048849 0.964102566 0.145041451 137.2071482
15 accuracy 1 46 0.998534441 0.010064815 0.720136523 0.874718249 0.974358976 0.100223176 365.9279238
15 accuracy 2 50 0.999022961 0.010573568 0.709897637 0.986595809 0.972649574 0.073904678 388.8055961
15 accuracy 3 29 0.998045921 0.023716006 0.703071654 0.846732259 0.958974361 0.121186987 273.9335451

(Continued on next page)
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(Table D.1 Continued from previous page)
PC MC Fold Stop Epoch Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time (s)
15 accuracy 4 26 0.997068882 0.028543573 0.76791811 0.628445148 0.952136755 0.132668525 234.2733131
15 accuracy 5 36 0.998534441 0.022074558 0.740614355 0.778797984 0.970940173 0.098766908 306.510873
- no monitoring 1 N/A 0.999022961 0.010553496 0.706484616 0.941983461 0.974358976 0.118602358 439.8904622
- no monitoring 2 N/A 1 0.01098085 0.686006844 1.034381628 0.967521369 0.094622567 437.3137553
- no monitoring 3 N/A 0.99951148 0.010696846 0.75085324 0.825193703 0.962393165 0.125199303 396.7657198
- no monitoring 4 N/A 0.999022961 0.011571754 0.764505148 0.73913306 0.952136755 0.154828563 463.3622841
- no monitoring 5 N/A 0.99951148 0.008148649 0.75085324 0.829228759 0.970940173 0.104553312 408.4304722

TABLE D.2. Descriptive statistics for Xception model Performance (Appendix D.2)

