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 Effective shelter location-allocation is critical in nuclear emergencies to ensure rapid, safe 
evacuation and resource access for affected populations. This study presents a multi-
dimensional optimization model for shelter allocation within humanitarian logistics, 
balancing evacuation time, supply accessibility, and shelter capacity. Using Geographic 
Information Systems (GIS) and Multi-Criteria Decision Analysis (MCDA), the model optimizes 
trade-offs among competing objectives. The first objective minimizes evacuation time, the 
second ensures adequate supply access, and the third prevents shelter overcrowding. 
Validated through k-fold cross-validation, the model reveals spatial biases: evacuees often 
cluster in nearby shelters, leading to overcrowding in dense areas and underuse in others. 
This analysis suggests adding flexible shelters in high-density zones to enhance response 
efficiency. Overall, the research supports more balanced shelter allocations in nuclear 
emergencies, improving both immediate and long-term disaster response strategies for 
affected populations.   
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1. Introduction 
 
Nuclear Power Plant (NPP) accidents, though rare, 

can have catastrophic consequences for human life, 
infrastructure, and the environment. The Chernobyl 
(1986) and Fukushima Daiichi (2011) disasters, both of 
which led to the evacuation of hundreds of thousands of 
residents, underscore the critical importance of well-
coordinated evacuation plans and sheltering strategies 
to minimize radiation exposure [1]. These disasters serve 
as stark reminders of the logistical complexities inherent 
in such emergencies and the need for effective planning.  

The Chernobyl disaster in the then-Soviet Union (now 
Ukraine) resulted in release of vast amounts of 
radioactive material into the atmosphere, making it one 
of the worst nuclear accidents in history. This accident 
posed significant challenges in managing the evacuation 

and sheltering of thousands of people. Many residents 
were dispersed across multiple regions, often far from 
their homes, which made it difficult to maintain 
community cohesion and provide consistent support 
services. The scale of the disaster exposed severe 
weaknesses in evacuation and shelter planning, 
particularly in terms of resource allocation and long-
term displacement management [2].  

Similarly, the Fukushima Daiichi nuclear disaster, 
triggered by a massive earthquake and tsunami, led to 
release of radioactive materials and forced the 
evacuation of more than 150,000 people. Despite Japan’s 
advanced infrastructure, the evacuation process was 
fraught with logistical challenges. In the immediate 
aftermath, many evacuees were housed in schools and 
community centers, which quickly became overcrowded, 
forcing people to stay in poor conditions. Furthermore, 
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the rapid evacuation overwhelmed local resources, 
leading to shortages of essential supplies like food, water, 
and medical care, particularly in rural areas where 
supply chains were already weak. These issues further 
highlighted the challenges of coordinating emergency 
sheltering and resource distribution in a nuclear crisis 
[3]. 

In nuclear emergency situations, the timely 
evacuation and safe sheltering of affected populations 
are crucial to protect against radiation exposure and 
minimize health risks. Nuclear emergency shelters serve 
as critical, temporary refuges during such events, 
reducing the risk of acute radiation sickness and long-
term health effects, such as cancer. These shelters are 
typically reinforced structures with controlled 
ventilation systems to prevent the infiltration of 
radioactive particles and are equipped with essential 
resources like food, water, and medical supplies to 
support evacuees over extended periods. However, 
effective shelter planning involves more than immediate 
protection – it requires careful consideration of multiple 
objectives, including minimizing evacuation time, 
ensuring efficient and continuous access to supplies, and 
preventing overcrowding, which can compromise safety, 
comfort, and access to resources [4]. To achieve this 
balance, shelters should be positioned close to 
population centers for quick access, strategically located 
near supply routes to streamline resource distribution, 
and sized appropriately to avoid overcrowding [5]. These 
objectives often conflict, as the most accessible shelters 
may not align with optimal supply routes or have 
sufficient capacity for large populations. Addressing 
these challenges requires a multi-dimensional 
optimization approach, integrating methodologies like 
Multi-Criteria Decision Analysis (MCDA), to evaluate 
trade-offs and prioritize objectives. This approach allows 
decision-makers to identify optimal shelter locations that 
enhance disaster resilience by providing both immediate 
safety and sustained support for affected populations. 

This study addresses the multi-dimensional 
optimization challenges for nuclear emergency shelters, 
focusing on minimizing evacuation time, ensuring 
efficient supply access, and avoiding overcrowding. The 
novelty of our research lies in the integration of the 
above mentioned multiple critical aspects for nuclear 
emergency shelter planning that are rarely combined in 
existing studies. Here are the key points that highlight its 
unique contributions: 

(1) Multi-dimensional optimization with practical 
constraints: While many studies focus on single 
objectives (e.g., minimizing evacuation time or 
maximizing shelter capacity), our research addresses a 
multi-dimensional optimization problem that balances 
evacuation time, supply access, and overcrowding 
prevention. The incorporation of real-world constraints 
like road networks, population density, and proximity to 
supply depots adds practicality to the model, making it 
more applicable to real-life emergency planning. 

