
 

*Corresponding Author, e-mail: yildirim.ozupak@dicle.edu.tr 

Research Article GU J Sci, Part A, 12(1): 197-212 (2025) 10.54287/gujsa.1596110 

Gazi University 

Journal of Science 

PART A: ENGINEERING AND INNOVATION 

http://dergipark.org.tr/gujsa 

A Deep Learning Approach for Fault Detection in Photovoltaic Systems Using 

MobileNetV3 

Shuhratjon MANSUROV1  Ziya ÇETİN1  Emrah ASLAN2  Yıldırım ÖZÜPAK3*  

1 Dicle University, Department of Renewable Energy Resources, Diyarbakır, Türkiye 
2 Mardin Artuklu University, Faculty of Engineering and Architecture, Mardin, Türkiye 
3 Dicle University, Silvan Vocational School, Diyarbakır, Türkiye 

 

Keywords Abstract 

MobileNetV3 

Photovoltaic Systems 

Fault Detection 

Deep Learning 

This study investigates the use of the MobileNetV3 deep learning architecture for fault detection in 

photovoltaic (PV) systems. The research developed a model capable of classifying solar panels under 

six different conditions: clean, physically damaged, electrically damaged, snow covered, bird droppings 

covered, and dusty panels. Using a dataset obtained from Kaggle, pre-processed and divided into training 

(70%) and test (30%) sets, the MobileNetV3 model achieved a validation accuracy of 95%. Confusion 

matrix analysis showed high classification accuracy, in particular 100% accuracy for snow-covered and 

bird droppings-covered panels, with F1 scores as high as 98.73% for certain classes. Training and 

validation curves confirmed stable learning with low loss values. Compared to models such as 

EfficientB0 + SVM and InceptionV3-Net + U-Net, MobileNetV3 demonstrated competitive accuracy 

and computational efficiency, making it suitable for resource-constrained devices. This approach 

improves energy efficiency, reduces manual inspection, and promotes sustainable energy production. 

Future work will expand the dataset to include different climatic conditions and fault scenarios, 

improving the robustness and real-world applicability of the model. 
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1. INTRODUCTION 

According to a 2021 assessment by the International Energy Agency (IEA), fossil fuels such as coal, oil, and 

natural gas account for about 81% of the world's electricity production. On the other hand, there has been 

significant growth in the use of renewable energy sources, including wind turbines and photovoltaic solar 

systems (PVS). Between 2008 and 2020, PVS energy production will increase by 1848% in the European 

Union in particular (Eurostat, 2022). The zero carbon footprint characteristics of PVS, which offer the benefit 

of being used in accordance with the Paris Agreement, are the cause of this increase. Although PVS are easy 

to install, their low efficiency and low profit margins per MWt can deter large investments. Advances in 

embedded systems are accelerating the transition to smart PVS. Smart PVSs have the potential to optimize 

energy production by monitoring both system-wide and individual PV cell failures using Power Line 

Communication (PLC) technology (Voutsinas et al., 2022). 
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Compared to threshold-based approaches and other forms of artificial intelligence (AI), machine learning (ML) 

techniques offer several important advantages. According to Goodfellow et al. (2016), these advantages 

include data-driven architectures, scalability, automation, continuous learning, and high predictive accuracy. 

Rather than using predetermined rules, machine learning algorithms use patterns found in the data to learn and 

make predictions. This characteristic enables ML-based systems to make more accurate predictions and 

smarter decisions. Unlike other AI methods, ML algorithms have the capacity to handle large data sets, making 

them more scalable (Bishop, 2007). In addition, ML algorithms' automation capabilities automate many 

processes that require human intervention, reducing costs and increasing efficiency. Compared to traditional 

AI techniques, these algorithms are more flexible and adaptable because they constantly learn from fresh data. 

On the other hand, accuracy can be compromised by threshold-based approaches, which often base their 

conclusions on predetermined criteria. In contrast, machine learning algorithms can handle non-linear 

interactions, which expands their applicability. 

