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Abstract

In this paper, we give an analogue of Wiltons product formula for Dirichlet series that
satisfy Heckes functional equation. We apply our results to obtain identities for Hecke
series, L-functions associated to modular forms, Ramanujans L-function, Epstein zeta
functions, Dedekind zeta functions of imaginary quadratic fields and Dirichlet L-functions.
A 4-term product identity for Riemann zeta function is also given.
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1. Introduction

The Riemann zeta function is defined as
<01
C)=2 -  (Me(s)=0>1)
n=1
and has an analytic continuation to entire complex plane except s = 1 where it has a
simple pole. It satisfies the remarkable functional equation

20 (2)(s) = r1=0/2p (2221 - ) (1.1)

due to Riemann. Here I" denotes the well-known gamma function. Approximate functional
equations are fundamental objects for studying the behavior of zeta functions near the
critical strip, such as obtaining mean value theorems. Approximate functional equations
were obtained by Hardy and Littlewood in [12] for ¢(s) and ((s)?. Wilton [16] investigated
the approximate functional for the product of two zeta functions. His method relies on
the following theorem which is now known as Wilton’s formula [3].
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Theorem 1.1. Let u,v € C such that Re(u),Re(v) > —1, Re(u+v) > 0, u,v # 1 and
u+v # 2. Then we have

C(u)C(v) — ( ! + ! > C(u+v—1)=202n)"! i Jl,u,v(n)n“_lu/oo 4 Lsintdt

u—1 v—1 el 2mn

& 00
+2(2m)ot Z al,u,v(n)n”_lv/ t~Lsin tdt,
n=1 2

where o(n) = g, d°.

An analogue of Wiltons formula for Dedekind zeta functions and applications were dis-
cussed in [4-6] and references therein.

An analytic function defined on the complex upper half-plane H is said to be a modular
form of order k € 7Z if it has a Fourier expansion of form f(7) = Y0, a,e*™"" and

satisfies f (%}:3) = (et 4+ d)* f(7) whenever (2%) € SLy(Z) [2]. L-functions associated

with modular forms are of great importance. Hecke’s correspondence theorem [8] connects
functions satisfying a modular relation with L-functions’ functional equations as follows.

Theorem 1.2. Let A > 0, k € R and vy € C. Furthermore, let {ay,} and {5,} be sequences
of complex numbers such that oy, B, = O(n®) for some ¢ > 0. Define for o > c+1

p(s) =Y amn™  and  P(s)=) Bun°
n=1 n=1

and

o) = () Teets  and v = () @0

For t € H, let
fa(T) — Z an€2m'n7'/)\ and f,B(T) _ Z IBn€27rim—//\'
n=0 n=0

Then the following two statements are equivalent.

(1) falr) =~ (r/D)7" fa(=1/7).
(2) The functions

a  7Po Bo Qg
P(s) + — and U(s)+ —+ ——
()+s+k—s ()+s+’y(k—s)
have an analytic continuation to the entire compler plane that are entire and
bounded in every vertical strip. Moreover,

D(s) =V (k —s).

If v = ¢ and ¢ satisfies one of the conditions in Theorem 1.2, then ¢ is said to be
a Hecke series of Hecke signature (A, k,7). A Hecke series not identical to zero has an
automorphy factor of v = +1. When k£ > 4 is an even natural number, Hecke series of
signature (1, k, (—1)¥/2) correspond to the modular forms of weight k.

Approximate functional equations for Hecke series were investigated by Apostol in [1]
and for more general classes of Dirichlet series in [9, 14].

The Meijer G function [7] is defined as the Mellin-Barnes integral

Gm,n( at,...,ap Z) = 1/ gnzl F(b] 78) ?:1 F(l Y +S) z°ds (12)
pa \ by, b, 210 Jp T1 e DL = bj 4+ 8) [T Da; —5)”
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where m, n, p, g are non-negative integers such that m < ¢,n < pwith z,a1,...a,,b1,...b4 €
C and the poles of the functions I'(b; — s) and I'(1 — ax + s) do not coincide for any
j=1,...,mand k = 1,...,n. Here L is a line that goes from —ioco to ico. For the

integral in (1.2) to converge it suffices if p+¢q < 2(m+n) and |argz| <7 (m +n— %).
The integral also converges for |argz| =7 (m +n— m) if
P

(¢ —p) <§Re(s) ;) > 1+Z§Re Z e(ay).

