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ABSTRACT 

In this study, we consider weakly symmetric and weakly Ricci-symmetric (k, μ)-contact metric manifolds. We find 
necessary conditions in order that a (k, μ)-contact metric manifold be weakly symmetric and weakly Ricci 
symmetric. 
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(k, μ)–DEĞME METRİK MANİFOLDLARIN ZAYIF SİMETRİLERİ ÜZERİNE 
 
ÖZET 

Bu çalışmada, zayıf simetrik ve zayıf Ricci-simetrik (k, μ)-değme metrik manifoldları göz önüne aldık. (k, μ)-
değme metrik manifoldların zayıf simetrik ve zayıf Ricci-simetrik olması için gerekli şartları bulduk. 

 
Anahtar Kelimeler:  Zayıf simetrik, zayıf Ricci-simetrik, (k, μ)-değme metrik manifoldlar. 
 
 
 
1. INTRODUCTION 
Let (M, g) be an n-dimensional, n≥2, semi-Riemannian manifold of class C∞. We denote by   the Levi-Civita 
connection. Then we have 

   R(X,Y)Z = [ X, Y]Z -  [X,Y]Z. 

The Riemannian-Christoffel tensor and the Ricci tensor of (M, g) are defined by R(X,Y,Z,W)=g(R(X,Y)Z,W) and 

   S(X,Y) = ),),((
1

i

n

i
i eYXeRg



                                                                      (1) 

respectively, where X, Y, Z, Wχ(M), where χ(M) is the Lie algebra of vector fields on M and },...,,{ 21 neee  is 

a local orthonormal basis for the vector fields on M. 

A non-flat differentiable manifold (Mⁿ, g), (n>3), is called pseudosymmetric if there exists a 1-form α on M such 
that 
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 ( XR)(Y,Z,W)  = 2α(X)R(Y,Z)W+α(Y)R(X,Z)W 

            +α(Z)R(Y,X)W+α(W)R(Y,Z)X+g(R(Y,Z)W,X)A, 

where X, Y, Z, W χ(M) are arbitrary vector fields and A χ(M) is the vector field corresponding through g to 
the 1-form α which is given by g(X, A)=α(A) ([4]). 

 A non-flat differentiable manifold (Mⁿ, g), (n>3), is called weakly symmetric if there exists a vector field P and 
1-forms α, β, γ, δ on M such that  

( XR)(Y,Z,W)  = α(X)R(Y,Z)W+β(Y)R(X,Z)W                                     (2) 

                              +γ(Z)R(Y,X)W+δ(W)R(Y,Z)X+g(R(Y,Z)W,X)P, 

holds for all vector fields X, Y, Z, Wχ(M) ([10] and [11]). A weakly symmetric manifold (M, g) is 

pseudosymmetric if β=γ=δ=
2

1
α and P=A, locally symmetric if α=β=γ=δ=0 and P=0. A weakly symmetric is 

said to be proper if at least one of the 1-forms α, β, γ, δ is not zero or P≠0. 

    A differentiable manifold (Mⁿ, g), (n>3), is called weakly Ricci-symmetric if there exists 1-forms ε,σ,   such 

that the condition 

   ( XS)(Y,Z) = ε(X)S(Y,Z)+σ(Y)S(X,Z)+  (Z)S(X,Y),                                                 (3)        

 holds for all vector fields X, Y, Zχ(M) ([10] and [11]). If ε=σ=   then M is called pseudo Ricci-symmetric 

([5]). 

 From (2), an easy calculation shows that if M is weakly symmetric then we have 

   ( XS)(Z,W)  = α(X)S(Z,W)+β(R(X,Z)W)                        (4) 

                                                           +γ(Z)S(X,W)+δ(W)S(X,Z)+p(R(X,W)Z), 

where P is defined by p(X)=g(X, P) for all Xχ(M) ([11]). 

In [11], the authors considered weakly symmetric and weakly Ricci-symmetric Einstein and Sasakian manifolds. 
In [5], the authors studied weakly symmetric and weakly Ricci-symmetric K-contact manifolds. Also, in [1], the 
authors studied pseudosymmetric contact metric manifolds of Chaki type. In this study we consider weakly 
symmetric and weakly Ricci-symmetric (k, μ)-contact metric manifolds. 