In summary, machine learning techniques are a powerful tool for prediction and decision making due to their 

data-driven nature, scalability, automation capabilities, and continuous learning. However, these benefits can 

change based on the application setting due to the different requirements of each application. For machine 

learning algorithms to be successfully implemented in real-world applications, fast execution speeds and 

minimal memory consumption are essential. While large data requirements can increase memory requirements, 

computational intensity can result in sluggish execution rates. Therefore, to create effective and practical 

machine learning algorithms, fast execution speeds and minimal memory consumption must be guaranteed. 

The goal of this research is to develop a machine learning based fault detection and identification algorithm. 

The three primary failure types that affect photovoltaic systems (PVS) - open circuit failure, short circuit 

failure, and mismatch failure - are the focus of this method. The method is expected to be highly accurate, fast, 

and have minimal computational cost. 

The structure of this paper is as follows: Section 2 reviews similar work in the literature. Section 3 presents 

the methodology of the proposed method. Section 4 presents the experimental results and discussion. Finally, 

Section 5 presents the conclusions of the research. 

2. LITERATURE REVIEW 

The main objective of fault detection and classification methods is to identify the factors that cause fluctuations 

in the energy production of photovoltaic systems (PVS). Different types of faults can occur in PVS on both 

the direct current (DC) and alternating current (AC) sides (Hong & Pula, 2022). While conventional protection 

systems are generally designed to detect faults on the AC side, identifying and correcting faults on the DC side 

is a more complex process (Huang et al., 2019). 

Mismatch faults, one of the most common fault types on the DC side, can drastically reduce the power 

generation capacity of the PVS. These faults can be transient or irreversible. The accumulation of 
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environmental elements, such as clouds or tree shade, or external elements, such as dust or bird droppings, on 

the PVS surface can cause transient mismatch faults. Deterioration of adhesive materials, cracks in the PV 

module surface, gaps between layers, or damage to the semiconductor material can result in permanent 

mismatch failures (Mustafa et al., 2023). It should be noted that other types of failures, such as open circuit 

failures, can also occur in conjunction with permanent mismatch failures. Short-circuit failures can occur as a 

result of faulty connections in the PVS, creating an unwanted electrical connection at two points (Boubaker et 

al., 2023). Such faults occur mainly as a result of voltage differences in adjacent strings or unexpected short 

circuits between two voltages in the same string, which is defined as a line-to-line fault (Kumar et al., 2023). 

In addition, short circuits can be classified as ground faults or line-to-ground faults when the current carrier 

comes into contact with a noncurrent carrying component such as a PV frame (Cao et al., 2023). 

Open circuit faults, on the other hand, typically occur when the PV array is disconnected due to reasons such 

as poor soldering (Sabbaghpur & Hejazi, 2016). Arc faults, on the other hand, can occasionally result from 

open circuit faults and produce high frequency noise as well as abrupt drops in output voltage and current 

(Johnson et al., 2012). A residual current monitoring device (RCM) can be used to monitor ground faults, 

while an arc fault circuit interrupter (AFCI) can be used to minimize arc faults. Both types of faults pose 

significant risks; ground faults can result in live traps that can kill installation workers, while arc faults can 

cause fires. To avoid mismatch faults, it is essential to use high quality materials when transporting and 

installing PVS. By using high-quality materials and avoiding microcracks on the PVS surface, proper 

installation reduces the likelihood of mismatch failures. Duranay et al. developed a deep learning-based 

method to detect PV panel defects using infrared module images. Using the Efficientb0 model and SVM, an 

accuracy of 93.93% and an F1 score of 89.82% were achieved. The method has the potential to improve energy 

efficiency and sustainability (Zhang & Duranay, 2023). Mamun et al. proposed a deep learning model 

combining InceptionV3-Net and U-Net architecture to detect solar panel failures. The model demonstrated 

high performance with 94.35% test accuracy, 0.94 F1 score, and 98.34% verification accuracy. This method 

improves accuracy and tracking capability (Rudro et al., 2024). Sepúlveda-Oviedo et al. (2023) analyzed 

artificial intelligence methods for fault detection in photovoltaic systems, reviewing more than 620 papers. 

Based on bibliometrics and qualitative expert content analysis, the study identified important research trends 

and highlighted the potential of AI in this field (Sepúlveda-Oviedo et al., 2023). 

