HOLDITCH'S THEOREM FOR CIRCLES IN 2-DIMENSIONAL EUCLIDEAN SPACE

Gülay KORU YUCEKAYA*, H. Hilmi HACISALİHOĞLU**

* Ahi Evran University, Faculty of Art and Sciences, Department of Mathematics, 40200, Kırşehir, TURKEY, gkoruyucekaya@yahoo.com.tr
** Ankara University, Faculty of Sciences, Department of Mathematics, Tandoğan, 06100, Ankara, TURKEY, hacisali@science.ankara.edu.tr

Geliş Tarihi: 29.12.2008 Kabul Tarihi: 09.03.2009

Abstract

The present study expresses and proves Holditch's Theorem for two different circles in two-dimensional Euclidean space through a new method.

Key Words: Affine space, Euclidean space, Euclidean circle, Holditch's Theorem

2-BOYUTLU ÖKLİD UZAYINDA ÇEMBER İÇİN HOLDITCH TEOREMİ

ÖZET

Bu çalışmada, 2-boyutlu Öklid uzayında farklı iki çember için Holditch Teoremi yeni bir metodla ifade ve ispat edilmiştir.

Anahtar Kelimeler: Afin Uzay, Öklid uzayl, Öklid çemberi, Holditch Teoremi

1. INTRODUCTION

In this section we give basic definitions and theorems used in this study.
Definition 1.1 Let A be a non-empty set and V be a vector space on a field F.
i. For $\forall P, Q, R \in A, f(P, Q)+f(Q, R)=f(P, R)$.
ii. For $\forall P \in A$ and $\forall \alpha \in V$, there is a unique point $Q \in A$ so that $f(P, Q)=\alpha$.

If there is a function $f: A x A \rightarrow V$, satisfying above propositions, then A is called an Affine space associated to V [1].

Definition 1.2 Let A be a real affine space and let V be a vector space associated to A. Using Euclidean inner product operation on V ,
$\langle\rangle:, V x V \rightarrow I R,\langle\vec{X}, \vec{Y}\rangle=\sum_{1}^{n} x_{i} y_{i}, \quad \vec{X}=\left(x_{1}, \ldots, x_{n}\right), \vec{Y}=\left(y_{1}, \ldots, y_{n}\right)$
we can define the metric concepts such as distance and angle in A. Therefore, Affine space A is called a in Euclidean space and is denoted by $A=E^{n}$ [1].

Definition 1.3 The transformation defined by $\left\|\|: I R^{n} \rightarrow I R^{+}\right.$
$\|\vec{X}\|=\sqrt{\langle\vec{X}, \vec{X}\rangle}$
is called the norm of the vector \vec{X}.

Definition 1.4 For $\forall \vec{X}, \vec{Y} \in I R^{n}$, the measure of the angle between \vec{X} and \vec{Y} is the real number θ derived from
$\cos \theta=\frac{\langle\vec{X}, \vec{Y}\rangle}{\|\vec{X}\|\|\overrightarrow{\vec{Y}}\|}$.
Definition 1.5 (The Pythagoras Theorem) In a right triangle called $\stackrel{\Delta}{A B C}$, if $\|\overrightarrow{A B}\|=c,\|\overrightarrow{A C}\|=b,\|\overrightarrow{B C}\|=a$, then $a^{2}=b^{2}+c^{2}$ (Figure 1.1) [2].

Figure 1.1 Right triangle $A \stackrel{\Delta}{B} C$
Definition 1.6 The set of the points in E^{2} which are at a distance r from a point M is called a circle with center M and radial length r Euclid circle and is denoted by
$C=\{X:\|\overrightarrow{M X}\|=r, r=\mathrm{constant}\}$

Definition 1.7 The area of a circle with radius r and with point A on it is

$$
A\left(C_{A}\right)=\pi r^{2}
$$

Theorem 1.1 (Holditch's Theorem) Let a chord with constant lengths of $a+b$ of a closed convex curve α be divided by a point P on it into two segments with a and b as lengths. Let us move the end-points of the chord so that they will entirely trace the curve. Then, the difference between the sizes of the area bounded by the closed curve drawn by point P and that bounded by the main convex curve α is $\pi a b$ [3].

2. THE CLASSICAL HOLDITCH THEOREM

Theorem 2.1 Let an $A B$ chord with a constant length of $a+b$ on a circle (C) with a radius r in Euclidean plane E^{2} be divided by a point D into two segments with lengths of a and b , respectively. When the end-points A and B of the chord draw the circle in full, then geometric location of D forms an inner circle (Figure 2.1).

Figure 2.1 Geometric location of D on the chord
Proof. $\|A B\|=a+b=2 l=$ constant . Let M be the midpoint of AB . Then,
$\|A D\|=a$
$\|B D\|=b$
$\|M A\|=\|M B\|=\frac{a+b}{2}=l$.

From the right triangle $\stackrel{\Delta}{O M} A$
$\|O A\|^{2}=\|O M\|^{2}+\|M A\|^{2}$
or

$$
\begin{aligned}
\|O M\|^{2} & =\|O A\|^{2}-\|M A\|^{2} \\
& =r^{2}-\left(\frac{a+b}{2}\right)^{2} \\
\|M D\| & =b-l \\
& =b-\frac{a+b}{2} \\
& =\frac{b-a}{2}
\end{aligned}
$$

Similarly, from the right triangle $O \stackrel{\Delta}{M} D$

$$
\begin{aligned}
\|O D\|^{2} & =\|O M\|^{2}+\|M D\|^{2} \\
& =r^{2}-\left(\frac{a+b}{2}\right)^{2}+\left(\frac{b-a}{2}\right)^{2} \\
& =r^{2}-a b .
\end{aligned}
$$

Since a, b and r are constant, $\|O D\|$ is also constant. Therefore, the geometric location of D is a circle with a centre O and a radial length of $\sqrt{r^{2}-a b}$.

