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Approximation of the Hilbert Transform in Holder
Spaces
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Abstract. The Hilbert transform plays an important role in the theory and practice
of signal processing operations in continuous system theory because of its relevance to
such problems as envelope detection and demodulation, as well as its use in relating the
real and imaginary components, and the magnitude and phase components of spectra.
The Hilbert transform is a multiplier operator and is widely used in the theory of Fourier
transforms. It is also the main part of the theory of singular integral equations on the real
line. Therefore, approximations of Hilbert transform are of great interest. Many papers
have dealt with the numerical approximation of singular integrals in case of bounded
intervals. On the other hand, the literature concerning the numerical integration on
unbounded intervals is much sparser than the one on bounded intervals. There is very
little literature concerning the case of Hilbert transform. This article is dedicated to
the approximation of Hilbert transform in Holder spaces by the operators introduced by
V.R.Kress and E.Mortensen to approximate the Hilbert transform of analytic functions
in a strip.
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1. Introduction

Let the function u be defined on the real axis and a € (0, 1]. If there exists a
number M > 0 such that for any x,y € R

u(z) —u(y)| < M - [z —y|* (1)
and for any x,y € R\{0}

(67

1 1 ’ ()

ju(e) ~u(y)] < M|~
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then the function u is said to be Holder continuous with exponent « on the real
axis (see [10, 18]). The class of Holder continuous functions with exponent o on
the real axis with norm

|u(z) — u(y)| u(z) = u(y)]

lullo = lulloc + sup ————"=+  sup
“ = cyeRaty T —Y|* z,yeR\{0},z#y [1/x—1/yl*

forms a Banach space and is denoted by Hq(R), where ||u||co = max,ep |u(x)|.
It follows from (1) and (2) that for any u € Hq(R) there exist u(oco) =
limy 100 u(x) and for any z # 0

() — u(oo)] < 1l
Denote

HO(R) = {u € Ho(R) : u(c0) = 0} C Ha(R).

The Hilbert transform of the function u € HY(R), a € (0, 1] is defined as the
Cauchy principle value integral

(Hu)(t) = / Ur) g = L g / UT) 4r e R,
@ R\(t—et+e)

RrRt—T T e—0+ -7

It is well known (see [12, 21]) that the Hilbert transform of the function u €
HO(R), o € (0,1] exists for any t € R . In case a € (0,1), the Hilbert transform
is a bounded map in the space H2(R).

The Hilbert transform plays an important role in the theory and practice of
signal processing operations in continuous system theory because of its relevance
to such problems as envelope detection and demodulation, as well as its use
in relating the real and imaginary components, and the magnitude and phase
components of spectra. The Hilbert transform is a multiplier operator and is
widely used in the theory of Fourier transforms. It is also the main part of
the theory of singular integral equations on the real line (see [24]). Therefore,
approximations of Hilbert transform are of great interest.

Many papers have dealt with the numerical approximation of Hilbert trans-
form in case of bounded intervals and the reader can refer to [1, 3, 4, 5, 7, 9,
13, 14, 17, 18, 20, 24, 25, 26, 27, 31] and the references therein. On the other
hand, the literature concerning the numerical integration on unbounded intervals
is much sparser than the one on bounded intervals. There is very little literature
concerning the case of Hilbert transform on the real axis and the reader may refer
to [2, 6, 8, 10, 11, 15, 16, 19, 22, 23, 28, 29, 30].

In particular, in [15] the authors assume that the function u is analytic in the

strip {z € C 1 |Sz| < d} and show that the series 2 > ke Zkteven “(tj:‘;) uniformly
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converges to (Hu)(t) as § — 0. In [6], the above series is replaced by the following
one:

(Hyu)(t) =~ 3
keZ

u(t + (k + 1/2)5)
—k—1/2

, 0>0.

In [2], it was proved that the operators H; are bounded maps in the space Ly(R),
1 < p < o0, satisfy the equality

in L,(R), and for any § > 0 the sequence of operators {Hs /n}ne N~ strongly con-
verges to the operator H in L,(R). This article is dedicated to the approximation
of the Hilbert transform of functions from the space HY(R) by the operators Hs,
§ > 0. It is proved that if the function u belongs to the space H2(R), a € (0, 1),
then a family of functions { Hsu(t)} uniformly converges to the function (Hu)(t)
as 0 — 0.

2. Main result

The main result of the paper is the following theorem.

