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Article Info
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Abstract

In this study, an iterative approximation is proposed by using the reproducing kernel method
(RKM) for the nonlinear advection equation. To apply the iterative RKM, specific reproduc-
ing kernel spaces are defined and their kernel functions are presented. The proposed method
requires homogenising the initial or boundary conditions of the problem under considera-
tion. After homogenising the initial condition of the advection equation, a linear operator
selection is made, and then the approximate solution is constructed using orthonormal basis
functions in serial form. Convergence analysis of the approximate solution is demonstrated
through the lemma and theorem. Numerical outcomes are provided in the form of graphics
and tables to show the efficiency and accuracy of the presented method.

1. Introduction

In this paper, an iterative reproducing kernel approximation is presented for obtaining a serial solution of the nonlinear advection equation as
follows [1]:

yκ (ζ ,κ)+ y(ζ ,κ)yζ (ζ ,κ) = f (ζ ,κ), (1.1)

0≤ ζ ≤ 1,0≤ κ ≤ 1,

y(ζ ,0) = h(ζ ). (1.2)

Here, f (ζ ,κ) is a continuous function.

In environmental sciences, advection is transporting chemical or biological material by bulk motion. The advection equation has significant
importance in meteorology and oceanography [2]. Various analytical and numerical methods have been proposed in the literature to obtain
solutions to the advection equation. For instance, Khan and Wu proposed the homotopy perturbation transform method for the advection
equation in [3], the Fourier series method is applied by Sanugi and Evans in [4], Wazwaz employed the Adomian decomposition method for
the advection equation in [5], the finite difference method is presented by Molenkamp in [6], the Laplace decomposition method is employed
in [7]. Nisar et al. [8] suggested a numerical technique for the nonlinear advection equation using the Padé approximation. The explicit finite
difference scheme is used to obtain a numerical solution of the advection diffusion equation by Ara et al. [9]. Cosgun and Sari [10] employed
the reversed fixed point iteration for advection-diffusion processes. The homotopy analaysis method is implemented for the fractional
advection equation by Alkan [11]. Mirza et al. [12] proposed an analytical solution to the fractional advection diffusion equation. Mirzaee et
al. [13] suggested the finite difference and spline approximation for stochastic the advection-diffusion equation with fractional order.
The origin of the reproducing kernel method goes back to Zaremba’s researches at the beginning of last century. He focused on boundary
value problems with Dirichlet conditions in [14]. This concept is improved as theoretically in [15] and [16]. Also, some specific reproducing
kernel spaces that have trigonometric and polynomial kernels are presented in [17]. The reproducing kernel method is applied to many
model problems. For instance, Bagley-Torvik and Painlevé equations [18], fractional order systems [19], Fredholm integro-differential
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equations [20], integro-differential equations with Fredholm operator [21], eighth order boundary value problems [22], fractional Riccati
differential equations [23], sine-Gordon equation [24], nonlinear system of PDEs [25], fractional advection-dispersion equation [26], time
fractional telegraph equation [27], nonlinear hyperbolic telegraph equation [28], reaction-diffusion equations [29], time fractional partial
integro-differential equations [30], class of fractional partial differential equation [31], time fractional Tricomi and Keldysh equations [32],
and so on [33]-[38].
This paper is arranged as follows: Section 2 presents some specific reproducing kernel spaces and basic definitions. Section 3 provides a
detailed explanation of the linear operator selection and the construction of the approximate solution for the nonlinear advection equation. In
Section 4, a theorem and lemma show the convergence of the constructed approximate solution. In Section 5, the proposed method is tested
on two equations, and the numerical outcomes are presented with tables and graphs to demonstrate the effectiveness of the method. Section 6
gives a brief conclusion.

Symbols and nomenclature
Notation Meaning
κ Time variable
ζ Space variable
W (2,2)

2 Special Hilbert space
∆ [0,1]× [0,1]
T(t,x)(ζ ,κ) Reproducing kernel function
AC Absolutely continuous
L Linear operator
CC Completely continuous
ω(ζ ,κ) Exact solution
ωn(ζ ,κ) Approximate solution
C Complex numbers
L2[0,1] Squared integrable Lebesgue space in [0,1]

2. Preliminaries

This section introduces the special one- and two-variable Hilbert spaces used in the construction of the approximate solution and the
reproducing kernel functions of these spaces.

Definition 2.1. Let Θ 6= /0 an abstract set, H be a Hilbert space and B is defined as B : Θ×Θ→ C.

i.B(.,r) ∈ H, ∀r ∈Θ,

ii.〈µ(.),B(.,r)〉= µ(r) ∀r ∈Θ, ∀µ ∈ H.

If the above conditions are satisfied, then B and H are called reproducing kernel function and reproducing kernel Hilbert space, respectively.

Before the construction of the representation solution, some specific reproducing kernel spaces and their kernel functions will be given to
solve the advection equation. The procedure for obtaining the reproducing kernels can be found in [36].