One special case we need is
1,0 __atb 1/2
G0’2 ( a:b Z) =2z 2 Ja_b <22 / )

where J,(2) is the Bessel function of first kind and order p, given by

S (-1)" "
Jp(2) = z:: Fn+1)I'(n+p+1) <2> '

We state our main result as follows.

Theorem 1.3. Let ¢(s),1(s), (A, k,v) and ¢ satisfy the conditions and one of the equiva-
lent statements of Theorem 1.2. Then, for Re(u),Re(v) > max(c+1,k) and u,v # k+1,
we have

Resp(k Resy(k
o(u)y(v) = ﬁw(u +v—k)+ 7()<p(u +v—k)
u—k v—k
27T’y ErL Dokor 4/t
Z%kuv 2 /0t2 Jm( \ )dt (1.3)
_ 1,
_ Ql oo v(n)n¥/ t%_ka_l Amy/nt gt
)\7 n=1 0 /\
where
Oa,z(n) = Zadan/ddz and 03.:( Zﬁdﬁn/dd

dln dln

The residues of ¢ and 1 at s = k can be easily computed by Theorem 1.2 and are given
by

Res (k) = (T)k lj(io) and Res(k) = (QI)k 7%(0]4:)'

We remark that by analytic continuation, equation (1.3) may be valid for larger domains
of u and v. We also note that equation (1.3) is highly suitable for computing special values

of ¢ and 1.

2. Preliminaries

Our method is based on a special case of Riesz summation, a generalization of Perron’s
formula, and is similar to that of [3,6]. We refer the reader to [13] for a discussion of
the general theory of Dirichlet series and Riesz summation. Let ¢(s) = > o2, apn™® for
o> o0, and Y(s) = Y02 fpn~?® for o > oy be Dirichlet series that can be meromorphi-
cally continued to the complex plane and satisfy suitable decaying conditions. Define the
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integral operator

1 a+ico xw-l-l
7, (X)) = — —w)———=d
o (P (w)a) = g [t wpil —w)
where Re(u) > o, +a, Re(v) > oy +a and x is a real variable. This operator corresponds
to a special case of the general Perron’s formula. The conditions of meromorphicity and
growth are assured by Theorem 1.2 and o, = 0, = c+1 in our case. We now use Perron’s
formula to obtain
1 a-+100 warl
F cx) = — —w)—————d
(el vy = g [l wpe( — w)

w1 00 00

1 a+ico (7% 6m
- d
21 /a_ioo w(w —+ 1) ngl nu+w TrLZZl mv—w w

Z Z ay, T /a—I—ioo <n>w dw (2.1)
nY 270 Jo—ico \mz w(w + 1)
e
—Z v+1 — (mz —n),
n<max n

where Zng indicates that the last term is to be halved when z is an integer. Here the
interchange of integration and summations are justified by the absolute convergence. In a
similar manner, we have

= O / 5m

Fa (¢(U)a (,O(U), (L‘) - Z nutl my (’I’Ll’ - m) : (22)

n=1 m<nz

Our main ingredient is a Perron-like formula for ¢(u)y(v), which has been derived for
special cases in [3, 6].

Lemma 2.1. Let a > 0, Re(u) > o, + a and Re(v) > oy, + a. Then, the following holds:

ST (), U(0): 1) + 5T (6(0), () 1) = () (o).

Proof. Differentiating equation (2.1) with respect to x and putting x = 1, we obtain

0 ! Bm Qn
27,
e (v = 3
and similarly
9 — ' Bm o
——Ja ) 1) = — T
7 (60 ) = 32 5T
Adding these together we have
0 0 = / ﬁm (679 = / Bm Qn
a..va ) ; a Ya y ; 1) = _ [Rshinted
7 (P (1) + o Ta Wlo)p(wi ) = 30 30 TET 4+ 3 3
_ i i Brm Qn
m=1n=1 m¥ n*
= p(u)i(v),
where we have used the so called Nakajima disection Y300_; 300 1 = 00 37 o + 302 Zm<n

[15]. This completes the proof.