MC PC Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time
val loss 3 count 5 5 5 5 5 5 5
val loss 3 mean 0.975 0.116 0.691 0.653 0.942 0.184 71.368
val loss 3 std 0.008 0.024 0.036 0.054 0.008 0.021 9.904
val loss 3 min 0.966 0.084 0.648 0.582 0.932 0.162 62.896
val loss 3 25% 0.970 0.100 0.662 0.631 0.938 0.164 64.505
val loss 3 50% 0.973 0.122 0.696 0.644 0.940 0.191 66.817
val loss 3 75% 0.979 0.130 0.713 0.680 0.947 0.196 76.066
val loss 3 max 0.985 0.145 0.737 0.726 0.952 0.210 86.558
val loss 5 count v .5 .5 .5 .5 .5 .5
val loss 5 mean 0.990 0.065 0.719 0.660 0.958 0.138 118.122
val loss 5 std 0.003 0.011 0.028 0.066 0.008 0.006 27.112
val loss 5 min 0.986 0.047 0.693 0.571 0.945 0.133 91.747
val loss 5 25% 0.989 0.065 0.696 0.624 0.957 0.136 105.716
val loss 5 50% 0.990 0.066 0.710 0.664 0.961 0.136 108.244
val loss 5 75% 0.990 0.071 0.741 0.700 0.962 0.137 122.336
val loss 5 max 0.994 0.077 0.758 0.740 0.964 0.148 162.568
val loss 7 count 5 5 5 5 5 5 5
val loss 7 mean 0.990 0.063 0.704 0.663 0.951 0.150 125.397
val loss 7 std 0.006 0.025 0.045 0.092 0.016 0.040 18.812
val loss 7 min 0.979 0.042 0.648 0.546 0.928 0.116 96.579
val loss 7 25% 0.990 0.044 0.669 0.648 0.944 0.122 119.848
val loss 7 50% 0.993 0.058 0.720 0.658 0.957 0.135 127.851
val loss 7 75% 0.994 0.064 0.727 0.660 0.957 0.165 136.936
val loss 7 max 0.996 0.105 0.758 0.803 0.969 0.213 145.774
val loss 10 count 5 5 5 5 5 5 5
val loss 10 mean 0.995 0.042 0.719 0.699 0.958 0.137 175.587
val loss 10 std 0.003 0.016 0.024 0.063 0.011 0.044 56.882
val loss 10 min 0.991 0.024 0.693 0.656 0.947 0.097 122.527
val loss 10 25% 0.992 0.033 0.713 0.660 0.950 0.110 127.677
val loss 10 50% 0.996 0.038 0.713 0.669 0.954 0.111 172.688
val loss 10 75% 0.997 0.053 0.717 0.705 0.966 0.172 192.673
val loss 10 max 0.998 0.064 0.758 0.806 0.973 0.196 262.370
val loss 15 count 5 5 5 5 5 5 5
val loss 15 mean 0.998 0.025 0.741 0.702 0.965 0.113 233.605
val loss 15 std 0.001 0.006 0.019 0.068 0.008 0.013 39.886
val loss 15 min 0.997 0.022 0.713 0.581 0.954 0.097 174.254
val loss 15 25% 0.998 0.023 0.730 0.714 0.962 0.108 214.626
val loss 15 50% 0.999 0.023 0.747 0.735 0.968 0.109 250.316
val loss 15 75% 0.999 0.023 0.754 0.737 0.971 0.121 252.104
val loss 15 max 0.999 0.036 0.758 0.743 0.973 0.132 276.726
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Table D.2 Continued from previous page
MC PC Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Train Time
val accuracy 3 count 5 5 5 5 5 5 5
val accuracy 3 mean 0.974 0.125 0.701 0.648 0.940 0.218 95.685
val accuracy 3 std 0.018 0.067 0.059 0.076 0.017 0.085 48.686
val accuracy 3 min 0.957 0.046 0.621 0.563 0.921 0.128 50.936
val accuracy 3 25% 0.960 0.062 0.676 0.577 0.928 0.130 65.016
val accuracy 3 50% 0.967 0.160 0.696 0.670 0.935 0.245 65.622
val accuracy 3 75% 0.994 0.168 0.737 0.688 0.952 0.265 142.439
val accuracy 3 max 0.994 0.191 0.775 0.742 0.962 0.319 154.410
val accuracy 5 count 5 5 5 5 5 5 5
val accuracy 5 mean 0.988 0.066 0.716 0.664 0.956 0.140 129.949
val accuracy 5 std 0.008 0.028 0.044 0.091 0.016 0.043 35.056
val accuracy 5 min 0.975 0.040 0.652 0.590 0.932 0.109 76.212
val accuracy 5 25% 0.990 0.053 0.693 0.608 0.949 0.123 123.617
val accuracy 5 50% 0.991 0.060 0.730 0.619 0.966 0.125 130.570
val accuracy 5 75% 0.992 0.065 0.744 0.691 0.966 0.127 149.174
val accuracy 5 max 0.994 0.113 0.761 0.812 0.969 0.216 170.171
val accuracy 7 count 5 5 5 5 5 5 5
val accuracy 7 mean 0.992 0.052 0.698 0.757 0.956 0.159 171.013
val accuracy 7 std 0.007 0.036 0.026 0.058 0.027 0.111 83.055
val accuracy 7 min 0.980 0.016 0.672 0.665 0.908 0.090 74.007
val accuracy 7 25% 0.991 0.033 0.683 0.747 0.962 0.112 130.184
val accuracy 7 50% 0.993 0.047 0.696 0.766 0.968 0.113 162.666
val accuracy 7 75% 0.996 0.054 0.696 0.787 0.969 0.126 190.436
val accuracy 7 max 0.999 0.111 0.741 0.820 0.971 0.356 297.773
val accuracy 10 count 5 5 5 5 5 5 5
val accuracy 10 mean 0.997 0.029 0.722 0.752 0.963 0.116 219.265
val accuracy 10 std 0.002 0.011 0.044 0.156 0.007 0.022 56.463
val accuracy 10 min 0.995 0.020 0.676 0.570 0.952 0.086 137.207
val accuracy 10 25% 0.995 0.020 0.686 0.678 0.959 0.106 187.372
val accuracy 10 50% 0.998 0.022 0.727 0.684 0.964 0.120 241.425
val accuracy 10 75% 0.999 0.038 0.737 0.878 0.969 0.123 252.961
val accuracy 10 max 1.000 0.044 0.785 0.948 0.969 0.145 277.361
val accuracy 15 count 5 5 5 5 5 5 5
val accuracy 15 mean 0.998 0.019 0.728 0.823 0.966 0.105 313.890
val accuracy 15 std 0.001 0.008 0.026 0.132 0.010 0.023 63.855
val accuracy 15 min 0.997 0.010 0.703 0.628 0.952 0.074 234.273
val accuracy 15 25% 0.998 0.011 0.710 0.779 0.959 0.099 273.934
val accuracy 15 50% 0.999 0.022 0.720 0.847 0.971 0.100 306.511
val accuracy 15 75% 0.999 0.024 0.741 0.875 0.973 0.121 365.928
val accuracy 15 max 0.999 0.029 0.768 0.987 0.974 0.133 388.806
no monitoring No count 5 5 5 5 5 5 5
no monitoring No mean 0.999 0.010 0.732 0.874 0.965 0.120 429.153
no monitoring No std 0.000 0.001 0.034 0.115 0.009 0.023 26.601
no monitoring No min 0.999 0.008 0.686 0.739 0.952 0.095 396.766
no monitoring No 25% 0.999 0.011 0.706 0.825 0.962 0.105 408.430
no monitoring No 50% 1.000 0.011 0.751 0.829 0.968 0.119 437.314
no monitoring No 75% 1.000 0.011 0.751 0.942 0.971 0.125 439.890
no monitoring No max 1.000 0.012 0.765 1.034 0.974 0.155 463.362
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