W1
2[0,1] Hilbert space

W 1
2 [0,1] = {τ(ζ ) | τ is AC function, τ

′ ∈ L2[0,1]}.

The inner product, norm and kernel function for the space W 1
2 [0, 1] are given as follows.

1. The inner product:

〈τ (ζ ) ,ω (ζ )〉W 1
2
= τ (0)ω (0)+

1∫
0

τ
′ (ζ )ω

′ (ζ )dζ .

2. The norm:

‖τ‖2
W 1

2
= 〈τ,τ〉W 1

2
, τ,ω ∈W 1

2 [0, 1] .

3. The kernel function:

R{1}t (ζ ) =

{
1+ζ , ζ ≤ t,
1+ t, t > ζ .

W2
2[0,1] Hilbert space

W 2
2 [0, 1] = {τ(ζ )|τ, τ

′are AC functions,τ ′′ ∈ L2[0,1]}

The inner product, norm and kernel function for the space W 2
2 [0, 1] are given as follows.

1. The inner product:

〈τ (ζ ) ,ω (ζ )〉W 2
2
= τ (0)ω (0)+ τ

′ (0)ω
′ (0)+

1∫
0

τ
′′ (ζ )ω

′′ (ζ )dζ .
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2. The norm:

‖τ‖2
W 2

2
= 〈τ,τ〉W 2

2
, ω,τ ∈W 2

2 [0, 1] .

3. The kernel function:

R{2}t (ζ ) =

{
1+ζ t + 1

2 tζ 2− 1
6 ζ 3, ζ ≤ t,

1− 1
6 t3 + 1

2 ζ t2 + tζ , ζ > t.

In a similar manner to the above, namely under same inner product and norm, the following closed subspace of W 2
2 [0, 1] can be defined as

W 2
2 [0,1] = {τ(ζ )|τ,τ

′
are AC functions,τ

′′
∈ L2[0,1],τ(0) = 0},

and its kernel function is

R{2}x (κ) =

{
κx+ 1

2 xκ2− 1
6 κ3, κ ≤ x,

− 1
6 x3 + 1

2 κx2 + xκ, κ > x.

W(2,2)
2 (∆) Hilbert space

Let be ∆ = [0,1]× [0,1]. W (2,2)
2 (∆) should be defined for obtain representation solution of model problem (1.1) subject to initial condition

(1.2).

W (2,2)
2 (∆) = {ω(ζ ,κ)| ∂ 2ω

∂ζ ∂κ
is completely continuous in ∆ ,

∂ 4ω

∂ζ 2∂κ2 ∈ L2(∆),ω(ζ ,0) = 0}.

The inner product and norm for the space W (2,2)
2 (∆) are given as follows.

1. The inner product :

〈ω(ζ ,κ),u(ζ ,κ)〉
W (2,2)

2
=

1

∑
i=0

1∫
0

[
∂ 2

∂κ2
∂ i

∂ζ i ω(0,κ)
∂ 2

∂κ2
∂ i

∂ζ i u(0,κ)]dκ +
1

∑
j=0
〈 ∂ j

∂κ j ω(ζ ,0),
∂ j

∂κ j u(ζ ,0)〉W 2
2

+

1∫
0

1∫
0

[
∂ 2

∂ζ 2
∂ 2

∂κ2 ω(ζ ,κ)
∂ 2

∂ζ 2
∂ 2

∂κ2 u(ζ ,κ)]dζ dκ, ω,u ∈W (2,2)
2 (∆).

2. The norm:

‖ω‖2
W (2,2)

2
= 〈ω,ω〉

W (2,2)
2

, ω ∈W (2,2)
2 (∆).

The following basic theorem of reproducing kernel theory shows that the kernel function of W (2,2)
2 (∆) is derived as multiplying of kernel

functions of W 2
2 [0,1] for ζ and κ variables.

Theorem 2.2. [36] Let T(t,x)(ζ ,κ) be a kernel function of W (2,2)
2 (∆). So, it can be written that

T(t,x)(ζ ,κ) = R{2}t (ζ )R{2}x (κ),

where R{2}t (ζ ) and R{2}x (κ) are reproducing kernel functions of W 2
2 [0,1]. For any ω(ζ ,κ) ∈W (2,2)

2 (∆)

ω(t,x) = 〈ω(ζ ,κ),T(t,x)(ζ ,κ)〉W (2,2)
2

and

T(ζ ,κ)(t,x) = T(t,x)(ζ ,κ).

W(1,1)
2 (∆) Hilbert space

W (1,1)
2 (∆) = {ω(ζ ,κ)| ω is CC function in ∆ ,

∂ 2ω

∂ζ ∂κ
∈ L2(∆)}.

The inner product, norm and kernel function for the space W (1,1)
2 (∆) are given as follows.

1. The inner product:

〈ω(ζ ,κ),u(ζ ,κ)〉
W (1,1)

2
=

1∫
0

[
∂

∂κ
ω(0,κ)

∂

∂κ
u(0,κ)]dκ + 〈ω(ζ ,0),u(ζ ,0)〉W 1

2

+

1∫
0

1∫
0

[
∂

∂ζ

∂

∂κ
ω(ζ ,κ)

∂

∂ζ

∂

∂κ
u(ζ ,κ)]dζ dκ, ω,u ∈W (1,1)

2 (∆).