2. PRELIMINARIES  

Let M be a (2n+1)-dimensional contact metric manifold with structure tensors (φ ,ξ, η, g). Then the structure 
tensors satisfy are following equations 

   φ² = -I+η ξ,   η(ξ) = 1,   φξ = 0,   η(X) = g(X,ξ)                              (5)                       
   g(φX, φY) = g(X,Y)-η(X)η(Y),   g(φX,Y) = dη(X,Y),                                                     (6) 

for any vector field X and Y on M [2]. The (1,1)-tensor field h defined by h=
2

1
 Lξφ, where L denotes Lie 

differentiation. Then the vector field ξ is Killing if and only if h vanishes. It is well known that h and φh are 
symmetric operators, h anti-commutes with φ (i.e., φh +hφ=0), hξ=0, ηoh=0, trh=0 and trφh=0, where trh 
denotes the trace of  h. Since h anti-commutes with φ, if X is an eigenvector of h corresponding to the eigenvalue 
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λ then φX is also an eigenvector of h corresponding to the eigenvalue -λ. Moreover, for any contact metric 
manifold M, the following is satisfied 

        Xξ = -φX-φhX                           (7) 

 

here is the Riemannian connection of g. If ξ is Killing on a contact metric manifold M, then M is said to be a 
K-contact Riemannian manifold. We also recall that on a K-contact Riemannian manifold it is valid    
R(X,ξ)ξ=X-η(X)ξ. 

    The (k, μ)-nullity distribution of a Riemannian manifold (M, g) for a real numbers k, μ is a distribution 

 

N(k,μ):p→Np(k,μ) = {ZTpM : R(X,Y)Z = k[g(Y,Z)X-g(X,Z)Y] 

+μ[g(Y,Z)hX-g(X,Z)hY]} 

for any X, Y Tp(M). We consider that M is a contact metric manifold with belonging ξ to the (k, μ)-nullity 
distribution i.e.[3], 

   R(X,Y)ξ = k[η(Y)X-η(X)Y]+μ[η(Y)hX-η(X)hY],                                                         (8) 

   R(ξ,X)Y = k[g(X,Y)ξ-η(Y)X]+μ[g(hX,Y)ξ-η(Y)hX],                                                    (9) 

   S(X,ξ) = 2nkη(X),           (10) 

         Qξ = 2nkξ.                                (11) 

In particular, on a contact metric manifold, M is Sasakian if and only if k=1 and μ=0. 

 

3. MAIN RESULTS 

In this chapter we investigate weakly symmetric and weakly Ricci-symmetric (k, μ)-contact metric manifolds. 
Firstly we have: 

Theorem 1 There exists no weakly symmetric (k, μ)-contact metric manifold M2n+1, (k≠0), n>1, if α+γ+δ is not 
everywhere zero. 

Proof. Assume that M2n+1 is a weakly symmetric (k, μ)-contact metric manifold. Putting W=ξ in (4) we get 

   ( XS)(Z,ξ) = α(X)S(Z,ξ)+β(R(X,Z)ξ)                                                                       (12) 

            +γ(Z)S(X,ξ)+δ(ξ)S(X,Z)+p(R(X,ξ)Z). 

So using (8), (9) and (10) we have 

( XS)(Z,ξ)  = 2nkα(X)η(Z)+kβ(X)η(Z)-kβ(Z)η(X)                                                       (13) 

                                                      +μβ(hX)η(Z)-μβ(hZ)η(X)+2nkγ(Z)η(X) 

                                                      +δ(ξ)S(X,Z)+kη(Z)p(X)-kg(X,Z)p(ξ) 

                                                      +μη(Z)p(hX). 
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By the covariant differentiation of the Ricci tensor S, the left side can be written as  

   ( XS)(Z,ξ)  =  XS(Z,ξ)-S( XZ,ξ)-S(Z, Xξ). 

By the use of (7), (10) and the parallelity of the metric tensor g we have 

   ( XS)(Z,ξ) =-2nkg(φX,Z)-2nkg(φhX,Z)+S(φX,Z)+S(φhX,Z).                             (14) 

Comparing the right hand sides of (13) and (14), we obtain  

 

-2nkg(φX,Z)-2nkg(φhX,Z) +S(φX,Z)+S(φhX,Z)                                                               (15) 

     = 2nkα(X)η(Z)+kβ(X)η(Z) 

        -kβ(Z)η(X)+μβ(hX)η(Z)-μβ(hZ)η(X)  

     +2nkγ(Z)η(X)+δ(ξ)S(X,Z) 

       +kη(Z)p(X)-kg(X,Z)p(ξ)+μη(Z)p(hX). 

Putting X=Z=ξ in (15) and using (5), (6) and (10) we get 

     2nk[α(ξ)+γ(ξ)+δ(ξ)] = 0. 