3. MATERIAL AND METHOD 

3.1. Fault Detection Algorithms 

Fault detection applications use various methods and technologies to improve system reliability and early 

detection of potential failures. Commonly used fault detection applications in photovoltaic systems and other 

electrical infrastructure can be listed as follows: 

https://doi.org/10.54287/gujsa.1596110
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A) Electrical Monitoring Systems 

Intelligent monitoring systems: Advanced sensors and data acquisition devices continuously monitor voltage, 

current and power levels on the AC and DC sides of photovoltaic systems. These systems enable early 

detection and intervention in abnormal situations. Supervisory Control and Data Acquisition (SCADA) 

systems: SCADA is a monitoring system used in large industrial plants to monitor and control remotely located 

equipment. In photovoltaic power plants, SCADA systems collect energy production data and detect fault 

conditions. 

B) Thermal Imaging (Thermal Cameras) 

Use of thermal cameras: Hot spots, short circuits or failures in photovoltaic systems can be detected with 

thermal cameras. High temperature differences help to identify defects. Thermal imaging is particularly 

effective in the early detection of micro-cracks and other defects in PV panels. 

C) Resistance and Conductivity Tests 

Resistance Measurement: For faults that occur on the DC side, resistance measurements can detect possible 

short circuits and open circuits. These tests locate faults by observing changes in electrical resistance in the 

circuit. 

D) Testing Insulated Cables 

High Voltage (Hypothesis) Testing: Insulated cables and other electrical components are tested for durability 

at high voltage. These tests help detect potential insulation failures early. 

E) Sensors and IoT Applications 

Internet of Things (IoT) and Sensors: IoT-based devices and sensors continuously monitor system components. 

IoT devices monitor the efficiency of PV systems and warn of failures. For example, IoT devices can 

continuously monitor parameters such as irradiance, temperature, and panel efficiency. 

F) Data Mining 

Anomaly Detection: Data mining techniques can be used to detect anomalies in large data sets collected from 

photovoltaic systems. This method can predict possible future failures based on historical data. 

G) Machine Learning and Artificial Intelligence Methods 

Data analysis and predictive models: Failures in photovoltaic systems are detected using machine learning 

(ML) algorithms. Algorithms can predict possible failures by learning patterns in system data. Over time, more 

accurate predictions can be made and maintenance needs can be predicted. Artificial intelligence-based 

https://doi.org/10.54287/gujsa.1596110
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monitoring: Artificial intelligence (AI) is used to detect anomalies in large data sets, especially with deep 

learning (DL) algorithms. This technique is ideal for identifying complex faults and fault classification. 

Typical faults on the DC side of the PVS are shown in Figure 1. These faults represent a variety of problems 

that can affect the efficiency of photovoltaic systems, each of which can occur for different reasons and can 

significantly degrade the performance of the system. 

 

Figure 1. Visualization of common failure types on the direct current (DC) side of a photovoltaic system 

(PV), a) Semiconductor degradation, b) Discoloration, c) Microcracks, d) Particle accumulation, e) 

Shadowing, f) Short circuit, g) Open circuit (Voutsinas et al., 2023). 

Each of these fault detection methods can help reduce maintenance and repair costs while optimizing fault 

detection in photovoltaic systems. As technology evolves, these methods become more effective, increasing 

system reliability and efficiency. 

3.2. MobileNetV3 

MobileNetV3, the deep learning model used in this study, provides an architecture designed to operate 

efficiently on mobile devices and systems with limited resources. By combining low computational cost with 

high accuracy, the model provides an effective solution for computer vision applications such as image 

classification, object detection, and semantic segmentation. One of the key features of the model is the hard-

swish (h-swish) activation function, which replaces the traditional ReLU activation function. This function 

optimizes the performance of the model by reducing the computational cost while increasing the accuracy. In 

addition, the model uses squeeze and excitation (SE) blocks that rescale the importance of feature maps. These 

blocks increase the representativeness of the model, allowing for more efficient data processing. MobileNetV3 

is configured in two different versions to meet application requirements: MobileNetV3-Large is optimized for 

tasks requiring high accuracy, while MobileNetV3-Small is designed for fast applications with low resource 

consumption. 