(2) GIS and MCDA integration: By combining 
Geographic Information Systems (GIS) with MCDA, the 
research goes beyond traditional optimization. This 
integration enables a spatially-informed, data-driven 

evaluation of shelter locations, which can dynamically 
accommodate changes in population and infrastructure, 
enhancing adaptability and robustness in shelter 
planning. 

(3) Scalability for future planning: The methodology 
we propose is designed to be scalable, meaning it can be 
adapted for future nuclear emergencies in different 
regions. This scalability addresses a critical gap, as most 
existing studies focus on fixed or region-specific 
parameters without accounting for adaptability to future 
needs or varying scenarios. 

(4) Comprehensive approach to immediate and long-
term needs: By simultaneously addressing immediate 
evacuation logistics and long-term shelter needs (such as 
supply chain management and preventing 
overcrowding), this research contributes a more holistic 
view of nuclear disaster response. This dual focus 
ensures that evacuees’ needs are met not only during the 
evacuation but throughout their stay, enhancing 
resilience in disaster response systems. 

(5) Evaluation of trade-offs for optimal decision-
making: Our model identifies optimal trade-offs between 
competing objectives, which is crucial for decision-
makers who often have to prioritize conflicting goals 
under time constraints. This trade-off analysis provides 
actionable insights that can inform strategic planning 
and resource allocation, leading to more effective and 
balanced disaster response strategies. 

 
2. Literature review  

 
We considered three elements in the literature 

review: (1) nuclear evacuation planning, (2) shelter 
optimization, and (3) the integration of supply chain 
logistics.  

 
2.1. Nuclear evacuation planning 

 
Since the Chernobyl and Fukushima disasters, nuclear 

evacuation planning has been an area of extensive 
research, with much of the focus on radiological risk 
assessment and the development of predictive models 
for radioactive dispersion following an accident [6-8]. A 
key approach in this field involves atmospheric 
dispersion models, such as the Gaussian Plume Model [8], 
which is widely used to predict the spread of radioactive 
contaminants in the atmosphere. Based on these 
predictions, authorities delineate evacuation zones, 
typically within a 30 km radius of the nuclear site, to 
protect populations at the highest risk of exposure [10]. 

As research on nuclear evacuation planning has 
progressed, it has increasingly addressed the practical 
challenges of evacuating large populations during 
emergencies. [11] conducted a detailed exploration of 
strategies aimed at minimizing evacuation time during 
nuclear disasters. Their work highlighted the importance 
of traffic modeling to assess road capacity, potential 
bottlenecks, and travel times, particularly in densely 
populated urban areas where evacuation logistics are 
especially complex. Building on this, [12] introduced a 
cohort-based model for estimating evacuation times, 
which can significantly reduce the overall evacuation 
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process. Other studies have evaluated specific factors 
affecting evacuation times, such as trip generation timing 
[13], road clearance time [14], and the impact of manual 
traffic controls [15]. 

Incorporating GIS has proven to be an essential 
advancement in nuclear evacuation planning. GIS 
technology allows researchers and emergency planners 
to simulate a variety of evacuation scenarios, model 
potential routes, identify choke points, and optimize 
evacuation strategies to reduce travel times and avoid 
congestion [16]. [17] demonstrated the effectiveness of 
GIS-based network simulations in improving evacuation 
planning. Similarly, [18] showed that by modeling 
different traffic patterns and route alternatives, 
authorities could better manage evacuation efforts, 
ensuring populations are moved away from danger 
zones as efficiently as possible. Moreover, the integration 
of GIS with agent-based models has further enhanced the 
ability to address complex evacuation challenges [19- 
20]. 

In addition to simulation technologies, recent 
research has underscored the importance of real-time 
data in optimizing nuclear evacuation plans. [21] 
proposed a dynamic path optimization algorithm that 
improves evacuation networks by adapting to evolving 
conditions. Similarly, [22] focused on solving dynamic 
optimization problems to reduce overall evacuation 
times, demonstrating the value of real-time data in 
enhancing evacuation efficiency. 

Alongside these technological advancements, the 
social and behavioral aspects of nuclear evacuation have 
also gained increasing attention. Studies have shown that 
public response to evacuation orders is not always 
immediate or consistent, with individuals often delaying 
due to uncertainty, disbelief, or reluctance to leave their 
homes and possessions behind [23-24]. This highlights 
the need for effective communication strategies and 
public education campaigns to support nuclear 
emergency planning [1]. By ensuring the public 
understands the risks and rationale behind evacuation 
procedures, authorities can improve compliance and 
cooperation, leading to more successful evacuation 
efforts during a nuclear emergency. 