Theorem 1. If the function u belongs to the space H2(R), a € (0,1], then
a family of functions {Hsu(t)} uniformly converges to the function (Hu)(t) as
0 — 0 and the following inequality holds:

6
|Hu — Hullo < Jullo {a Fine + 1/5)] 5, 50 3)

Proof. Tt is obvious that the uniform convergence of the family of functions
{Hsu(t) to the function (Hu)(t) as § — 0 follows from the inequality (3). There-
fore, it suffices to prove the inequality (3).

We write the difference (Hu)(t) — (Hsu)(t), t € R in the form

w[(Hu)(t) — (Hyu)(t)] = /R W)dT_k_z ult + l(j_+1%2>5>

t—T1

£33 (r) 2wt + (k +1/2)0)
:/t3§ t—TdT+Z k+1/2

—4

u(t + (k+1/2)6) u(t + (k4 1/2)9)
/R\(t 36,t+36) T kz k+1/2 + :Z_ kE+1/2

_l’_
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= Ji(t) + Ja(t) + J3(2).
Let’s estimate Ji(t), k = 1,2,3. For any t € R

/t+35 u(r) /35 u(t+7) —ult—7)
; 0

_35 t—T T

[1(t)] =

36 _ i 30 . o
o [Men el [F e @0y, Sl
0 0

3
T T (07

ult +8/2) — u(t = 5/2)] | [u(t +36/2) — u(t — 35/2)

BAGIE= 7 37
lu(t 4+ 56/2) — u(t — 55/2)]
* 5/2
< (26% 4+ 2(38)*/3 +2(50)%/5) - ||ulla < 6]jullo - 6 (5)

Let’s write J3(t) in the form

Jo(t) = _/3:0 u(t+7) —u(t—T)dT+Zu(t+(k+1/2)(5) —u(t — (k+1/2)0)

T = kE+1/2

2 (u(t+ (k+1/2)8) —u(t — (k +1/2)8) D8 4yt +7) — u(t —7)
Z( k+1/2 _/M T dT)

3

)

00 (k+1)8 g
g u(t + (k+1/2)8) —u(t — (k +1/2)8)] - <I<:+11/2_/k dT>

0 LD Tyt 4+ (k4+1/2)8) —u(t — (k+1/2)8)  u(t+7) —u(t —7)
2l - |

T T
2
= 1V + I 8). (6)
It follows from inequality
1 (k+1)8 g7 1 1
- =1+ 1/k) — < ke N
kt1/2 /M S| TR = e S g RE

that

Oé

2k—|—1
< . .
@) §:||uua (2 + 10" s < ol 35 }j



92 R.A. Aliev, L.Sh. Alizade

0 [*2x+41 Hu||a o

< C— <

el gy [ e < e @
For J§2) (t) we have

57 1)]
RS /<k+1>5 [u(t + (k+1/2)0) —u(t +7)| + |u(t — (k +1/2)9) —u(t —7)] |
>~ T
=3 ko T

— lu(t + (k+1/2)0) —u(t + 7)|dr

T RO Jks
© 4 p(k+1)S
+ kzg i) lu(t — (k +1/2)8) — u(t — 7)|dr
= 0@ + I ). (8)

Consider the case t > 0 (the case ¢t < 0 is treated similarly).
If 6 > 1/2, then

(21
<Zk5

«

1 1
ulladr

t+(k+1/2)6 t+7

UL [ (e 12)0)°
_kz:k/ (t+ (k+1/2)8)(t + ) Nulladr

1
ZT&

< (8/2) - Julla - Z W(gm

o X, 2% > dx Ulla o
<6/ Jula Y. o < @0 ull [ e < Ll e g
k=3

and if § < 1/2, then

e B0+ (k)8
J3 < — k+1/2)0 — 7|* - ||ul|lodT
0 X ), MerU2s-d bl

1 1|~
t+(k+1/2)6 t+7

ulladr

o 1 p(ktD)s
DA

k=[1/5]+2
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[1/6]+1 o oo
1 /6 1 (5/2)°
< E — — . . E — . . .
k=3 k=[1/6]+2
dx 1

o 1 « >
< lulla- 810 5 + fulla -

1
7 < 6% |In = 4+ — 1
o <l 4] o

where [1/0] is an integer part of the number 1/§. It follows from (9) and (10)
that for any 6 > 0