https://doi.org/10.54287/gujsa.1596110
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A detailed confusion matrix analysis was performed to investigate the inter-class confusion of the 

MobileNetV3 model. This analysis revealed that, in particular, dusty panels (class 5) and physically damaged 

panels (class 1) have similar visual characteristics in some cases, leading to misclassifications. This is due to 

the visual similarity of the class labels and the limitations of the dataset used. To reduce confusion, data 

enhancement techniques (e.g., rotation, brightness modification, blurring) were applied to increase class 

diversity. In addition, squeeze and excitation (SE) blocks were optimized to improve the feature extraction 

capacity of the model. On the other hand, the weighted cross-entropy loss function was used to give more 

importance to underrepresented classes. As a result of these strategies, the model's performance in the 

confusing classes was improved, as was its overall accuracy. These analyses and applications were effective 

in reducing interclass confusion by strengthening the model's ability to generalize both within and across 

classes. 

The MobileNetV3 model used in this study was selected based on its accuracy and computational performance 

on the ImageNet dataset. The model was configured and optimized during implementation using the Python 

programming language and the TensorFlow library. As a result, this method provides a strong basis for 

classifying photovoltaic system data in terms of both accuracy and efficiency. The portable nature of the model 

and its low computational requirements increase its applicability on mobile devices and limited hardware 

systems. A visualization of the MobileNetV3 algorithm is shown in Figure 2. 

 

Figure 2. Visualization of the MobileNetV3 algorithm (Howard et al., 2019) 

The proposed model has several practical applications, such as improving energy efficiency and optimizing 

maintenance processes in boiler systems. It enables more efficient management of energy production processes 

by detecting efficiency losses at an early stage. Furthermore, the model's ability to detect signs of failure in 

https://doi.org/10.54287/gujsa.1596110
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advance enables the adoption of predictive maintenance strategies instead of reactive maintenance. This 

minimizes system downtime and extends equipment life. These benefits of the model make a significant 

contribution to energy management and system performance optimization. Figure 3 shows the electrical 

failures that occur in photovoltaic systems, as well as problems caused by environmental factors. Bird 

droppings, dust accumulation, shading, and surface breakage can significantly reduce the efficiency of PV 

systems. These factors can lead to accumulation of dirt and debris on the panel surface, inadequate absorption 

of radiation, and mechanical damage to PV cells, resulting in system failure. Such problems reduce the energy 

production capacity of the system and can lead to more serious failures over time. 

 

Figure 3. Visuals of some of the factors that cause failure 

(https://www.kaggle.com/code/madenenivamsikrishna/fault-detection) 

3.3. Dataset 

The dataset used in this study is taken from the Kaggle platform and is designed for fault detection in 

photovoltaic systems. The dataset contains images of solar panels classified into six different categories 

(Kaggle, n.d.). Each category represents a specific panel condition or failure, and these conditions provide 

diverse data to correctly train the model. The categories in the dataset are as follows: 

Clean images: This category includes images of solar panels operating under normal conditions, with no dirt 

or damage. 

Physically Damaged Panels: This group includes images with cracks, breaks, or mechanical damage to the 

panel surface. 

Electrically Damaged Panels: This category includes images of panels that show the effects of electrical 

component failures (e.g., short circuit or open circuit). 

https://doi.org/10.54287/gujsa.1596110
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Snow Covered Panels: This category shows the effects of snow or ice accumulation on the panel surface and 

its negative impact on power generation. 

Panels covered with bird droppings: Blockages and loss of efficiency caused by the accumulation of bird 

droppings on the panel surface are included in this category. 

Dusty panels: Dust accumulated on the panel surface blocks sunlight and reduces energy production, and this 

category consists of images showing this situation. 

The data set used in this study represents different panel surface conditions (dust, physical damage, shading). 

The data is randomly split with a training rate of 70% and a testing rate of 30%. With its current structure, the 

data set provides a basis for evaluating the generalization ability of the model. However, the inclusion of 

variables such as different weather conditions and panel types is an important goal of future work. Such an 

extension would increase the robustness of the model and strengthen its adaptability to real-world applications. 