2. The norm:

‖ω‖2
W (1,1)

2
= 〈ω,ω〉

W (1,1)
2

, ω ∈W (1,1)
2 (∆).

3. The kernel function:

T̃(t,x)(ζ ,κ) = R{1}t (ζ )R{1}x (κ).
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3. Iterative Solution for Eqs. (1)-(2) in Space W (2,2)
2 (∆)

This section will explain how to construct an iterative solution for the nonlinear advection equation and provide the necessary theoretical
information. First, the initial condition of Eq. (1.1) is homogenised, and then the linear operator selection is made. After the homogenisation
process, the selection of the linear operator L is as follows:

L : W (2,2)
2 (∆)→W (1,1)

2 (∆),

Lω(ζ ,κ) = ωκ (ζ ,κ)+h(ζ )ωζ (ζ ,κ)+h
′
(ζ )ω(ζ ,κ). (3.1)

The Eq. (3.1) can be expressed as: {
Lω (ζ ,κ) = F(ζ ,κ,ω(ζ ,κ),ωζ (ζ ,κ)), ζ ,κ ∈ [0, 1] ,

ω(ζ ,0) = 0.
(3.2)

Here, F(ζ ,κ,ω(ζ ,κ),ωζ (ζ ,κ)) = f (ζ ,κ)−h
′
(ζ )h(ζ )−ω(ζ ,κ)ωζ (ζ ,κ).

If {(ζi,κi)}∞
i=1 is a countable dense subset in ∆ , then Ψi(ζ ,κ) is defined as:

Ψi(ζ ,κ) = L(t,x)T(t,x)(ζ ,κ)|(t,x)=(ζi,κi)

= { ∂

∂x
T(t,x)(ζ ,κ)+h(t)

∂

∂ t
T(t,x)(ζ ,κ)+h

′
(t)T(t,x)(ζ ,κ)}|(t,x)=(ζi,κi)

=
∂

∂κ
T(ζi,κi)(ζ ,κ)+h(ζi)

∂

∂ t
T(ζi,κi)(ζ ,κ)+h

′
(ζi)T(ζi,κi)(ζ ,κ). (3.3)

The following theorem shows that Ψi(ζ ,κ) is completely continuous and linear operator L is bounded.

Theorem 3.1. Ψi(ζ ,κ) ∈W (2,2)
2 (∆), i = 1,2, ...

Proof. The following conditions should be provide to prove this theorem.
1. ∂ 4Ψi(ζ ,κ)

∂ζ 2∂κ2 ∈ L2(∆)

2. ∂ 2Ψi(ζ ,κ)
∂ζ ∂κ

is completely continuous function
3. Ψi(ζ ,κ) satisfies the initial condition.
One can show that any elements of W (2,2)

2 (∆) satisfies the above conditions 1-3.
Now, from the kernel function property, the following equation can be written

∂
5
tζ 2κ2 T(t,x)(ζ ,κ) = ∂

3
tζ 2 R{2}t (ζ )∂ 2

κ2 R{2}x (κ).

The ∂ 3
tζ 2 R{2}t (ζ ) and ∂ 2

κ2 R{2}x (κ) functions are bounded in [0,1] due to their continuity in [0,1]. Therefore, the following inequality can be
expressed:

|∂ 5
tζ 2κ2 T(t,x)(ζ ,κ)| ≤M1.

The following inequalities can be written by the same way of above:

|∂ 5
xζ 2κ2 T(t,x)(ζ ,κ)| ≤M2,

|∂ 4
ζ 2κ2 T(t,x)(ζ ,κ)| ≤M3.

Here, M1,M2 and M3 are positive constants. From (3.3),

|∂
4Ψi(ζ ,κ)

∂ζ 2∂κ2 | ≤ |M2 +h(ζi)M1 +h
′
(ζi)M3|

≤ M2 + |h(ζi)|M1 + |h
′
(ζi)|M3.

Therefore, ∂ 4Ψi(ζ ,κ)
∂ζ 2∂κ2 ∈ L2(∆). Noting that ∆ is closed, thus, ∂ 2Ψi(ζ ,κ)

∂ζ ∂κ
is completely continuous in ∆ . And also, Ψi(ζ ,κ) satisfies the initial

condition because T(t,x)(ζ ,0) = 0. Thus Ψi(ζ ,κ) ∈W (2,2)
2 (∆).

Theorem 3.2. {Ψi(ζ ,κ)}∞
i=1 is a complete system of W (2,2)

2 (∆), for i = 1,2, ....

