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1. Introduction

In this paper, an iterative reproducing kernel approximation is presented for obtaining a serial solution of the nonlinear advection equation as
follows [1]:

yk(€7K)+Y(C>K)yC(C7K):f(C7K)7 (L.1)

0<¢<1,0<k<I,

¥(§,0) =h({). (1.2)

Here, f(&, ) is a continuous function.

In environmental sciences, advection is transporting chemical or biological material by bulk motion. The advection equation has significant
importance in meteorology and oceanography [2]. Various analytical and numerical methods have been proposed in the literature to obtain
solutions to the advection equation. For instance, Khan and Wu proposed the homotopy perturbation transform method for the advection
equation in [3], the Fourier series method is applied by Sanugi and Evans in [4], Wazwaz employed the Adomian decomposition method for
the advection equation in [5], the finite difference method is presented by Molenkamp in [6], the Laplace decomposition method is employed
in [7]. Nisar et al. [8] suggested a numerical technique for the nonlinear advection equation using the Padé approximation. The explicit finite
difference scheme is used to obtain a numerical solution of the advection diffusion equation by Ara et al. [9]. Cosgun and Sari [10] employed
the reversed fixed point iteration for advection-diffusion processes. The homotopy analaysis method is implemented for the fractional
advection equation by Alkan [11]. Mirza et al. [12] proposed an analytical solution to the fractional advection diffusion equation. Mirzaee et
al. [13] suggested the finite difference and spline approximation for stochastic the advection-diffusion equation with fractional order.

The origin of the reproducing kernel method goes back to Zaremba’s researches at the beginning of last century. He focused on boundary
value problems with Dirichlet conditions in [14]. This concept is improved as theoretically in [15] and [16]. Also, some specific reproducing
kernel spaces that have trigonometric and polynomial kernels are presented in [17]. The reproducing kernel method is applied to many
model problems. For instance, Bagley-Torvik and Painlevé equations [18], fractional order systems [19], Fredholm integro-differential
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equations [20], integro-differential equations with Fredholm operator [21], eighth order boundary value problems [22], fractional Riccati
differential equations [23], sine-Gordon equation [24], nonlinear system of PDEs [25], fractional advection-dispersion equation [26], time
fractional telegraph equation [27], nonlinear hyperbolic telegraph equation [28], reaction-diffusion equations [29], time fractional partial
integro-differential equations [30], class of fractional partial differential equation [31], time fractional Tricomi and Keldysh equations [32],
and so on [33]-[38].

This paper is arranged as follows: Section 2 presents some specific reproducing kernel spaces and basic definitions. Section 3 provides a
detailed explanation of the linear operator selection and the construction of the approximate solution for the nonlinear advection equation. In
Section 4, a theorem and lemma show the convergence of the constructed approximate solution. In Section 5, the proposed method is tested
on two equations, and the numerical outcomes are presented with tables and graphs to demonstrate the effectiveness of the method. Section 6
gives a brief conclusion.

Symbols and nomenclature

Notation Meaning
K Time variable
Space variable
Wz(z,z) Special Hilbert space
A [0,1] % [0,1]
Ty (€, k)  Reproducing kernel function
AC Absolutely continuous
L Linear operator
CC Completely continuous
o(f,x) Exact solution
o, (8, x) Approximate solution
C Complex numbers
L2[0,1] Squared integrable Lebesgue space in [0, 1]

2. Preliminaries

This section introduces the special one- and two-variable Hilbert spaces used in the construction of the approximate solution and the
reproducing kernel functions of these spaces.

Definition 2.1. Let ® # 0 an abstract set, H be a Hilbert space and B is defined as B: ® x ® — C.
i.B(.,r)€H, Vreo,
i (u(.),B(,,r))=u(r) Vre®,vVu € H.

If the above conditions are satisfied, then B and H are called reproducing kernel function and reproducing kernel Hilbert space, respectively.