We need the following lemma.
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Lemma 2.2. For Re(z) > c+ 1 —Re(u),c+ 1+ Re(v) — k, we have

>, Oa,k—u—v\T
ou+2)plk—v+2) = an%_v()

n=1
Furthermore, for Re(z) > ¢+ 1 —Re(v),c+ 1 4+ Re(u) — k, we have
v+ 2)p(k —u+z) = ZM.

z+k—u
n=1 n

Proof. By the condition on Re(z), both of the series p(u + z) and ¢(k — v + z) converge
absolutely. Thus we get

cp(u—{—z) _U+Z Zz du+zmk v+z

d=1m=1

- Z Z du+z mk 'U+z

n=1dm=n

= Z z+k v Zada”/dd

din

S)
. Oa,k—u—v (n)
- Z nFtk—v "

n=1

The proof for v is completely analogous. This completes the proof. O

3. Proof of Theorem 1.3
Take some 1 # a > 0 such that
a>max(c+1—Re(u),c+1—Re(v),c+ 14+ Re(u) — k,c+ 1+ Re(v) — k).
By the assumptions of Theorem 1.3, we have

o(s) =~ (T)ZH F(ﬁ(;s)

Applying the above functional equation in the definition of F_,, we get

Yk~ 5).

—a+ioco $w+1
Tl o) = oo [ et - w)—du

270 J_g—ioo w(w + 1)
—a+ioco 2ut2w—k w1
0 2 Lk —u=w) P
270 ) yiso ( A ) I'(u+w) Yo —wlplk —u w)w(w + 1)dw
aico 2u—2:—k 1—2
7 2m Tk —u+2) B x
27 J i ( A ) D(u-—2) Yo+ 2)pk —utz) z2(z—1) az,
(3.1)

where we changed the variables z = —w. Since a = Re(z) > c+1—Re(v), c+1+Re(u) —k,
we can substitute Lemma 2.2 for 1(v + 2)¢¥(k —u + 2z) in (3.1) to obtain

a+ioco T\ 2u—2z—Fk a4z 2=z < -
Foalow),9(v)io) = l/ ) (2)\) 2 = 2(z —1) > £k ( )dz.
“ n=1

270 Ja—ico I'(u—2) nAth-u

Since f, = O(n°), we easily get ogs(n) = O (ncame(s) (n)) =0 (n”%(s)). From this

estimate, we have that g k—,—y(n)/n* =% = O (nC*“*%(“U which is O (n=17¢) for some
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€ > 0 by the condition on a. Therefore the interchange of orders of operators are justified
by the absolute convergence. Interchanging the orders of integral and summation yields

T (ot w0y 0) = (5 )M > oal) L o (Afrn) e e

n=1 —1i00

Differentiating with respect to x, we obtain

0 2 2u—k 00 e 1 a+1i00 AQ z Tk — .
S atotistons) = (5) S Bt LT (Y T 9,

— 2mi Jy oo \ 4720 Nu—2) =z
(3.2)
Now we consider the integrals
1 gatico [ A2 \N*D(k—u+z)a? 02 1+u—klu| A
I = — d — G ) Ly
n(®) 271 Ja—ioo (477272) Nu—2) =z & 3,1 0 4m2ng
(3.3)
It is obvious by equation (3.2) that
0 2m\ 2R & 05k uu(n)
g7 e v == (T X P ) (34)
n—=
Differentiating equation (3.3) and changing the variables s = —z, we have

—a+ioco 2 s g —
') = 1 / (47;\;1:):) Ik—u s)ds

2T ) —a—ico I(u+s)

. —lGLO ) 47T2nx
T 92 k—u,l—u A2

ktl_
1 (4x%nz) 2 4m/nx
=—= Jk—1 .

z A2 A

Integrating this result from 0 to z yields

I(z) = — (;) n%—U/O tkzl_“Jk_1< LALIAPA (3.5)

Combining equations (3.4) and (3.5), we get

7o (P02 = S o' [Ty (477@) "
Similarly,

0 o1 X Y R
%?—a (QZJ(U),QO(U),%) - Enz::laa,k—u—v(n)n 2 /O t2 Jk—l ( \

Finally this implies

T (1) + %?*“ W), olu)il) = %TW > ok u(m)n T /0 R (MM) dt

2

o A
o & T dm/nt

— ak—u—v 2 t72 TV dt.
(3.6)