Proof. We have

Ψi(ζ ,κ) = (L∗Φi)(ζ ,κ) = 〈(L∗Φi)(t,x),T(ζ ,κ)(t,x)〉W (2,2)
2

= 〈Φi(t,x),L(t,x)T(ζ ,κ)(t,x)〉W (1,1)
2

= L(t,x)T(ζ ,κ)(t,x)|(t,x)=(ζi,κi)

= L(t,x)T(t,x)(ζ ,κ)|(t,x)=(ζi,κi).
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Clearly, Ψi(ζ ,κ) ∈W (2,2)
2 (∆), for each fixed ω(ζ ,κ) ∈W (2,2)

2 (∆), if 〈ω(ζ ,κ),Ψi(ζ ,κ)〉W (2,2)
2

= 0.
Namely,

〈ω(ζ ,κ),(L∗Φi)(ζ ,κ)〉W (2,2)
2

= 〈Lω(ζ ,κ),Φi(ζ ,κ)〉W (1,1)
2

= (Lω)(ζi,κi) = 0, i = 1,2, ... (3.4)

(Lω)(ζ ,κ) = 0 since {(ζi,κi)}∞
i=1 is dense in ∆ . When the inverse operator L−1 is used in Eq.(3.4), it can be clearly seen that ω = 0.

The orthonormal system {Ψi(ζ ,κ)}∞
i=1 can be attained by the Gram-Schmidt orthogonalization of {Ψi(ζ ,κ)}∞

i=1 as

Ψi(ζ ,κ) =
i

∑
k=1

βikΨk(ζ ,κ).

The orthogonalization process is given by formula as follow:

β11 =
1
‖Ψ1‖

, βik =
1

dik
, βi j =−

1
dik

i−1

∑
k= j

cikβk j for j < i,

and also

dik =

√√√√‖Ψi‖2−
i−1

∑
k=1

c2
ik, cik = 〈Ψi,Ψk〉W (2,2)

2
.

Theorem 3.3. Let {(ζi,κi)}∞
i=1 be dense in ∆ , then the iterative solution of Eq. (3.2) is

ω(ζ ,κ) =
∞

∑
i=1

i

∑
k=1

βikF(ζk,κk,ω(ζk,κk),∂ζ ω(ζk,κk))Ψi(ζ ,κ). (3.5)

Proof.{Ψi(ζ ,κ)}∞
i=1 is a complete system of W (2,2)

2 (∆). Therefore, it can be written

ω(ζ ,κ) =
∞

∑
i=1
〈ω(ζ ,κ),Ψi(ζ ,κ〉W (2,2)

2
Ψi(ζ ,κ) =

∞

∑
i=1

i

∑
k=1

βik〈ω(ζ ,κ),Ψk(ζ ,κ)〉W (2,2)
2

Ψi(ζ ,κ)

=
∞

∑
i=1

i

∑
k=1

βik〈ω(ζ ,κ),L∗Φk(ζ ,κ)〉W (2,2)
2

Ψi(ζ ,κ) =
∞

∑
i=1

i

∑
k=1

βik〈Lω(ζ ,κ),Φk(ζ ,κ)〉W (1,1)
2

Ψi(ζ ,κ)

=
∞

∑
i=1

i

∑
k=1

βik〈Lω(ζ ,κ), T̃(ζk ,κk)(ζ ,κ)〉W (1,1)
2

Ψi(ζ ,κ) =
∞

∑
i=1

i

∑
k=1

βikLω(ζk,κk)Ψi(ζ ,κ)

=
∞

∑
i=1

i

∑
k=1

βikF(ζk,κk,ω(ζk,κk),∂ζ ω(ζk,κk))Ψi(ζ ,κ). (3.6)

The proof is completed.
When finite n-terms are taken in Eq.(3.6), the approximate solution ωn(ζ ,κ) is expressed as follows:

ωn(ζ ,κ) =
n

∑
i=1

i

∑
k=1

βikF(ζk,κk,ω(ζk,κk),∂ζ ω(ζk,κk))Ψi(ζ ,κ).

The convergence of approximate solution will be presented in the next section.

4. Convergence Analysis

Here, it will be shown that the iterative approximate solution is uniformly convergent. Taking Ai as:

Ai =
i

∑
k=1

βikF(ζk,κk,ω(ζk,κk),∂ζ ω(ζk,κk)),

then Eq.(3.5) can be written as

(ζ ,κ) =
∞

∑
i=1

AiΨi(ζ ,κ).

Now from the initial conditions of Eq. (3.2), if taking (ζ1,κ1) = 0, ω(ζ1,κ1) can be calculated. When ω0(ζ1,κ1) = ω(ζ1,κ1) is taked, then
the n-term approximation of ω(ζ ,κ) can be given as follow:

ωn(ζ ,κ) =
n

∑
i=1

BiΨi(ζ ,κ), (4.1)

here

Bi =
i

∑
k=1

βikF(ζk,κk,ωk−1(ζk,κk),∂ζ ωk−1(ζk,κk)). (4.2)

Now, the uniform convergence of the approximate solution ωn(ζ ,κ) will be shown. Therefore the following lemma should be given.
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Lemma 4.1. If F(ζ ,κ,ω(ζ ,κ),ωζ (ζ ,κ)) is continuous and ωn→ ω̂ for (ζn,κn)→ (t,x), then

F(ζn,κn,ωn−1(ζn,κn),∂ζ ωn−1(ζn,κn))→ F(t,x, ω̂(t,x),∂ζ ω̂(t,x)).