Before the construction of the representation solution, some specific reproducing kernel spaces and their kernel functions will be given to
solve the advection equation. The procedure for obtaining the reproducing kernels can be found in [36].

W1[0,1] Hilbert space
W2 [0,1] = {7({) | 7 is AC function, ' € L[0,1]}.

The inner product, norm and kernel function for the space Wz1 [0, 1] are given as follows.
1. The inner product:

2

1
(2(8), @0 ())w, :f(O)w(0)+/T'(C)w’(C)dC-
0

2. The norm:
2 1
”THWZ1 = <1’-7 T>W217 T,0 € W2 [07 1} .
3. The kernel function:

W3[0, 1] Hilbert space

W20, 1] = {t({) |7, T'are AC functions, 7’ € L[0,1]}

The inner product, norm and kernel function for the space W22 [0, 1] are given as follows.
1. The inner product:

1
(1(8), 0 (8))wz = T(O)w(0)+f'(0)60’(0)+/T”(C)w”(é)dé
0
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2. The norm:
2 2
”’L’-HWZ2 = <T7 T>W22> w,TE W2 [07 ” .

3. The kernel function:

R o= [ 1G5l L<t,

! 1=+ 1¢2 414, C >t
In a similar manner to the above, namely under same inner product and norm, the following closed subspace of W22 [0, 1] can be defined as
W2[0,1] = {(&)|7, 7 are AC functions,t € L2[0,1],7(0) = 0},

and its kernel function is

2} kx4 xrcz—%ﬁ K <x,
R (k) = 3
—fx +3 L kx? +xK, K> X.

Wgz,Z) (A) Hilbert space

Letbe A = [0,1] x [0,1]. Wz(z"z) (A) should be defined for obtain representation solution of model problem (1.1) subject to initial condition
(1.2).
(2,2) 32(0 34(1) 2
W, (4) ={w({, KHW is completely continuous in A, FIerrs €L (A),0(§,0) =0}.

The inner product and norm for the space WZ(Z’2> (A) are given as follows.
1. The inner product :

i=0

Loy 2 g
OERD SR = Y [l 0000 25 (om<+2 2000 2 u(C 0
0

[ Y 2 2
+ //[;Tmaﬂ @, K‘)acz ;2 (&, x)JdCdx, o.uew(A).
00

2. The norm:

2 = (0,0),0, 0 W (A).

The following basic theorem of reproducing kernel theory shows that the kernel function of W2(2"2) (A) is derived as multiplying of kernel
functions of W3[0, 1] for { and  variables.

Theorem 2.2. [36] Let T, (. k) be a kernel function 0fW2(2’2) (A). So, it can be written that
T (§.0) =R QR (x),
where Rt{z} ($) and Riz}(K) are reproducing kernel functions of W(0,1]. For any o(§,x) € W2(2,2) (A)
(D(l‘,x) = <(D(C, K)7 T(t,x) (C7 K)>W2(2-2)

and
Tig ) (t,%) = Ty ) (E, K).
W;l 1 (A) Hilbert space
2
wi(4) = {@(¢,%)| @ is CC function in A,% € 12(A)}.

The inner product, norm and kernel function for the space Wz(l’])(A) are given as follows.
1. The inner product:

1
(O 0uEk Ny = [12-00,K) a0, )+ (@(F,0),u(Z,0))yy
0
11
4 //a%% );?%u(g,x)}dgdx, o,ue W),
00
2. The norm:
”“’”31/;1-” = (0,0),0:), ©€ WD (a).