Take some b > 0 such that
b < max (Re(u) — ¢ — 1,Re(v) — ¢ — 1, Re(u) — k, Re(v) — k).
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Consider the square S with vertices —a —iT',b—it, b+ i1, —a+1it, where T is a sufficiently
large real number. Let the function f be defined as
l,w+1

yT) = + W)~
i) = o(u-+ w)(o - w) s
In the interior of S, f(w;x) has poles at the points w = 0, k — u and possibly at w = —1.
We now integrate f(w;z) on the square S. Using Cauchy’s residue theorem and taking

T — oo, we obtain

Fp (p(u), P(v);2) = Fa (p(u), P(v);2) + 20(w)(v) = datp(u — 1)p(v + 1)
xl—&—k—u

+ W k—u) Res p(k)Y(u+v — k),

here 6, equals 1 if @ > 1 and 0 otherwise. Differentiating with respect to x and putting
x =1 yields

0 0 _ Res (k)
20 (o) 0(0): 1) = T (o), 0(0): 1) + (o) + Py 4y ),
Similarly,
0 0 _ Res (k)
5,00 (W), e(u)i1) = - Fa (V(v), p(u);1) + () (v) + —— =p(u +v k).
Adding these equations together and using Lemma 2.1, we have
Resp(k Resy(k
() = Sy gy 4 B
0 0 '
(570 (60, V1) + 5T (D)) 1))
Now substituting equation (3.6) into equation (3.7), we get
_ Resy(k) B Res (k) B
i) = Ay gy + RSy
2Ty 1k [l oEo1 4my/nt
- T;aﬁ,k_u_v(nmlf /0 ET T ( ”ﬁ) dt
[o¢] _ 1 _
- 2£ Zaa,kfufv(n)n%/ t%ivjkfl 47T\/H dt.
)\ry n=1 0 A
This completes the proof. O

4. Applications to various L-Functions

In this section we give a few corollaries of the Theorem 1.3. Namely, we discuss applica-
tions to Hecke series, L-functions associated with modular forms, Ramanujans L-function,
Epstein zeta functions, Dedekind zeta functions of imaginary quadratic fields, Dirichlet
L-functions and the Riemann zeta function. Our first obvious corollary is obtained by
taking u = v.

Corollary 4.1. For Re(u) > max(c+ 1,k), and u # k + 1 we have
Res ¢(k) Res (k)

(u)h(u) = ﬁﬂ)(?u —k)+ ﬁ%@u —k)
m

> . 4 t
Y opuz(mn T / t’?—“J“( ”f) dt
n=1 0

27 & k(1o 47/
_r Zaa,k—%(n)n%/ t%_“!]k_l ( 7r)\nt> dt.
0
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4.1. Hecke series

Let ¢ be a Hecke series of signature (A, k,y) where v = £1. Then we have the following.
Proposition 4.2. For Re(u), Re(v) > max(c+ 1,k), and u,v # k + 1, we have

plu)p(v) = Res p(k) (- + ) plu+ v =)

u—k
27y o & 1ok Amy/nt
2y k1 ok dmy/nt
2 ;aa,kw(n)nlf [ ( ”Aﬁ ) n
Furthermore, for Re(u) > max(c+ 1,k), and u # k + 1, we have
2R k 4 > —k [T ke 4 t
SD(U)2 = %()90(2’“ - k) - ﬂ Z Uoc,k—?u(n)n% / t%_qu—l W\/TT dt.
u—k A = 0 A

Here we trivially have

Res (k) = (27T)k Jao

4.2. L-Functions associated to modular forms

Let k > 4 be an even integer and ¢ be a Hecke series of signature (1, k, (—l)k/g). Then

@ is the L-function associated with f, which is a modular form of weight k. We note that
if fq is a cusp form (if ap = 0) then ¢ = k and ¢ = 2k — 1 if f, is not a cusp form [2].
Thus we have the following.