Proof. Since

|ωn−1(ζn,κn)− ω̂(t,x)| = |ωn−1(ζn,κn)−ωn−1(t,x)+ωn−1(t,x)− ω̂(t,x)|
≤ |ωn−1(ζn,κn)−ωn−1(t,x)|+ |ωn−1(t,x)− ω̂(t,x)|.

By using the reproducing kernel feature, it can be said that

ωn−1(ζn,κn) = 〈ωn−1(ζ ,κ),T(ζn,κn)(ζ ,κ)〉W (2,2)
2

, ωn−1(t,x) = 〈ωn−1(ζ ,κ),T(t,x)(ζ ,κ)〉W (2,2)
2

.

It follows that

|ωn−1(ζn,κn)−ωn−1(t,x)|= |〈ωn−1(ζ ,κ),T(ζn,κn)(ζ ,κ)−T(t,x)(ζ ,κ)〉|.

It is known that there exists a constant M from the convergence of ωn−1(ζ ,κ), such that

‖ωn−1(ζ ,κ)‖W (2,2)
2
≤M‖ω̂(t,x)‖

W (2,2)
2

, as n≥M.

Also, it can be proven that

‖T(ζn,κn)(ζ ,κ)−T(t,x)(ζ ,κ)‖W (2,2)
2
→ 0, for n→ ∞

by using Theorem 2.2. So,

ωn−1(ζn,κn)→ ω̂(t,x), as (ζn,κn)→ (t,x).

Similarly, the following expression can be written

∂ζ ωn−1(ζn,κn)→ ∂ζ ω̂(t,x), as (ζn,κn)→ (t,x).

Therefore,

F(ζn,κn,ωn−1(ζn,κn),∂ζ ωn−1(ζn,κn))→ F(t,x, ω̂(t,x),∂ζ ω̂(t,x)).

So, the proof is completed.

Theorem 4.2. Let {(ζi,κi)}∞
i=1 be dense in ∆ . Assume that ‖ωn‖ is a bounded, and the Eq. (4.1) has a unique solution. Then, ωn(ζ ,κ)→

ω(ζ ,κ) and

ω(ζ ,κ) =
∞

∑
i=1

BiΨi(ζ ,κ).

Proof. It will be shown that the convergence of ωn(ζ ,κ). From the Eq. (4.1), it can be easily seen that

ωn+1(ζ ,κ) = ωn(ζ ,κ)+Bn+1Ψn+1(ζ ,κ).

By using of {Ψi}∞
i=1, the following equation can be written:

‖ωn+1‖2 = ‖ωn‖2 +B2
n+1 =

n+1

∑
i=1

B2
i . (4.3)

Therefore, from Eq. (4.3), it can be seen that ‖ωn+1‖ > ‖ωn‖. By the using boundedness of ‖ωn‖, it can be easily seen that ‖ωn‖ is
convergent. And also there exists a constant c such that

∞

∑
i=1

B2
i = c. (4.4)

So, Eq. (4.4) shows that {Bi}∞
i=1 ∈ l2. If m > n, then

‖ωm−ωn‖2 = ‖ωm−ωm−1 +ωm−1−ωm−2 + · · ·+ωn+1−ωn‖2

= ‖ωm−ωm−1‖2 +‖ωm−1−ωm−2‖2 + · · ·+‖ωn+1−ωn‖2.

On account of

‖ωm−ωm−1‖2 = B2
m,

consequently

‖ωm−ωn‖2 =
m

∑
l=n+1

B2
l → 0, as n→ ∞.
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From the completeness of W (2,2)
2 (∆), it can be expressed that ωn→ ω̂ as n→ ∞. Now, it will be shown that ω̂ is the solution of Eq. (3.2).

Taking limits in Eq. (4.1) we get

ω̂(ζ ,κ) =
∞

∑
i=1

BiΨi(ζ ,κ).

Note that

(Lω̂)(ζ ,κ) =
∞

∑
i=1

BiLΨi(ζ ,κ),

(Lω̂)(ζl ,κl) =
∞

∑
i=1

BiLΨi(ζl ,κl) =
∞

∑
i=1

Bi〈LΨi(ζ ,κ),Φl(ζ ,κ)〉W (1,1)
2

=
∞

∑
i=1

Bi〈Ψi(ζ ,κ),L∗Φl(ζ ,κ)〉W (2,2)
2

=
∞

∑
i=1

Bi〈Ψi(ζ ,κ),Ψl(ζ ,κ)〉W (2,2)
2

.

Therefore,

i

∑
l=1

βil(Lω̂)(ζl ,κl) =
∞

∑
i=1

Bi〈Ψi(ζ ,κ),
i

∑
l=1

βilΨl(ζ ,κ)〉W (2,2)
2

=
∞

∑
i=1

Bi〈Ψi(ζ ,κ),Ψl(ζ ,κ)〉W (2,2)
2

= Bl .