Since n>1 and k≠0, we obtain 

     α(ξ)+γ(ξ)+δ(ξ) = 0.           (16) 

So vanishing of the 1-form α+γ+δ over the vector field ξ necessary in order that M be a (k, μ)-contact metric 
manifold. 

Now we will show that α+γ+δ=0 holds for all vector fields on M. 

In (4), taking Z=ξ, similar to the previous calculations it follows that 

 -2nkg(φX,W)-2nkg(φhX,Z) +S(φX,W)+S(φhX,Z)                        
(17) 

     = 2nkα(X)η(W)+kβ(X)-kβ(ξ)η(X) 

     +μβ(hX)+2nkγ(ξ)η(X)+2nkδ(ξ)η(X) 

     +kp(X)-kη(X)p(ξ)+μp(hX). 

Replacing W with ξ in (17) and by making use of (5), (8) and (10) we have 

  2nkα(X)+kβ(X)-kβ(ξ)η(X)            (18) 

     +μβ(hX)+2nkγ(ξ)η(X)+2nkδ(ξ)η(X) 

     +kp(X)-kη(X)p(ξ)+μp(hX) = 0. 

Putting X=ξ in (17) and by virtue of (5), (8) and (10) we find 

  2nkα(ξ)η(W)+2nkγ(ξ)η(W)+2nkδ(W)                         (19) 
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     +kη(W)p(ξ)-kp(W)-μp(hW) = 0. 

Replacing W with X in (19) and taking the summation with (18), in view of (16), we obtain 

2nkα(X)+kβ(X)-kβ(ξ)η(X)                           (20) 

     +μβ(hX)+2nkδ(X)+2nkγ(ξ)η(X) = 0. 

Now putting X=ξ in (15) we have 

 2nkα(ξ)η(Z)+kβ(ξ)η(Z)-kβ(Z)                          (21) 

     -μβ(hZ)+2nkγ(Z)+2nkδ(ξ)η(Z) = 0. 

So replacing Z with X in (21) and taking the summation with (20), in view of (16), we find 

   2nk[α(X)+γ(X)+δ(X)]= 0. 

Since n>1 and k≠0, we get 

   α(X)+γ(X)+δ(X) = 0, 

for all X. This implies α+γ+δ=0, which completes the proof of the theorem. 

Theorem 2 There exists no weakly Ricci-symmetric (k, μ)-contact metric manifold M2n+1, (k≠0), n>1, if 
ε+σ+   is not everywhere zero. 

Proof. Assume that M2n+1 is a weakly Ricci-symmetric (k, μ)-contact metric manifold. Replacing Z with ξ in (3) 
and using (10) we have  

( XS)(Y,ξ) = 2nkε(X)η(Y)+2nkσ(Y)η(X)+  (ξ)S(X,Y).                                                                       (22) 

Replacing Z with Y in (14) and comparing the right hand sides of the equations (22) and (14) we obtain 

     -2nkg(φX,Y)-2nkg(φhX,Z) +S(φX,Y)+S(φhX,Z)        (23) 

       = 2nkε(X)η(Y) +2nkσ(Y)η(X)+  (ξ)S(X,Y). 

Taking X=Y=ξ in (23) and by making use of (5), (6) and (10) we get 

   2nk[ε(ξ)+σ(ξ)+  (ξ)] = 0, 

which gives, (since n>1 and k≠0), 

ε(ξ)+σ(ξ)+  (ξ) = 0.                 (24) 

Putting X=ξ in (23) we have 

   2nkη(Y)[ε(ξ)+  (ξ)]+2nkσ(Y) = 0. 

So by virtue of (24) this yields 2nk[η(Y)σ(ξ)+σ(Y)]=0,which gives us (since n>1 and k≠0) 

σ(Y) = σ(ξ)η(Y).                               (25) 

Similarly taking Y=ξ in (23) we also have 
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   ε(X)+η(X)[σ(ξ)+  (ξ)] = 0. 

Applying (24) into the last equation we get 

ε(X) = ε(ξ)η(X).                                                     (26) 

Since ( ξS)(ξ,X)=0, then from (3) we obtain 

   2nkη(X)[ε(ξ)+σ(ξ)]+2nk  (X) = 0.                                                              (27) 

So by making use of (24), the equation (27) reduces to 

     (X) =  (ξ)η(X).            (28) 

Therefore the summation of the equations (25), (26) and (28) give us 

   ε(X)+σ(X)+  (X) = (ε(ξ)+σ(ξ)+  (ξ))η(X), 

and then, from (24), it follows that 

   ε(X)+σ(X)+   (X) = 0, 

for all X. Thus ε+σ+  =0. Our theorem is proved. 
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