Proposition 4.3. If f, is a cusp form, then for Re(u), Re(v) > k + 1, we have

(o] _ 1 B
p(u)p(v) = (~1)H220 3" g iy (n)n T / EE T (4ot dt
0

n=1
o0 _ 1 _
+ (—1)"+F/ 297 Z aa,k_u_v(n)n% / t%_”Jk_l (477\/%) dt.
n=1 0
Furthermore, for Re(u) > k + 1, we have
2 1+k/2 - ik ftoko1
p(u)? = (~1)" 241 3" 04 g gu(n)n 7 / 7 M (4rv/nt) dt.
n=1 0
Proposition 4.4. If f, is not a cusp form, then for Re(u), Re(v) > 2k, we have

mi)Fa
plwpo) = S (= el o—h)

v —

(o] _ 1 -~
+ (—1)1+k/227r Z ka_u_v(n)n% / t%_“Jk_l (477\/H> dt
n=1 0

o _ 1 _
+ (—1)"+F/ 297 Z aa,k_u_v(n)n% / t%_”Jk_l (477\/ nt) dt.
0

n=1
Furthermore, for Re(u) > 2k, we have

s 2(2mi)ka
P = D —Ok)

oo 1
©(2u — k) + (—1)1F/ 247 Z Ja,k,gu(n)n# / A (mﬁﬁ) dt.

n=1 0
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As an example of a cusp form we consider the modular discriminant A, defined on 7 € H
by

A(r) = (27) 12627 lo—o[ (1 _ 627rin7')24

n=1

A is a modular form of weight 12 and has the Fourier expansion
0 .
A(T) = (2m)? Z 7(n)e*mn,
n=1

where 7(n) is the Ramanujan’s 7 function. The associated Ramanujan’s L-function [8] is
defined as

(o >13/2).

n

LT(S) _ Z T(CL)
n=1

L; has the Hecke signature (1,12,1) and can be analytically continued to an entire func-
tion. We get the following corollary of the Proposition 4.3.

Corollary 4.5. For Re(u),Re(v) > 13, we have

o0 1
Ly (u)Lr(v) = — 27 Z Ur,l%u—v(”)”_uﬂ/o /2 gy (47T\/7E) dt
n=1

o0 1
— 27 Z 0'7—’127u71;(n)n_11/2/ H1/2=v 5, (4#\/%) dt.
n=1 0
Furthermore, for Re(u) > 13, we have

& 1
LT(U)2 = —Ar Z 07,12_2u(n)n_11/2/0 t11/2_uJ11 (47T\/7E) dt.
n=1

As an example of a non-cusp form, we give the normalized Eisenstein series of order k
defined on 7 € H by

2k - 2minT
Er(r)=1- By Z op—1(n)e ,
n=1

where k > 4 is an even integer and By is the kth Bernoulli number. Fj is a modular form
of weight k. The associated L-function is given by

2k X op_1(n) 2k
()=~ 2 = B kD) (0>
and has the Hecke signature (1, k, (—1)k/ 2). Using the well-known formula By = — 2(’;751,()?,

we obtain the following 4 term product identity by Proposition 4.4.

Corollary 4.6. For Re(u),Re(v) > 2k, we have

1 +
u—k v—k

Cu)(v)C(u—k+1)¢(v—k+1) =((k) ( ) Clutv—k)C(u+v—2k+1)

e3¢} 1
+ (=)oY o (n T / H5 g (4t ) dt
0

n=1

%) 1
(D)2 S o ()0 / ¢y (/) de

n=1
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where o, (n) = X g, 0k—1(n)ok—1(n/d)d*. Furthermore, for Re(u) > 2k, we have

_ 2C£klig(2u CB)C(2u— 2k + 1)

o0 B 1 -~
DS o ' E [ (an i) dt

n=1 0

Cu)*¢(u—k+1)

4.3. Epstein zeta functions

Let @Q be a positive definite quadratic form of m variables, real coefficients, discriminant
D > 0 and inverse Q. Then the Epstein zeta function [8] is defined as

1
Z(5:Q) = Y
(S)Q) nezm Q(n)s’
n#0

It satisfies the functional equation [11]
7°T(s)Z(s; Q) = D™/ 2gs—m/21 (7; — s) zZ (7; —s; Q_1> .

