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ABSTRACT
In this study, we consider weakly symmetric and weakly Ricci-symmetric (%, x)-contact metric manifolds. We find
necessary conditions in order that a (k, w)-contact metric manifold be weakly symmetric and weakly Ricci
symmetric.
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(k, y)~-DEGME METRIiK MANIFOLDLARIN ZAYIF SIMETRILERi UZERINE
OZET
Bu c¢alismada, zayif simetrik ve zayif Ricci-simetrik (k, p)-degme metrik manifoldlar1 gz oniine aldik. (k, w)-

degme metrik manifoldlarin zayif simetrik ve zayif Ricci-simetrik olmasi i¢in gerekli sartlari bulduk.

Anahtar Kelimeler: Zayif simetrik, zayif Ricci-simetrik, (k, @)-degme metrik manifoldlar.

1. INTRODUCTION
Let (M, g) be an n-dimensional, n>2, semi-Riemannian manifold of class C*. We denote by V the Levi-Civita
connection. Then we have

R(XY)Z:[Vx,Vy]Z-V [)ﬂy]Z.

The Riemannian-Christoffel tensor and the Ricci tensor of (M, g) are defined by R(X,Y,Z W)=g(R(X,Y)Z, W) and
SXY) = g(R(e;, X)Y e;) (1)
i=1

respectively, where X, Y, Z, W € (M), where (M) is the Lie algebra of vector fields on M and {e, e,,...,e,} is
a local orthonormal basis for the vector fields on M.

A non-flat differentiable manifold (M®, g), (n>3), is called pseudosymmetric if there exists a 1-form o on M such
that
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(VR(Y.ZW) = 2a(X)R(Y,Z)W+a(Y)R(X,.Z)W
Ta(Z)R(Y,X)W+a(W)R(Y,Z)X+g(R(Y,Z) W, X)A,

where X, Y, Z, W € y(M) are arbitrary vector fields and 4 € y(M) is the vector field corresponding through g to
the 1-form a which is given by g(X, 4)=a(4) ([4]).

A non-flat differentiable manifold (M”, g), (n>3), is called weakly symmetric if there exists a vector field P and
1-forms a, S, y, 6 on M such that

(VR)(Y.ZW) = a(X)R(Y.ZWHB(Y)RXZ)W @
DRV X)W+S(W)R(Y,Z)X+g(R(Y,Z)W.X)P,
holds for all vector fields X, Y, Z, WeyM) ([10] and [11]). A weakly symmetric manifold (M, g) is
pseudosymmetric if ﬁ=y=(5=% o and P=A, locally symmetric if a=f=y=0=0 and P=0. A weakly symmetric is
said to be proper if at least one of the 1-forms o, S, y, J is not zero or P#£0.

A differentiable manifold (M", g), (n>3), is called weakly Ricci-symmetric if there exists 1-forms €,6, p such
that the condition

(VxS)(Y.2) = eX)S(Y,2)+o(Y)S(X,.2)+ p (Z)S(XY), A3)
holds for all vector fields X, ¥, Ze y(M) ([10] and [11]). If e=6= p then M is called pseudo Ricci-symmetric
([5D-
From (2), an easy calculation shows that if M is weakly symmetric then we have
(VSZW) = a(X)S(ZW)+BRX.Z)W) 4)
TS W)+o(W)S(X.Z)+p(R(X, W)Z),
where P is defined by p(X)=g(X, P) for all Xe y(M) ([11]).

In [11], the authors considered weakly symmetric and weakly Ricci-symmetric Einstein and Sasakian manifolds.
In [5], the authors studied weakly symmetric and weakly Ricci-symmetric K-contact manifolds. Also, in [1], the
authors studied pseudosymmetric contact metric manifolds of Chaki type. In this study we consider weakly
symmetric and weakly Ricci-symmetric (k, x)-contact metric manifolds.