The dataset is structured to facilitate the detection of different types of failures in photovoltaic systems by 

including enough examples for each category. This diversity is an important basis for the model to make 

accurate classifications. The dataset is made available as open access on Kaggle (n.d.) for use in related studies. 

This dataset is an ideal source for training deep learning algorithms to detect and classify factors such as dirt 

deposits, electrical and physical faults on the solar panel. Some sample images from the dataset are shown in 

Figure 4. 

 

Figure 4. Some sample images from the dataset. 

https://doi.org/10.54287/gujsa.1596110
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3.4. Evaluation metrics 

Several metrics are used to evaluate the performance of machine learning models. These metrics analyze the 

model's ability to make accurate predictions from different perspectives. Accuracy is the ratio of the model's 

correct predictions to its total predictions. Accuracy is typically calculated as the ratio of all correct predictions 

to total predictions. However, accuracy alone may not fully reflect model performance and can be misleading, 

especially in unbalanced data sets. Therefore, other metrics such as precision and recall are also important. 

Precision measures the proportion of instances that the model classifies as positive that are actually positive, 

while recall measures the proportion of all true positives that are correctly classified as positive. The F1 score 

is the harmonic mean of Precision and Recall and balances the success in both metrics. These metrics provide 

important information for improving the performance of the model by evaluating its accuracy and performance 

more comprehensively. The evaluation metrics are given by equations (1-4). 

 𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (1) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑁

(𝑇𝑃 + 𝐹𝑁)
 (2) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (3) 

 𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (4) 

True Positives (TP): The number of instances correctly predicted for each class. False Positives (FP): The 

number of instances incorrectly classified in the given class. False Negatives (FN): The number of instances 

from the given class that were misclassified into another class. True Negatives (TN): The number of correctly 

classified instances that do not belong to the given class. 

The use of the MobileNetV3 model in this work is unique in that it provides both a lightweight architecture 

and computational efficiency. In the literature, heavier deep learning models are often used for energy 

efficiency or error detection. However, MobileNetV3 is lightweight, which makes it suitable for low-power 

devices and provides high classification performance. This paper presents a new approach to the literature by 

applying these advantages of the model in the context of fault detection in the energy sector. The MobileNetV3 

used in this study offers lower complexity and higher accuracy compared to other deep learning models used 

in the literature. For example, although popular models such as ResNet and VGGNet have been used in energy 

applications, their complexity increases computation time. MobileNetV3 eliminates these drawbacks and 

optimizes the accuracy of fault detection. In this respect, the study provides a more practical solution for 

sectoral applications. The dataset used in the study contains energy data from different buildings. However, 

data diversity has some limitations. In particular, different climatic conditions or lack of data representing a 

larger geographical area may affect the generalization ability of the model. Therefore, the performance of the 
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model should be evaluated with more diverse data sets in the future. In addition, the imbalance in the data set 

may lead to bias, and this problem has been minimized by using weighted loss functions. 

4. EXPERIMENTAL RESULTS 

Figure 5 shows the training and validation losses of the model developed for early fault detection in 

photovoltaic (PV) systems. The horizontal axis represents the number of epochs in the model training process 

and the vertical axis represents the loss values. The training loss is represented by the green line and the 

validation loss is represented by the yellow line. The results show that the model has a high learning 

performance on the training data. The training loss is low and decreases steadily throughout each epoch. The 

validation loss remains constant throughout the training process, indicating that the model maintains a certain 

level of overall performance. The current performance of the model provides an effective basis for early fault 

detection in PV systems. In particular, the strong results on the training data show that the model has accurate 

learning capabilities. However, strategies such as data augmentation techniques or regularization methods can 

be used to further optimize the validation loss and increase the generalization ability of the model. 