3. The kernel function:

Tjo (6 = RETORM ().
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3. Iterative Solution for Egs. (1)-(2) in Space W2(2,2) (A)

This section will explain how to construct an iterative solution for the nonlinear advection equation and provide the necessary theoretical
information. First, the initial condition of Eq. (1.1) is homogenised, and then the linear operator selection is made. After the homogenisation
process, the selection of the linear operator L is as follows:

L:wiP(a) - wiY(a),

Lo(§, k) = 0 (&, ) +h(§) g (§,k) + 1 (oS, k). 3.1
The Eq. (3.1) can be expressed as:
{ Lw(ch) :F( ,K,CO(C,K),(D&;(C,K)), C,KG [0> 1}7 (3 2)
o(£,0)=0. ’

Here, F (£, x.0(C. %), (£ k) = £(£.%) - K(OA(E) - (& K)oy (¢, k).
If {(&, i)}, is a countable dense subset in A, then W;(¢, k) is defined as:
Wi(C.k) = LT (80l in=G.x)
(2 T (Co) () Ty (6o 0) 4 (0T (610}

d d ,
= 3 l6m) (68 +h(8) 5 T x0) (85 1) +h (E)Tig, (€, K)- (3.3)

(1.x)=(Gi-xi)

The following theorem shows that P;({, k) is completely continuous and linear operator L is bounded.

Theorem 3.1. W;(,x) € W\ (A),i=1,2,...

Proof. The following conditions should be provide to prove this theorem.

2wi(¢,
1 L3R € 12(a)

2. % is completely continuous function

3. ¥;(&, x) satisfies the initial condition.

One can show that any elements of W2(2,2) (A) satisfies the above conditions 1-3.
Now, from the kernel function property, the following equation can be written

P T (6.9 = LR () OLRI (k).

The &%2R;{2} (¢) and 8,%2&{[2}(1() functions are bounded in [0, 1] due to their continuity in [0, 1]. Therefore, the following inequality can be
expressed:

5
‘atgzsz(l‘x)(C: K)| < M.
The following inequalities can be written by the same way of above:

‘axséqsz(t,x)(gv K)| < Ma,
10222 Ti1.) (8, 6)| < M.

Here, M1, M, and M3 are positive constants. From (3.3),

a4\Iji(C7 K) /
|W| < ‘MZ +h(€i)M1+h(Ct’)MS‘
< Mo+ [h(G) My + K (&) Ms.
W, (¢ k) ?W, (¢ ,x)

Therefore, = Tio € L2(A). Noting that A is closed, thus, L% is completely continuous in A. And also, ¥;({, k) satisfies the initial
condition because 7{; ,)(£,0) = 0. Thus ¥;({, k) € W2(2’2) (4).
Theorem 3.2. {¥;({,K)}7 | is a complete system ofW2(2’2) (A), fori=1,2,....
Proof. We have
Fill,x) = (L7)(E,x) = ((L7P)(1,%), T ) (1,%) )y 00
= (Pi(,0), L Tz (500 = Lo T2 (659 (1.0=(8)
= LTt (6 Ol m=(g.x)-
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Clearly, W;({, k) € W37 (4), for each fixed @(§, k) € Wy (A), if (0(, k), ¥;(S, %)), 00 = 0.
Namely, i

{@(8, 1), (L"®i) (&, 1))y = (Lo (E, k), Pi(, 1))y = (Lw)(Gi, ki) =0, i=12,... (3.4

(Lw)(&,x) = 0since {(&;, &)}, is dense in A. When the inverse operator L~ is used in Eq.(3.4), it can be clearly seen that ® = 0.

The orthonormal system {¥;({, k)}%; can be attained by the Gram-Schmidt orthogonalization of {¥;({, k)}7 ;| as

= Y B (C. ).
k=1

The orthogonalization process is given by formula as follow:

1 i—1

B = [ﬂk—* ﬁij=*dfzcikﬁkj for j <1,
ik i

H‘P I’

and also

dig = | IWill? = Zc,k7 cik = ‘I’k>W2( 2

Theorem 3.3. Let {({;,%;)}32, be dense in A, then the iterative solution of Eq. (3.2) is

8

i

(8, k) =Y Y B (G ke @(Gk, k), O (G, 1)) Wi (§, 5). (3.5)

i—1k=1

Proof.{¥;({,x)}32, is a complete system of 2<2 2>( A). Therefore, it can be written

Il
Mz
Mz

(S, x) (@(8, %), Wil k)02 Wi(€, k) = Zﬁzk (8, K), Wi (&, K)) 00 Fil )

1k=1

Bix{o(Z, ), L*P(C, k)00 ¥i(E, k) = P (Lo (&, k), (&, k)00 Wil €, 6)

1

Y BuLoo(Go k)T (2. 6)

k=1

Y BiF (G ke @ (G k) O @ (G, k1)) Wi (€, ). (3.6)

k

.Mg
M..