1
TV ) <y - 6 [ln(e +1/6) + M] . (11)

Let’s estimate J§2’2) (1).
Case 1. t < 200, 6 > 1/2. In this case,

2.2) [2t/5]+3 1 (k+1)6

< Y s [(k+1/2)0 = 7% - [JulladT
ko Jis
k=3
X1 [kDs 1 I
+ > - Nulladr
b pt8)44 ks t—(k+1/2)0 t—

[2¢/6]+3 o -
L (o 1 (3/2)"
< .5 5 ' : _— . @
<> 5 (5) Mless X s
k=3 k=[2t/6]+4
1 ° dx
< lfulla-8 12 2+ ror e | S Mullas® 3 [
Z . [2275/:5 + k(k5 - t)ro 242t/5 x(wé _ t)Q

o0 dy > dy
= |lul|o - 6% 3+/ }< ua-5°‘[3+/ }
el { 95+t (Y +1)y2e e p yite

= |lulla - 8 [3 + 21(1] . (12)

Case 2. t < 200, 0 < 1/2. In this case,

[20/5 1+1 (k+1)8

1/2)0 — 7|* -
< X ké/ka b+ 1/2)8 = 7|° - ullodr

0 1 k+1)5 (%
> k/ka

1 1
Nulladr
k=[20/5]+2

t—(k+1/2)6 t—
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[20/6]+1 o 00
1 /5 1 (5/2)
k=3 k=[20/68]+2
[20/6)+1 00
33 1 3 (6/2)"
< . — A
k=3 k=[20/6]+2

20 > dx
< 2 Pl . ) &
L LR W

20 | Julla
<l - 6% = 4 MWla5a 1
< fJufla 67 = + 0 5 (13)
Case 3. t > 200, 6 > 1/4. In this case,
[t/26]-2 (k+1)8 a
(2.2) 1y < 1 1 __1 .
T () < kzzg 56 Jis t—(k+1/2)5 t— lulladr
(2¢/9] (k+1)8
= 1/2)6 — 71 - |[ul|a
Y w125l fulade
k=[t/26]-1
= L
N ul|adT
2t/6]+1 s t—( k+1/2) =

[t/26]—2 [2t/5]

1 (6/2)« 1 /6\“
<y L oot > i (5) 6 bl
2 k5 (i (k+1)0) iy ko \2

s 1ﬂ«snna

[2t/6]+1 )

< 50 HUH /t/262 dr N /215/5 dﬁ N /oo dz
B “ 12 z(t—0(x+2))* Sy at/5 T(0x — )2
9 2a /262 dr () dy
<6 ulla | (2 L _
=0l [(L‘) /2 v n5+/2t yly —t)*

2\%* ¢ © g
< 6% - ||U||a [<t> ln46+ln5+/ yl-|:—g2a]

2 1
< 5% a|— +Inb+ —]|. 14
fulla |25+ 5+ 5 (1)
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Case 4. t € [200,5], § < 1/4. In this case,

(2.2) [10/8]+1 L ks a
J37(t) < %5 |(k+1/2)0 — 7| - ||lu|odT
> 1 /(kz+1)5 . -
’ ks - Nl adr
k=[1%/:5]+2 kd Jis t—(k+1/2)0 t— ][ o
[10/6]+1

1 /6\° > 1 5/2
< X w(5) otar Y 8B sl

k=3 k=[10/5]+2
[10/6]+1 ]

Z /0/533 dx —t)?

<5 |Jul lnm_|_/oo _ dz
=0 ST s w6z — 5)2a

< 6% - [lulla {

10 1
< 6% o |llIn— 4+ —|. 15
< 0% fulla 10 + 5 | (15)
Case 5. t > 5, 6 < 1/4. In this case, similar to Case 3, we have
[t/26]-2 (k+1)8 a
(2,2) < i 1 _ 1 ‘ d
Tyt < kz_?) 56 Jis t—(k+1/2)5 t— lulladr
[2¢/4] (k+1)8
s Y [ 128l e
k=[t/26]-1 ko
1 (k+1)5 1 1 [e%
+ Z / - Nulladr
vy ké Jis t—(k+1/2)0 t—
2\ ¢ 1
< 5. z _
< 0% - |l [<t> ln45—|—1n5+2
2 1 1
< 0% ul|o [ +1n@—|—ln5+2 } (16)

It follows from (12), (13), (14), (15) and (16) that for any 6 > 0

T (1) < uly - 6 [ln(eJr 1/8) + 22] . (17)
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Now (3) follows from (4), (5), (6), (7), (8), (11) and (17). This completes the

proof of the theorem. «
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