Thus it may be analytically continued to whole complex plane except s = m/2 where it
has a pole with the residue

(0 >m/2).

m/2
m, _ 12 T
ResZ(Q,Q) D T(m/2)

Assume that @) has integer coefficients, then we get
o~ (1)
Z(S; Q) = Z s

s
n=1 n

where rg(n) is the number of solutions to the equation Q(n) = n. Thus ¢(s) = Z(s;Q),
P(s) = Z(s;Q71) and (A, k,v) = (2,m/2,D*1/2) satisfy the conditions of Theorem 1.2.
Therefore we have the following.
Corollary 4.7. For Re(u),Re(v) > 1+ m/2, we have
m/2 m/21/2
™ ™
Z QY e ——
DU my2)(u— k) 2 U T ROt e — k)

T« 2-m [l m—2_,
- D1/2 ZUQ_l,m/2—u—v(n)n 4 A t 4 Jm/2_1 (27’[’\/75) dt

7TD1/2X:0—QW/2 u—s( / m/g 1(27r\/>)

n=1

Z(w;Q)Z(v; Q™) = Z(u+v -k Q)

where 0@ .(n) = 0y 2(n). Furthermore, for Re(u) > 1+ m/2, we have
/2 am/2pl/2
ZRu—kQ N+ ——
Dl/?F(m/z)(u A O

2-m [l m=2_,
_ D1/2 Z O’Q—l,m/272u(n)n 4 /0 t a2 Jm/2_1 (277@) dt
n=1

> —m 1 m—
— 7TD1/2 Z O'Q’m/Q_Qu(’/’L)’/’L2 4 / tTQ_qu/Q_l (27[‘\/7%) dt,
n=1 0

Z(w;Q)Z(w; Q™) =

Z(2u — k; Q)

We give special attention to the case where Q = Q~!'. Then Z(s;Q) is a Hecke series
of signature (2,m/2,1) and we get the following.
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Corollary 4.8. If Q = Q~, for Re(u), Re(v) > 1+ m/2, we have

72 1 1
Z(u;Q)Z(v; Q) = (m/2) (u_ e k) Z(u+v—kQ)
0 2—m 1 m—2
— T Z JQ,m/Q—u—U (n)nT /O tT_qu/Q—l <2Fm) dt
n=1

i 2—m 1 m—2
7Y 0Gm/z () T / A (27r\/nt> dt,
n=1 0

Furthermore, for Re(u) > 1+ m/2, we have

27T'm/2 > 2—m 1 m—2
Z(uw:QY¥ = ——— 7(2u—k; -2 _ t T a1 |27V nt ) dt
(U7Q) F(m/?)(u _ k) ( U 7Q) ﬂ-nz::lo-Q,m/Q 2u(n)n 4 A 4 m/2—1 ( T™Wn )
We note that the positive definite quadratic form Q,,(n1,...,nmy) = n% + ...+ n?n

satisfies the conditions of Corollary 4.8.

4.4. Dedekind zeta functions

Wilton’s formula for Dedekind zeta functions of both real and imaginary quadratic rings
was investigated in [4-6] and was applied to calculation of special values of Dedekind zeta
functions. Unfortunately, Dedekind zeta function is a Hecke series only when K is an
imaginary quadratic field. We see that special cases of Theorem 1.3 indeed reduce to the
results in literature.

Let K be an imaginary quadratic field with the ring of integers O, discriminant dg,
class number hx and number of roots of unity in K wg. Let N(a) =[O : a] denote the
norm of an ideal a in Ox. We define the Dedekind zeta function [6] by

Cr(s) = Z N(la)s _ Z v (n) (o0 >1),

s
n=1 n

where the summation runs through the non-zero ideals of Ox and vg(n) denotes the
number of ideals in Ok with norm n. Then by the well-known functional equation of the

Dedekind zeta function, (i is a Hecke series of signature (|dK]1/ 21, 1) [8]. Regulator of

an imaginary quadratic field is equal to 1. Therefore, the analytic class number formula
reads

2mh

/2

Res (ke (1) = wrldr 72

Thus, we have the following.

Corollary 4.9. For Re(u),Re(v) > 1, and u,v # 2, we have

_ 2mhg 1 1
Ck (u)Ck (v) = o ldx 7 (u — o= k) Cr(u+v—1)

P 1
- —u—v t™Jy | 4 dt
PPRE ZaK,l (n)/o 0 ( | ’dk|>
1
u—v "o | 4 dt,
WWQZM n/o 0<ﬂ1/’dk|>

where ok ,(n) = oy »(n). Furthermore, for ERe(u) > 1, and u # 2, we have

Amhy L nt
w)? = 2u — 1 ul / t™%Jo | 47,/ — | dt.
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Corollary 4.9 is just a mere rearrangement of the results given in [4—6], with less optimal
conditions on u, v.