-
Il

Il
™5
M..

[
A
=
l
T

1

Il
™
H
M8

Il
—_
~
Il

Pi (Lo (&, k), Tg ) (§, )y W

Il
—_

i

Il
™

Il
—
Il
—_

The proof is completed.
When finite n-terms are taken in Eq.(3.6), the approximate solution @y, ({, k) is expressed as follows:

On(CK) = 3 Y B (G e (G 0. O (e k) B K.

i=1k=1

The convergence of approximate solution will be presented in the next section.

4. Convergence Analysis
Here, it will be shown that the iterative approximate solution is uniformly convergent. Taking A; as:
i
Ai =Y BiF (G, ki, (G ki), 0 (G Kk ),
k=1
then Eq.(3.5) can be written as

APi(C,x).

Ms

(€,x) =

Now from the initial conditions of Eq. (3.2), if taking ({1, k) = 0, ©({1, k1) can be calculated. When ay(&, k1) = @({], k) is taked, then
the n-term approximation of ®({, x) can be given as follow:

@, (¢, %) :i i, x), @.1)
here

Bi =Y BitF (Grs Kes 01 (Gky K1), Og 1 (G k) (4.2)
=1

Now, the uniform convergence of the approximate solution @, (&, k) will be shown. Therefore the following lemma should be given.
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Lemmad.1. IfF({,k,0(8,k),0¢ (8, K)) is continuous and 0, — @ for (Gn, Kn) — (t,x), then
F(CmKl’hwnfl(gmKl’l)ﬂggwﬂ*l(gm’(ﬂ)) —>F(t7x,(f)(t7x),8€(f)(t7x)).
Proof. Since

|01 (Gns ) = D(,x)] = [On—1(Gny Kn) — Op1 (1,%) + @1 (£,%) — D(2,)]|
< [0n1(Gn Kn) = D1 (1,%)| + | @1 (1,%) — (2, x)]

By using the reproducing kernel feature, it can be said that
@1 (Gns Kn) = {@n-1(8,6), T, 1) (§, K)oy @i (1,2) = (01 (8, %), Ty (8, K000
It follows that
|01 (Gns ) = @1 (1,2)] = (@01 (8, %), Tig, ) (85 ) = 1 ) (€, %))

It is known that there exists a constant M from the convergence of ®,_1 (&, k), such that

0180l < MGy, a5 0> M.
Also, it can be proven that

17tg,x) (657 = Tie ) (85 %)l 00 = 0, for n— oo
by using Theorem 2.2. So,

Wy—1(8n, %) = O(2,x), as (&, Ky) — (¢,%).

Similarly, the following expression can be written

O 1 (Lny k) = e (1), as (G, k) — (1,).
Therefore,

F (& Kny @1 (s ), 0g @1 (G ) — F(2,%,0(2,x), 9 B(2,x)).

So, the proof is completed.

Theorem 4.2. Let {({;, %)} | be dense in A. Assume that || @, is a bounded, and the Eq. (4.1) has a unique solution. Then, 0,({,x) —
(g, x) and

o, x)= iB,W,-(C, K).
i=1

Proof. It will be shown that the convergence of @, (&, k). From the Eq. (4.1), it can be easily seen that

O 41(8, k) = 0n (8, %) JrBn+1¢n-&-l (€. x).
By using of {@5}}"’:1, the following equation can be written:

n+1
2 2 2 2
i1 ]1* = lleon]|* + B3y = ) B7- 43)
i=1

Therefore, from Eq. (4.3), it can be seen that ||@,+|| > ||@,||. By the using boundedness of ||®,]|, it can be easily seen that ||@,|| is
convergent. And also there exists a constant ¢ such that