Theorem 2.2 Let a chord $A B$ with a constant length of $a+b$ on a circle (C) with a radius R in Euclidean plane E^{2} be divided by a point D into two segments with lengths of a and b, respectively. When the end-points A and B of the chord draw the circle in full, the size of the ring-shaped region between the orbit of D (inner circle) and circle (C) is independent from the radial length of circle (C).

Proof. For the radial length $z=\sqrt{r^{2}-a b}$ of the inner circle is and its two chords AB and EF intersecting at point D of circle (C), let the chord EF be the diameter of (C). The chords AB and EF are divided by D into line segments whose lengths are a, b and $\mathrm{r}+\mathrm{z}, \mathrm{r}-\mathrm{z}$, respectively (Figure 2.2).

Figure 2.2 Two chords intersecting in circle (C)
Since the triangles $\stackrel{\Delta}{D} E$ and $\stackrel{\Delta}{\text { FDA }}$ in the interior of circle (C) are similar triangles,
$\frac{\|B D\|}{\|F D\|}=\frac{\|D E\|}{\|D A\|}$
$\frac{b}{r-z}=\frac{r+z}{a}$
$a b=r^{2}-z^{2}$

Since the area of circle (C) is $A(C)=\pi r^{2}$ and the area of the inner circle is πz^{2}, the area of the ring-shaped region between these two circles is found as

$$
\begin{aligned}
\pi r^{2}-\pi z^{2} & =\pi\left(r^{2}-z^{2}\right) \\
& =\pi a b
\end{aligned}
$$

Therefore, the size of the ring-shaped region that falls between the orbit of D and circle (C) is independent from the radial length of circle (C).

Corollary 2.1 The size of the ring-shaped region that falls between the orbit of D and circle (C) is dependent on the selection of point D on the chord; that is, on the segments with lengths of a and b.

3. HOLDITCH'S THEOREM FOR TWO DIFFERENT CIRCLES IN A 2-DIMENSIONAL EUCLIDEAN SPACE

Theorem 3.1 For a circle C with a radial length of $R+a+b$ and a circle C^{\prime} with radius $R<(R+a+b)$, let an AB rod with a constant length of $a+b=$ constant, with end B attached to circle C , and the other end A attached to circle C^{\prime} by a joint, be divided by point X on it into two segments with lengths of a and b, respectively. When the rod with the constant length of $a+b=$ constant draws the circles C and C^{\prime} with its end-points within these circles C and C^{\prime}, the geometric location of X forms another inner circle (Figure 3.1). During this motion, the relation between the regions bounded by circles is independent from the selection of circles C and C^{\prime}.

Figure 3.1 Circles in E^{2}
Proof.
$\|\overrightarrow{A X}\|=a,\|\overrightarrow{X B}\|=b,\|\overrightarrow{O X}\|=R+a$
The area of circle C^{\prime} with a radial length R and with a point A on it is
$A\left(C_{A}\right)=\pi R^{2}$

The area of circle C with a radial length $R+a+b$ and with a point B on it is
$A\left(C_{B}\right)=\pi(R+a+b)^{2}$
Therefore, the area of the circle, which is the geometric location of point X is

$$
A\left(C_{X}\right)=\pi(R+a)^{2}
$$

Thus,

$$
\begin{aligned}
A\left(C_{B}\right)-A\left(C_{X}\right) & =\pi\left[(R+a+b)^{2}-(R+a)^{2}\right] \\
& =\pi b[2(R+a)+b] \\
A\left(C_{A}\right)-A\left(C_{X}\right) & =\pi\left[R^{2}-(R+a)^{2}\right] \\
& =-\pi a(2 R+a)
\end{aligned}
$$

and by adding these two equations side by side, we get

$$
\begin{aligned}
A\left(C_{A}\right)+A\left(C_{B}\right)-2 A\left(C_{X}\right) & =\pi\left[2(R+a) b+b^{2}+R^{2}-(R+a)^{2}\right] \\
& =\pi\left[2 R b+2 a b+b^{2}+R^{2}-R^{2}-2 a R-a^{2}\right] \\
& =\pi\left[2 R(b-a)+2 a b+b^{2}-a^{2}\right] \\
& =\pi[2 a b+(b-a)(b+a+2 R)]
\end{aligned}
$$

$A\left(C_{A}\right)+A\left(C_{B}\right)-2 A\left(C_{X}\right)=\pi\left[2 a b+(b-a)\left(b+a+2 \sqrt{\frac{A\left(C_{A}\right)}{\pi}}\right)\right]$

Corollary 3.1 The relation between the regions bounded by circles with radial lengths of $R, R+a$ and $R+a+b$ is a and b; in other words, it is independent from the rod's motion on the circles.

REFERENCES

[1] Hacısalihoğlu, H. H., "Diferential Geometry 1st. Ed.", İnönü University Faculty of Arts and Science Publications, Mat. No.2, Malatya,Turkey, p 895 (1983).(Turkish)
[2] Hacısalihoğlu, H. H., "Analytic Geometry in 2 and 3 dimensional Spaces 2nd. ed.", Gazi University Faculty of Arts and Science Publications, No.6, Ankara, p 528, (1984).(Turkish)
[3] Holditch, H., "Geometrical Theorem", The Quarterly Journal Of Pure And Applied Math., Vol. II, p. 38, London, (1858).