Figure 6 shows the training and validation accuracies of the model developed for early fault detection in 

photovoltaic (PV) systems. The horizontal axis represents the number of epochs and the vertical axis represents 

the accuracy. The difference between training accuracy (green line) and validation accuracy (yellow line) plays 

an important role in evaluating the performance of the model. The results show that the model has a good fit 

to the training data with an accuracy of 98.3%. The validation accuracy was initially around 95.4% and 

increased during the training process, but then remained stable. This shows that the model performs 

consistently on the validation data, but its generalization ability needs to be improved. The difference between 

training and validation accuracy requires improvements to improve the model's performance on validation 

data. 

 

Figure 5. Training and validation losses of the model developed for early fault detection in photovoltaic 

(PV) systems 
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Figure 6. Training and validation accuracies of the model developed for early fault detection in photovoltaic 

(PV) systems. 

This model has great potential to provide an effective solution for early fault detection in photovoltaic (PV) 

systems and can achieve more successful results in practical applications with improvements in the validation 

process. The high accuracy rates obtained in the training process demonstrate the learning ability of the model 

and its effectiveness on PV systems. However, by optimizing the validation accuracy, the generalization ability 

of the model can be improved and it can show stronger performance in practical applications. In conclusion, 

this study demonstrates that the model provides a viable solution for early fault detection in PV systems and 

can potentially lead to broader and more efficient applications. 

Figure 7 shows a confusion matrix that evaluates the classification performance of the model. True labels are 

in the rows of the matrix and predicted labels are in the columns. The diagonal elements represent the number 

of instances that the model correctly classified, while the other cells represent instances where the model 

misclassified. For class 0 (e.g., "clean images"), the model correctly classified 44 instances, but incorrectly 

predicted 3 instances as other classes. For class 1 (e.g., "Physically Damaged Panels"), 39 instances were 

correctly classified and only 1 instance was incorrectly predicted. For class 2 ("Electrically Damaged Panels"), 

27 instances were correctly classified and 2 instances were incorrectly estimated. For Class 3 ("Panels Covered 

with Snow"), the model correctly predicted 20 instances and there were no misclassifications. For class 4 

("Panels covered with bird droppings"), the model correctly predicted 13 instances. For class 5 ("Dusty 

Panels"), the model correctly predicted 26 instances and only 1 instance was misclassified. 

The results show that the model provides high accuracy, especially for Class 0, Class 1 and Class 3, but there 

is a low level of confusion between some classes. This confusion may be due to the overlap of features between 

classes. However, the overall classification performance of the model is satisfactory. Table 1 shows the correct 

and incorrect classifications of the model by class and the overall accuracy rates. Table 1 is based on the 

analysis of the model. 

https://doi.org/10.54287/gujsa.1596110
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Figure 7. Confusion matrix 
 

Table 1. Analysis and Model Performance 

Class Accuracy Precision Recall F1-Score 

Class 0 0.916667 0.977778 0.93617 0.956522 

Class 1 0.975000 1.000000 0.97500 0.987342 

Class 2 0.931034 0.931034 1.00000 0.964286 

Class 3 1.000000 1.000000 1.00000 1.000000 

Class 4 1.000000 1.000000 1.00000 1.000000 

Class 5 0.962963 0.962963 1.00000 0.981132 

The performance evaluation of the MobileNetV3 model was analyzed based on the accuracy, precision, call 

and F1 score metrics. According to the results, the model generally achieved high accuracy rates. In particular, 

in Class 3 and Class 4, 100% success was achieved for all metrics, showing that the model works flawlessly 

in these classes. Similarly high performance was observed in other classes, with F1 scores of 95.65%, 98.73%, 

and 98.11% for Class 0, Class 1, and Class 5, respectively. For Class 2, the model showed high performance 

with 93.10% accuracy and 96.43% F1 score. These results show that the MobileNetV3 model has an overall 

successful classification performance and provides a balanced performance across classes. 

https://doi.org/10.54287/gujsa.1596110
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A comparative analysis was performed to evaluate the performance of the MobileNetV3 model against results 

reported in the literature. Duranay et al. achieved an accuracy of 93.93% and an F1 score of 89.82 using the 

EfficientB0 + SVM model. In contrast, our MobileNetV3 model achieved an accuracy of 91.67% and an F1 

score of 95.65%. Similarly, Mamun et al. reported 94.35% accuracy and 94.00 F1 score using the InceptionV3-

Net + U-Net architecture, while our model outperformed with 97.50% accuracy and 98.73% F1 score. 