From Eq. (4.2), we have

Lω̂(ζl ,κl) = F(ζl ,κl ,ωl−1(ζl ,κl),∂ζ ωl−1(ζl ,κl)).

Since {(ζi,κi)}∞
i=1 is dense in ∆ , there exists a subsequence {(ζn j ,κn j )}∞

j=1 such that (ζn j ,κn j )→ (t,x), for each (t,x) ∈ ∆ , ( j→ ∞). It can
be expressed that

Lω̂(ζn j ,κn j ) = F(ζn j ,κn j ,ωn j−1(ζn j ,κn j ),∂ζ ωn j−1(ζn j ,κn j )).

Using Lemma 4.1 and the continuity of F , it can be written that

(Lω̂)(t,x) = F(t,x, ω̂(t,x),∂ζ ω̂(t,x)), for j→ ∞. (4.5)

The Eq. (4.5) demonstrates that ω̂(ζ ,κ) provides Eq. (3.2). The proof is completed.

5. Numerical Outcomes

In this section, the iterative reproducing kernel method is tested on two nonlinear advection equations. When calculating numerical results,
ζi =

i
q , i = 0,1, . . . ,q, κi =

i
p , i = 0,1, . . . , p and n = q× p are selected. The numerical results obtained for different values of p and q are

shown in tables and graphs. Also, the algorithm process of the method is presented as follows.

5.1. Algorithm of method

The iterative RKM process is presented as follow:

Step 1. Choose iteration number as n = q× p discrete point in the [0,1]× [0,1].
Step 2. Enter Ψi(ζ ,κ) = L(t,x)T(t,x)(ζ ,κ)|(t,x)=(ζi,κi).
Step 3. Attain βik orthogonalization coefficients.

Step 4. For i = 1,2, ...,n, set Ψi(ζ ,κ) =
i
∑

k=1
βikΨk(ζ ,κ).

Step 5. Enter initial approximation ω0(ζi,κi).

Step 6. For i = 1,2, ...,n, evaluate Bi =
i
∑

k=1
βikF(ζk,κk,ωk−1(ζk,κk),∂ζ ωk−1(ζk,κk)).

Step 7. For i = 1,2, ...,n, evaluate ωi(ζ ,κ) =
i
∑

k=1
BkΨk(ζk,κk).

5.2. Examples

Example 5.1. The following nonlinear advection equation is considered:

yκ (ζ ,κ)+ y(ζ ,κ)yζ (ζ ,κ) = f (ζ ,κ), ζ ,κ ∈ [0,1]. (5.1)

The exact solution of Eq. (5.1) is

y(ζ ,κ) = ζ
2(κ +2),
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and the initial condition of problem is

y(ζ ,0) = 2ζ
2.

After the homogenisation of initial condition, Eq.(5.1) turns into the following form:

ωκ (ζ ,κ)+2ζ
2
ωζ (ζ ,κ)+4ζ ω(ζ ,κ)+ω(ζ ,κ)ωζ (ζ ,κ)+8ζ

3 = f (ζ ,κ). (5.2)

The initial condition of Eq.(5.2) is

ω(ζ ,0) = 0,

and the exact solution of Eq.(5.2) is

ω(ζ ,κ) = ζ
2
κ.

In Eq.(5.2),

f (ζ ,κ) = 2κ
2
ζ

3 +8κζ
3 +8ζ

3 +ζ
2.

The absolute error values are computed for n = 225 in Table 5.1 and n = 400 in Table 5.2. The graphics of approximate solution, absolute
error and exact solution are presented in Figure 1 for n = 400 (q = p = 20).

ζ/κ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 6.96×10−6 4.26×10−6 6.39×10−6 8.48×10−6 1.02×10−5 1.14×10−5 1.21×10−5 1.71×10−5 5.42×10−5

0.2 1.30×10−5 6.77×10−6 9.18×10−6 1.09×10−5 1.19×10−5 1.05×10−5 7.08×10−6 1.48×10−5 1.03×10−4

0.3 1.90×10−5 7.81×10−6 1.03×10−5 1.08×10−5 1.05×10−5 5.78×10−6 3.51×10−6 4.59×10−6 1.42×10−4

0.4 2.48×10−5 8.25×10−6 1.19×10−5 1.15×10−5 1.03×10−5 2.90×10−6 1.16×10−5 2.95×10−6 1.84×10−4

0.5 3.05×10−5 7.68×10−6 1.32×10−5 1.23×10−5 1.03×10−5 4.60×10−7 1.91×10−5 9.59×10−6 2.26×10−4

0.6 3.60×10−5 6.03×10−6 1.42×10−5 1.30×10−5 1.02×10−5 2.08×10−6 2.65×10−5 1.61×10−5 2.69×10−4

0.7 4.13×10−5 3.18×10−6 1.45×10−5 1.33×10−5 9.83×10−6 4.95×10−6 3.43×10−5 2.29×10−5 3.12×10−4

0.8 4.62×10−5 6.95×10−7 1.42×10−5 1.34×10−5 9.36×10−6 7.82×10−6 4.20×10−5 2.97×10−5 3.54×10−4

0.9 5.07×10−5 5.55×10−6 1.32×10−5 1.32×10−5 8.87×10−6 1.06×10−5 4.96×10−5 3.63×10−5 3.97×10−4

Table 5.1: The absolute error values of Example 5.1 for p = 15 and q = 15.