2. PRELIMINARIES

Let M be a (2n+1)-dimensional contact metric manifold with structure tensors (¢ ,& 7, g). Then the structure
tensors satisfy are following equations

92 =-I+n®& N =1, ¢Z=0, nX) = gXd ©)
glpX, oY) = gX,V)-n(X)n(Y), glpXY) =dn(XY), (6)

for any vector field X and Y on M [2]. The (1,1)-tensor field % defined by A= —%L;qﬁ, where L denotes Lie

differentiation. Then the vector field ¢ is Killing if and only if / vanishes. It is well known that 4 and @h are
symmetric operators, /2 anti-commutes with @ (i.e., h +he=0), h=0, noh=0, trh=0 and tr¢ph=0, where trh
denotes the trace of 4. Since 4 anti-commutes with @, if X is an eigenvector of h corresponding to the eigenvalue
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A then @X is also an eigenvector of /4 corresponding to the eigenvalue -A. Moreover, for any contact metric
manifold M, the following is satisfied

Vil = -pX-phX (7

here V is the Riemannian connection of g. If & is Killing on a contact metric manifold M, then M is said to be a
K-contact Riemannian manifold. We also recall that on a K-contact Riemannian manifold it is valid

RX.OE=X-n(X)C.

The (k, p)-nullity distribution of a Riemannian manifold (M, g) for a real numbers &, u is a distribution

Nek):p—Ny(kpy) = {Z€ T,M :R(X.Y)Z = k[2(Y,Z)X-g(X.2)Y]

tulg(Y.2)hX-g(X.2)hY]}

for any X, Y € Tp(M). We consider that M is a contact metric manifold with belonging & to the (k, w)-nullity
distribution i.e.[3],

RX.Y)E = kln(M)X-n(X)Y]+u[n(Y)hX-n(X)hY], ®)

REX)Y = k[g(X.Y)E-n(Y)X] +u[g(hX. Y)S-n(Y)hX], )]

S(X,&) = 2nkn(X), (10)
O¢ = 2nke. (1)

In particular, on a contact metric manifold, M is Sasakian if and only if k=1 and u=0.

3. MAIN RESULTS

In this chapter we investigate weakly symmetric and weakly Ricci-symmetric (k, u)-contact metric manifolds.
Firstly we have:

Theorem 1 There exists no weakly symmetric (%, )-contact metric manifold M*"™, (k#0), n>1, if a+y+d is not
everywhere zero.

Proof. Assume that M*"" is a weakly symmetric (k, )-contact metric manifold. Putting W=¢ in (4) we get
(V x¥S)NZ,S) = a(X)S(Z,)+B(R(X.Z)S) 12)
TN2)SX.O)+(SX.2)+p(R(X.HZ).
So using (8), (9) and (10) we have
(VXSZE) = 2nka(X)n(Z)+kBX)n(2)-kB(Z)n(X) 13)
Hup(hX)n(Z)-up(hZ)n(X)+2nky(Z)n(X)
+0(Q)S(X.2)+kn(Z)p(X)-kg(X,.Z)p(S)

+un(Z)p(hX).
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By the covariant differentiation of the Ricci tensor S, the left side can be written as
(VSNZSE) =V xS(Z,5)-S(V xZ.E)-S(Z,V x3).
By the use of (7), (10) and the parallelity of the metric tensor g we have
(V xS)(Z.E) =-2nkg(pX,2)-2nkg(ohX,2)+S(0X.2)+S(phX, 2) (14)

Comparing the right hand sides of (13) and (14), we obtain

-2nkg (X, 2)-2nkg(phX.Z) +S(pX,2)+S(phX,2) (15)
= 2nka(X)n(2)+kB(X)n(2)
-kBnX)+uphX)n(Z)-up(hZ)n(X)
+2nky(Z)n(X)+6(9)S(X.2)
+kn(Z)p(X)-kg(X. Z)p(©)+un(Z)p(hX).
Putting X=Z=¢ in (15) and using (5), (6) and (10) we get
2nk[a(&)+y(&)+6(O] = 0.
Since 7>1 and k#0, we obtain
a(Q)+y(&)+6(5) = 0. (16)

So vanishing of the 1-form a+y+dJ over the vector field & necessary in order that M be a (k, w)-contact metric
manifold.