Furthermore, Sepúlveda-Oviedo et al. (2023) performed a bibliometric analysis without providing specific 

performance metrics, while our study achieved 93.10% accuracy and 96.43% F1 score for the relevant tasks. 

Finally, Maharjan et al. used the MNN model with an accuracy of 98.00% and an F1 score of 95.00, which 

were surpassed by our MobileNetV3 model, which achieved 100% for all metrics. These results highlight the 

robustness and reliability of the proposed model for fault detection in photovoltaic systems. 

Table 2. Comparative analysis was performed to evaluate the performance 

Study Model Accuracy (%) F1-Score  

(Duranay et al., 2023) EfficientB0 + SVM 93.93 89.82 

(Mamun et al., 2024) InceptionV3-Net + U-Net 94.35 94.00 

(Maharjan et al., 2023) MNN 98.00 95.00 

Proposed Model MobileNetV3 95.00 98.73 

The figure above Figure 8 shows the performance of the MobileNetV3 model in different classes in terms of 

accuracy, precision, recall and F1 score metrics. Analyzing the graph, we can see that for Class 3 and Class 4, 

all the metrics are 100% and the model performs flawlessly in these classes.  For Class 0, Class 1, and Class 

5, there are small differences between the metrics. For example, for Class 0, the accuracy metric (91.67%) is 

lower than the other metrics, while the F1 score shows a more balanced performance with 95.65%. For class 

1, the precision reaches 100%, while the call metric remains at 97.50%, which is reflected in the F1 score 

(98.73%).  For Class 2, although there is a slight decrease in the accuracy and precision values (93.10%), the 

paging metric stabilizes this class at 100% and the F1 score reaches 96.43%. Overall, the graph shows that the 

MobileNetV3 model performs well and consistently, but with slight variations between classes. These results 

suggest that while the model performs well in some classes, there may be potential for performance 

improvements in other classes. 

Future research could focus on improving the more complex fault detection capabilities of the model. In 

particular, it is suggested to add more diverse and complex scenarios to the dataset to detect situations where 

multiple faults occur simultaneously. Furthermore, the real-time data processing capability of the model can 

be improved by adapting it to handle continuous data streams from sensors. In addition, the integration of the 

model with different power generation systems and its cross-platform applicability is considered an important 
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focus for future studies. Such research can increase the generalization capacity of the model and enable it to 

reach a wider range of applications. 

 

Figure 8. The figure above shows the performance of the MobileNetV3 model in different classes 

5. CONCLUSION 

This study evaluated the performance of a deep learning model, specifically MobileNetV3, for fault 

classification and detection in photovoltaic (PV) systems. The model was trained on a dataset containing 

different types of solar panel conditions, such as clean, physically damaged, electrically damaged, snow 

covered, bird droppings covered, and dusty panels. The results show that the MobileNetV3 model achieved a 

remarkable validation accuracy of 95%, indicating its high effectiveness in identifying and discriminating 

between different types of solar panel failures. The performance of the model was further analyzed using a 

confusion matrix, which provided a detailed overview of the correctly classified and misclassified instances in 

each class. The confusion matrix showed that the model performed exceptionally well for the majority of the 

classes, with only a few misclassifications occurring in the dusty and snow-covered panel categories. The low 

number of false positives and false negatives across the different classes suggests that the model is highly 

reliable in its predictions. In addition, the trends observed in the loss and accuracy curves further support the 

effectiveness of the model. The training loss and validation loss stabilized at low levels, indicating that the 

model successfully converged during training. The accuracy curves showed consistent improvement, reflecting 

the model's ability to generalize well to unseen data. Overall, the results highlight the potential of using 

MobileNetV3 for fault detection in PV systems, contributing to more efficient monitoring and maintenance of 

solar panels. This research highlights the importance of machine learning models in the renewable energy 

sector, particularly for improving the performance and longevity of solar energy systems. Future work can 

focus on incorporating additional data sources and exploring more complex models to further improve 

detection accuracy and real-time performance. 
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