ζ/κ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 7.56×10−7 1.72×10−6 2.45×10−6 3.23×10−6 4.03×10−6 4.51×10−6 4.07×10−6 4.88×10−6 1.85×10−5

0.2 1.59×10−6 3.06×10−6 3.52×10−6 4.13×10−6 4.80×10−6 4.55×10−6 1.44×10−6 6.04×10−7 3.15×10−5

0.3 1.93×10−6 4.09×10−6 4.04×10−6 4.37×10−6 4.90×10−6 3.98×10−6 1.95×10−6 5.13×10−6 4.18×10−5

0.4 1.85×10−6 5.02×10−6 4.39×10−6 4.47×10−6 4.99×10−6 3.56×10−6 5.03×10−6 1.05×10−5 5.23×10−5

0.5 1.38×10−6 5.83×10−6 4.65×10−6 4.46×10−6 5.04×10−6 3.19×10−6 7.95×10−6 1.56×10−5 6.32×10−5

0.6 5.51×10−7 6.48×10−6 4.82×10−6 4.33×10−6 5.00×10−6 2.79×10−6 1.08×10−5 2.06×10−5 7.42×10−5

0.7 6.02×10−7 6.90×10−6 4.93×10−6 4.10×10−6 4.87×10−6 2.33×10−6 1.37×10−5 2.55×10−5 8.52×10−5

0.8 2.04×10−6 7.06×10−6 4.99×10−6 3.78×10−6 4.64×10−6 1.78×10−6 1.67×10−5 3.06×10−5 9.62×10−5

0.9 3.71×10−6 6.89×10−6 4.99×10−6 3.40×10−6 4.32×10−6 1.16×10−6 1.97×10−5 3.56×10−5 1.07×10−4

Table 5.2: The absolute error values of Example 5.1 for p = 20 and q = 20.

Figure 5.1: The graphs of the absolute error, approximate solution and exact solution for p = 20 and q = 20 in Example 5.1.
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Example 5.2. The following nonlinear advection equation is considered:

yκ (ζ ,κ)+ y(ζ ,κ)yζ (ζ ,κ) = f (ζ ,κ), 0≤ ζ ,κ ≤ 1. (5.3)

The exact solution of problem is

y(ζ ,κ) = ζ (
κ2

2
+1),

and the initial condition of problem is

y(ζ ,0) = ζ .

After the homogenisation of initial condition, Eq.(5.3) turns into the following form:

ωκ (ζ ,κ)+ζ ωζ (ζ ,κ)+ω(ζ ,κ)+ωζ (ζ ,κ)ω(ζ ,κ)+ζ = f (ζ ,κ). (5.4)

The initial condition of Eq. (5.4) is

ω(ζ ,0) = 0,

and the exact solution of Eq. (5.4) is

ω(ζ ,κ) = ζ
κ2

2
.

In Eq. (5.4),

f (ζ ,κ) = κζ +κ
2
ζ +

1
4

ζ κ
4 +ζ .

The absolute error values are computed for n = 225 in Table 5.3 and n = 400 in Table 5.4. The graphics of approximate solution, absolute
error and exact solution are presented in Figure 2 for n = 400 (q = p = 20).

ζ/κ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 6.03×10−6 2.73×10−6 3.36×10−6 4.54×10−6 5.75×10−6 6.91×10−6 8.06×10−6 9.21×10−6 1.03×10−5

0.2 1.16×10−5 6.49×10−6 6.72×10−6 8.93×10−6 1.14×10−5 1.38×10−5 1.61×10−5 1.84×10−5 2.07×10−5

0.3 1.65×10−5 1.15×10−5 1.05×10−5 1.35×10−5 1.74×10−5 2.12×10−5 2.48×10−5 2.83×10−5 3.18×10−5

0.4 2.01×10−5 1.79×10−5 1.49×10−5 1.81×10−5 2.34×10−5 2.87×10−5 3.37×10−5 3.85×10−5 4.32×10−5

0.5 2.20×10−5 2.57×10−5 2.06×10−5 2.35×10−5 3.02×10−5 3.71×10−5 4.37×10−5 5.00×10−5 5.62×10−5

0.6 2.16×10−5 3.45×10−5 2.75×10−5 2.96×10−5 3.73×10−5 4.59×10−5 5.43×10−5 6.22×10−5 7.00×10−5

0.7 1.84×10−5 4.47×10−5 3.66×10−5 3.76×10−5 4.61×10−5 5.66×10−5 6.70×10−5 7.70×10−5 8.67×10−5

0.8 1.14×10−5 5.54×10−5 4.76×10−5 4.75×10−5 5.65×10−5 6.87×10−5 8.13×10−5 9.35×10−5 1.05×10−4

0.9 2.59×10−7 6.69×10−5 6.15×10−5 6.08×10−5 7.06×10−5 8.46×10−5 9.97×10−5 1.14×10−4 1.29×10−4

Table 5.3: The absolute error values of Example 5.2 for p = 15 and q = 15.