4.5. Dirichlet L-Functions

Let x be a primitive Dirichlet character mod g where ¢ > 1. Let the Dirichlet L-function
of x be defined as

(0 >1).

_ i x(n)
n=1 n’
First assume that x is an even character. The functional equation for L(s, x) [10] is given
as follows,

—S S S TX S— S
m /2(1 /2F<2>L(S,X): (1/2)7( b/ (1 )/2F( 2 )L(l_s X):

where 7(x) = 37 _; x(n) exp(2min/q) is the Gauss sum associated to x. This shows that
©(s) = L(2s,x), ¥(s) = L(2s,X) and (\, k,y) = <2q, z, ;8‘2)) satisfy the conditions of
Theorem 1.2. Since L-function of a non-principal character is entire, we get the following.

Corollary 4.10. If x is an even character, for Re(u),Re(v) > 1, and u,v # 3, we have

el 1
L2000 = = T S s [ (2

0

L. 2/t
1/2 ZX )01 o )1/2/0151/4 /2J1/2< p )dt.

Furthermore, for Re(u) > 1 and u # 3, we have

1/ 27771\[
B0 = 55t [ ()

1
1/2 Z X Ul 2u 1/2/ t_1/4_u/2,]71/2 (271'7’2\/%) dt
T 0 ,

We note that the above formula is particularly useful when y is a real character and
()

©(s) = L(2s, x) is a Hecke series of signature (2q, %, m) as a consequence. Furthermore,

the Bessel function of order —1/2 may be computed explicitly as

2
J_1/2(2) =/ — cos 2.

Now let x be an odd character. Similarly, the functional equation for L(s,x) [10] is
given by

7 (D2 (s+1)/2p (3 + 1) L(s,x) = T(X) r(8=2)/24(2=5)/2 (2 _ S) L(1-s,%).
9 iql/? 2

This shows that ¢(s) = L(2s — 1,x), ¥(s) = L(2s — 1,X) and (A k,7vy) = <2q, 5 .(ff%)
satisfy the conditions of Theorem 1.2.

Corollary 4.11. If x is an odd character, for Re(u),Re(v) > 2, we have

i ( _ L 2mny/t
L(fuﬂX)L(va = 3/2 ZX( Ul —u— v( ) 3/2/0 t 1/4 /2J1/2< q )dt

[e.9]

i ! 2mny/t
S Vi Z X(n)al—u—v(n)n_?)/Q/o t—1/4—v/2J1/2 < ﬂqf) "

q*21(x) =
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Furthermore, for Re(u) > 2, we have

. w 1
L)L) = 20 S o aumn V2 [, (2”;”) it
— 0

q 1
s 1 2mn/t
ZX(”)Ul—zu(n)nfg/Q/o 751/4u/2<]1/2< q\[> dt.
n=1

Here again the above formula is particularly useful when y is a real character and

¢(s) = L(2s—1, x) is a Hecke series of signature (2q, 3, Zq?f%) as a consequence. Similarly,

n

o
q'?7(x)

the Bessel function of order 1/2 may be computed explicitly as

[2 .
Jij2(2) = — sinz.

4.6. Riemann zeta function

By the equation (1.1), it is evident that ¢(s) = ((2s) is a Hecke series of signature
(2,1/2,1). We now give a slightly different version of Wilton’s formula.

Corollary 4.12. For Re(u),Re(v) > 1, and u,v # 3, we have

1 > 1
+ > C((u+v—1)=—-7 Z Ul_u_v(n)n1/2/0 t_1/4_“/2J_1/2 (27‘("0\/7?) dt
n=1

u—1 v-—1

o) -

o0 1
-7 Z alfu,v(n)nl/g/o t_1/4_”/2J_1/2 (2ﬂn\/f) dt.
n=1
Furthermore, for Re(u) > 1 and u # 3, we have

00 1
C2u—1)= 21> o1ou(n)n'/? /O VAT gy (2mnE) dt.
n=1

()~ —
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