Y Bl =c. (4.4)
i=1

So, Eq. (4.4) shows that {B;}?, € [2. If m > n, then

||(0m70)m,1 +(Dm,1 7wm72+"'+wn+l 7a)n||2
[ @m — O ||* + O — O || -+ |01 — 0]

me*a’nHz

On account of
||a)m — W1 H2 = ng

consequently

m
|Om—onl|* =Y B} =0, as n— .
I=n+1
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From the completeness of W2<2’2> (A), it can be expressed that @, — @ as n — co. Now, it will be shown that @ is the solution of Eq. (3.2).
Taking limits in Eq. (4.1) we get

O(L.x) = Y BF(L x).

i=1

Note that
(LO)(¢,x) = ZBL‘P (¢,x),
LO)GR) = Y BTG, R) = Y BALE(E, 1), B, 1)) 00
i=1 i=1
= Z, i(£, %), L"® (C, K)>W<zz>fZB (8,5, ¥ (8, 1))y
Therefore,

\
M 8

Y BiLo)Gk) = Y BT K), zﬁmcmwm
=1

1=

Il
R

I
AMS

I
R

Bi(¥i(§, %), Wi(&, K))yy 00 = Br-
From Eq. (4.2), we have

La(G, %) =F(§.x,0-1(8. K1), 0p 01 (81, 1))

Since {(&;, ki) }72; is dense in A, there exists a subsequence {(Cy;, Ky, )} 7 such that (G, Ky;) — (,x), for each (z,x) € A, (j — e0). It can
be expressed that

Ld)(Cn,-7 Knj) = F(Cn_p Kn_,-:wn_,v,] (cn,--, Kn_,-)yagwn_,,l (Cn,w Knj))-
Using Lemma 4.1 and the continuity of F, it can be written that
(Ld)(t,x) = F(t,x,d(t,x), 0 O(t,x)), for j— oo. 4.5)
The Eq. (4.5) demonstrates that & (&, k) provides Eq. (3.2). The proof is completed.
5. Numerical Outcomes

In thls section, the iterative reproducmg kernel method is tested on two nonlinear advection equations. When calculating numerical results,
G=Li=01,...,q, % = p i=0,1,...,pand n = g X p are selected. The numerical results obtained for different values of p and ¢ are
shown in tables and graphs. Also, the algorithm process of the method is presented as follows.

5.1. Algorithm of method
The iterative RKM process is presented as follow:
Step 1. Choose iteration number as n = g x p discrete point in the [0, 1] x [0, 1].

Step 2. Enter lPi(C7 K) = L(t,x) T(’v") (C, K)l(fax):(ChKi) .
Step 3. Attain f3;; orthogonalization coefﬁcients

Step 4. Fori=1,2,....n, set ¥;({, k) = Z B, x).

Step 5. Enter initial approximation a)g(C,, K,)

Step 6. For i = 1,2,...,n, evaluate B; = ¥, BicF (G ki @41 (G K%), Og @1 (s Ki))-
k=1

i
Step 7. For i = 1,2,...,n, evaluate @;(§,x) = Y. Bi'Wi( &k, Ki)-
k=1

5.2. Examples

Example 5.1. The following nonlinear advection equation is considered:

yi(8,K) + (8, k)ye (€, k) = f(E, k), C,k€[0,1]. (5.1
The exact solution of Eq. (5.1) is

V(¢ k) =3k +2),
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and the initial condition of problem is

¥(¢,0) =282
After the homogenisation of initial condition, Eq.(5.1) turns into the following form:

o ($, k) +28% 0 (8 k) +4C0 (L, 1) + 0(C, k) g (£, %) +88 = (L, K).
The initial condition of Eq.(5.2) is
®(£,0) =0,

and the exact solution of Eq.(5.2) is

(LK) = ¢k
In Eq.(5.2),

f(&,x) =203+ 8Kk 03 +883 + £

(5.2)

The absolute error values are computed for n = 225 in Table 5.1 and n = 400 in Table 5.2. The graphics of approximate solution, absolute

error and exact solution are presented in Figure 1 for n =400 (¢ = p = 20).