Now we will show that a+y+Jd=0 holds for all vector fields on M.
In (4), taking Z=¢, similar to the previous calculations it follows that

-2nkg(pX, W)-2nkg(phX,Z) +S(pX, W) +S(phX,2)
(17)

= 2nka(X)n(W)+kp(X)-kB(S)n(X)
HuP(hX)+2nky(Q)n(X)+2nkd()n(X)
+hp((X)-kn(X)p (&) +up (hX).
Replacing 7 with ¢ in (17) and by making use of (5), (8) and (10) we have
2nka(X)+kB(X)-kB(E)n(X) (18)
Hup(hX)+2nky(Qn(X)+2nkd(n(X)
+hkp(X)-kn(X)p(&) +up(hX) = 0.
Putting X=¢ in (17) and by virtue of (5), (8) and (10) we find

2nka(n(W)+2nky(En(W)+2nko(W) (19)
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+kn(W)p()-kp(W)-up(hW) = 0.
Replacing W with X in (19) and taking the summation with (18), in view of (16), we obtain
2nka(X)+kB(X)-kB(n(X) (20)
+uB(hX)+2nké(X)+2nky(En(X) = 0.
Now putting X=¢ in (15) we have
2nka(n(2)+kB(n(2)-kp(Z) (2]
UP(hZ)+2nky(Z)+2nko(En(Z) = 0.
So replacing Z with X in (21) and taking the summation with (20), in view of (16), we find
2nkfo(X)+y(X)+6(X)]= 0.
Since n>1 and k#0, we get
aX)+y(X)+o(X) = 0,
for all X. This implies a+y+d=0, which completes the proof of the theorem.

Theorem 2 There exists no weakly Ricci-symmetric (k, u)-contact metric manifold M/, (k#0), n>1,
et+o+ p is not everywhere zero.

if

Proof. Assume that M*"*' is a weakly Ricci-symmetric (k, u)-contact metric manifold. Replacing Z with ¢ in (3)

and using (10) we have

(V xS)(Y.Q) = 2nke(X)n(Y)+2nko(Y)n(X)+ p (OS(X,Y). (22)

Replacing Z with Y in (14) and comparing the right hand sides of the equations (22) and (14) we obtain

2nkg(pX, Y)-2nkg(phX,Z) +S(pX,V)+S(phX,2) (23)

= 2nke(X)n(Y) +2nko(V)n(X)+ p ()S(XY).
Taking X=Y=¢ in (23) and by making use of (5), (6) and (10) we get
2nk[e(Q)+a(S)+ p ()] =0,

which gives, (since n>1 and k#0),

Q) +o)+ p () =0. 24

Putting X=¢ in (23) we have
2nkn(Y)[e(©)+ p (O] +2nka(Y) = 0.
So by virtue of (24) this yields 2nk/n(Y)a(&)+o(Y)]=0,which gives us (since n>1 and k#0)

a(Y) = a(n(¥). @
Similarly taking Y=¢ in (23) we also have

5)
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eX)tnX)[o()+ p ()] = 0.

Applying (24) into the last equation we get

e(X) = e(n(X). (26)

Since (V s5)(&,X)=0, then from (3) we obtain

2nkn(X)[e(<)+a(S)] +2nk p (X) = 0. @7

So by making use of (24), the equation (27) reduces to

p X)=p nX). (28)

Therefore the summation of the equations (25), (26) and (28) give us

eX)+o(X)+ p (X) = (e(O)+a(Q)+ p )n(X),

and then, from (24), it follows that

eX)+oX)+p (X) =0,

for all X. Thus e+o+ p =0. Our theorem is proved.
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