ζ/κ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 9.78×10−7 1.26×10−6 1.82×10−6 2.47×10−6 3.10×10−6 3.72×10−6 4.33×10−6 4.95×10−6 5.57×10−6

0.2 2.52×10−6 2.71×10−6 3.61×10−6 4.99×10−6 6.29×10−6 7.54×10−6 8.78×10−6 1.00×10−5 1.12×10−5

0.3 4.42×10−6 4.51×10−6 5.41×10−6 7.57×10−6 9.60×10−6 1.15×10−5 1.34×10−5 1.53×10−5 1.72×10−5

0.4 6.41×10−6 6.83×10−6 7.27×10−6 1.02×10−5 1.30×10−5 1.57×10−5 1.83×10−5 2.09×10−5 2.35×10−5

0.5 8.24×10−6 9.85×10−6 9.36×10−6 1.30×10−5 1.68×10−5 2.03×10−5 2.36×10−5 2.70×10−5 3.03×10−5

0.6 9.60×10−6 1.37×10−5 1.18×10−5 1.61×10−5 2.09×10−5 2.53×10−5 2.95×10−5 3.37×10−5 3.79×10−5

0.7 1.01×10−5 1.84×10−5 1.51×10−5 1.97×10−5 2.56×10−5 3.11×10−5 3.63×10−5 4.41×10−5 4.67×10−5

0.8 9.45×10−6 2.41×10−5 1.94×10−5 2.41×10−5 3.11×10−5 3.79×10−5 4.44×10−5 5.07×10−5 5.71×10−5

0.9 7.12×10−6 3.08×10−5 2.52×10−5 2.99×10−5 3.78×10−5 4.60×10−5 5.41×10−5 6.19×10−5 6.97×10−5

Table 5.4: The absolute error values of Example 5.2 for p = 20 and q = 20.

6. Conclusion

In this study, a numerical approach is proposed for the nonlinear advection equation. This approach is based on the reproducing kernel
function obtained from special Hilbert spaces and the selection of a linear operator. The approximate solution is constructed by the basis
function obtained by applying the reproducing kernel function to the selected linear operator. The convergence analysis of the proposed
approach is given in detail. To demonstrate the validity of the method, the RKM is applied to two different nonlinear advection equations.
The obtained results verify the effectiveness of the method. It is thought that the proposed method will contribute to the literature. The
proposed method can be applied to integral differential equations with nonhomogeneous initial or boundary conditions by improving it.
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Figure 5.2: The graphs of the absolute error, approximate solution and exact solution for p = 20 and q = 20 in Example 5.2.
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differential equations, Alexandria Engineering Journal, 60(5) (2021), 4411-4421.
[9] K. N. I. Ara, Md. M. Rahaman, Md. S. Alam, Numerical solution of advection diffusion equation using semi-discretization scheme, Appl. Math., 12

(2021), 1236-1247.
[10] T. Cosgun, M. Sari, A novel method to investigate nonlinear advection-diffusion processes, J. Comput. Appl. Math., 425 (2023), 115057.
[11] A. Alkan, Analysis of fractional advection equation with improved homotopy analysis method, OKU Journal of The Institute of Science and Technology,

7(3) (2024), 1215-1229.
[12] I. A. Mirza, M. S. Akram, N. A. Shah, W. Imtiaz, J. D. Chung, Analytical solutions to the advection-diffusion equation with Atangana-Baleanu

time-fractional derivative and a concentrated loading, Alexandria Engineering Journal, 60(1) (2021), 1199-1208.
[13] F. Mirzaee, K. Sayevand, S. Rezaei, N. Samadyar, Finite difference and spline approximation for solving fractional stochastic advection-diffusion

equation, Iran. J. Sci. Technol. Trans. A Sci., 45 (2021), 607-617.
[14] S. Zaremba, Sur le calcul numérique des fonctions demandées dans le probléme de Dirichlet et le problème hydrodynamique, Bulletin International de

l’Académie des Sciences de Cracovie, 908 (1908), 125-195.
[15] N. Aronszajn, Theory of reproducing kernels, Trans. Am. Math. Soc., 68 (1950), 337-404.
[16] L. Schwartz, Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés (noyaux reproduisants), J. Anal. Math., 13 (1964), 115-256.
[17] S. Saitoh, Y. Sawano, Theory of Reproducing Kernels and Applications, Springer, Singapore, 2016.
[18] O. A. Arqub, M. A. Smadi, Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painlevé equations in Hilbert space, Chaos
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