C/x 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 696x10° 426x10° 639%x10° 848x10°% 1.02x1075 1.14x107° 121x10° 171x107° 542x107°
02 130x107% 677x107° 9.18x107°® 1.09%x1075 1.19x1075 1.05x107° 7.08x107% 1.48x107> 1.03x107*
03  190x1075 7.81x107° 1.03x1075 1.08x1073 1.05x107> 578x107° 351x10° 459%x10° 1.42x10~*
04 248x1075 825x107° 1.19x1075 1.15x1075 1.03x107> 290x107° 1.16x107> 295x107° 1.84x10~*
05 3.05x107° 7.68x107° 132x1075 1.23x1075 1.03x1075 4.60x1077 191x107> 9.59%x10° 226x10~*
0.6 3.60x107° 6.03x107° 142x107° 130x107° 1.02x1075 2.08x107° 2.65x107> 1.61x1075 2.69x107*
0.7  413x107° 3.18x107° 145x107° 133x107° 9.83x1070 495x107° 343x107° 229x107° 3.12x1074
0.8  4.62x107° 695x1077 142x107° 134x107° 936x107¢ 7.82x107° 420x107> 297x107° 3.54x1074
0.9 507x107° 555x107° 1.32x107° 132x107° 887x107% 1.06x107° 4.96x107> 3.63x107° 3.97x107*

Table 5.1: The absolute error values of Example 5.1 for p =15 and g = 15.

C/x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 756x1077 1.72x10°% 245x10°° 323x10°% 4.03x10°°® 451x10° 4.07x10° 48x10° 1.85x107°
02  1.59x107° 3.06x107° 352x107° 4.13x10°% 480x107°® 455x10° 144%x10° 6.04x1077 3.15x107°
03  1.93x10°° 4.09x10° 4.04x10° 437x107% 490x107°® 398x10° 1.95%x10° 5.13x10°° 4.18x107°
04 1.85x107° 502x107° 439x10° 447x107° 499x107°® 3.56x10° 503x10° 1.05x107> 523x107°
05 138x107° 583x10° 4.65x10° 446x107° 504x107° 3.19x10° 7.95x10° 1.56x107> 6.32x107°
0.6 551x1077 648x107° 4.82x107° 433x107° 500x107°® 2.79x107° 1.08x107> 2.06x107> 7.42x107°
07  6.02x1077 690x107° 493x107° 4.10x107% 487x107% 233x107°® 137x1075 255x107° 8.52x107°
0.8 2.04x107° 7.06x107° 499%x107° 3.78x107% 4.64x107% 1.78x107° 1.67x1075 3.06x107° 9.62x107
0.9 371x107° 6.89x10° 499%x107° 340x107° 432x107% 1.16x107° 1.97x107> 3.56x107° 1.07x1074

Table 5.2: The absolute error values of Example 5.1 for p =20 and g = 20.

Figure 5.1: The graphs of the absolute error, approximate solution and exact solution for p = 20 and ¢ = 20 in Example 5.1.
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Example 5.2. The following nonlinear advection equation is considered:

ye(8 k) +y(8 k)ye (8, x) = f(C,K), 0< L, k<1
The exact solution of problem is

2
¥EwR) =S5 +1),

and the initial condition of problem is

¥(§,0)=¢.

After the homogenisation of initial condition, Eq.(5.3) turns into the following form:

wK(Cv K) + CwC(gv K) + (D(C, K) + wC(C? K')(D(C, K) + C - f(C? K)'

The initial condition of Eq. (5.4) is

®(£,0) =0,
and the exact solution of Eq. (5.4) is
2
K
CO(C, K) = C?

InEq. (5.4),

f(C,K):KC-Q-KzC-l-%CKA-Q—C.

(5.3)

5.4

The absolute error values are computed for n = 225 in Table 5.3 and n = 400 in Table 5.4. The graphics of approximate solution, absolute

error and exact solution are presented in Figure 2 for n = 400 (g = p = 20).

C/x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 6.03x107° 273x107° 336x10° 454x10° 575x10° 691x10° 8.06x10° 921x10° 1.03x107°
02 1.16x1075 649x107° 672x107° 893x107° 1.14x1075 1.38x1075 1.61x107> 1.84x107> 2.07x107°
03 1.65x1075 1.15x1075 1.05x1075 135x1075 1.74x1075 2.12x1075 2.48x1075 2.83x107> 3.18x107°
04 201x107° 1.79x1075 149x1075 1.81x1075 234x1075 287x1075 337x107° 3.85x107° 4.32x107°
05 220x107° 257x107° 2.06x107° 235x107° 3.02x1075 371x107° 437x107° 500x107° 5.62x107°
0.6 216x107° 345x107> 275x107° 296x1075 3.73x1075 4.59x107° 543%x107> 622x107° 7.00x 1075
07 1.84x107° 447x107° 3.66x107° 3.76x1075 4.61x107° 566x107> 6.70x107> 7.70x107> 8.67x 107>
0.8 1.14x107° 554x107° 476x107° 475x1075 5.65x107> 6.87x107> 8.13x107> 935x107> 1.05x107*
09 2359x1077 6.69x1075 6.15x107° 6.08x107> 7.06x107> 8.46x107> 997x107> 1.14x107% 1.29x10~*

Table 5.3: The absolute error values of Example 5.2 for p = 15 and g = 15.

{/x 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 978x1077 1.26x107° 1.82x10% 247x107® 3.10x107° 3.72x10° 433x10° 495x10° 557x10°°
02 252x107° 271x107% 3.61x10°® 499x107°® 629x107°® 7.54x107° 8.78x107°® 1.00x107> 1.12x107°
03  442x107° 451x107°% 541x107° 757x107% 9.60x107% 1.15x107° 1.34x107> 153x107° 1.72x107°
04 641x107° 683x10° 727x107° 1.02x107° 130x1075 1.57x107° 1.83x107> 2.09%x107° 235x107°
05 824x107° 9.85x107° 936x107° 130x1075 1.68x1075 2.03x107° 236%x107> 270x1075 3.03x107°
06 9.60x107° 137x107° 1.18x107° 1.61x107> 2.09x107> 253x107> 295x107> 3.37x107> 3.79x107>
07 1.01x107° 1.84x1075 151x107° 197x1075 256x107° 3.11x107> 3.63x107> 4.41x107> 4.67x107°
08 945x107° 241x1075 194x1075 241x1075 3.11x1075 3.79x107> 4.44x107> 5.07x107> 571x107°
09 7.2x107% 3.08x1075 252x1075 299x1075 3.78x1075 4.60x107> 541x107° 6.19x107° 6.97x107°

Table 5.4: The absolute error values of Example 5.2 for p =20 and ¢ = 20.

6. Conclusion

In this study, a numerical approach is proposed for the nonlinear advection equation. This approach is based on the reproducing kernel
function obtained from special Hilbert spaces and the selection of a linear operator. The approximate solution is constructed by the basis
function obtained by applying the reproducing kernel function to the selected linear operator. The convergence analysis of the proposed
approach is given in detail. To demonstrate the validity of the method, the RKM is applied to two different nonlinear advection equations.
The obtained results verify the effectiveness of the method. It is thought that the proposed method will contribute to the literature. The
proposed method can be applied to integral differential equations with nonhomogeneous initial or boundary conditions by improving it.
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Figure 5.2: The graphs of the absolute error, approximate solution and exact solution for p = 20 and ¢ = 20 in Example 5.2.
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