 
2.2. Shelter location-allocation optimization 

 
Shelter location modeling methods can be broadly 

categorized into three main approaches: GIS-based 
spatial analysis models, exact algorithms, and 
approximation algorithms [25-26]. Among these, GIS-
based models are often faster and easier to implement 
for location-allocation problems compared to other 
methods. These models rely on key variables such as the 
destination points of evacuees, demand points (e.g., 
households, populations, or settlements), and the road 
network [27]. GIS-based location-allocation models are 
further classified into three groups: single-objective 
models, multi-objective models, and hierarchical models 
[26]. 

Single-objective models focus on solving the location 
problem with one primary objective. For example, the P-
median problem aims to minimize the maximum 

distance between demand points and shelter locations, 
helping to find the optimal placement of shelters [28]. 
Another well-known model, the maximal covering 
location problem, seeks to maximize the coverage of 
demand points by shelters within a specified distance or 
time, known as the impedance cutoff value [29]. This 
value defines the maximum distance or time within 
which evacuees can access a shelter. These models are 
relatively straightforward and useful when a single 
optimization goal, such as minimizing distance, is 
paramount. 

To address more complex scenarios, multi-objective 
models have been developed. These models incorporate 
multiple objectives into the decision-making process 
[30]. For example, [31] developed a multi-objective 
model with the goals of maximizing population coverage 
while minimizing traffic costs. [32] and [33] focused on 
maximizing coverage of affected areas while minimizing 
human suffering. [28] proposed a multi-objective urban 
shelter location model that combining the maximum 
coverage and P-median models to address the diverse 
needs of urban shelter planning. 

Hierarchical models, on the other hand, involve 
different levels of decision-making, with each level 
containing either a single or multiple objective. These 
models are particularly useful when decisions need to be 
coordinated across various organizational levels or when 
complex factors like population density, shelter capacity, 
and accessibility must be considered simultaneously 
[26].  

Exact algorithms, commonly used for shelter 
placement, often address multiple objectives such as 
minimizing travel time, maximizing coverage, and 
ensuring equitable access to shelters. For instance, [34] 
developed an exact mixed-integer linear programming 
(MILP) model that optimized shelter locations under 
demand uncertainty. The model proposed by [35] also 
included capacity constraints to ensure shelters were not 
overburdened during large-scale evacuations, 
illustrating the precision and utility of exact algorithms 
for solving these complex problems. 

However, as the scale of evacuation scenarios 
increases, the computational demands of exact 
algorithms become a challenge. In response, 
approximation algorithms have gained prominence, 
offering near-optimal solutions more quickly. For 
instance, [36] introduced a greedy approximation 
algorithm for shelter location optimization that balanced 
shelter proximity to population centers with capacity 
limits, providing a feasible solution in a fraction of the 
time required by exact methods. Similarly, [37] used 
particle swarm optimization (PSO) to reduce evacuation 
times while considering road network constraints, 
highlighting the effectiveness of approximation 
algorithms in solving large-scale, complex evacuation 
problems efficiently. 

 
2.3. Supply chain logistics in emergency management 

 
Humanitarian logistics plays a crucial role in disaster 

management by ensuring the evacuation of victims from 
affected areas to safe locations and facilitating the timely 
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planning, storage, and distribution of relief supplies [38]. 
The primary goal of these efforts is to deliver aid to 
disaster victims at the right time, in the right place, and 
at an optimal cost [39]. To achieve this, numerous studies 
have proposed various optimization models aimed at 
enhancing the efficiency and effectiveness of 
humanitarian logistics. These models focus on key 
logistical operations, including the management of 
shelters, medical centers, warehouses, and distribution 
hubs [40]. Most of the models developed in these studies 
incorporate essential data, such as the locations of 
affected areas and potential facilities, the number of 
victims, relief supply requirements, and the availability 
of resources. A significant portion of the research has 
centered on single-objective optimization models that 
seek to improve either monetary or non-monetary 
outcomes [41]. For instance, [42] developed a model 
aimed at minimizing the number of shelters, which was 
solved using an Exact Algorithm. Similarly, [43] proposed 
a model that focuses on minimizing the total cost of 
shelter location-allocation, which was solved using a 
Genetic Algorithm. Other studies, such as that by [44], 
aimed to maximize decision-makers’ satisfaction by 
employing Weighted Goal Programming. 

While single-objective models have been common, 
multi-objective models, especially those that consider 
both monetary and non-monetary criteria, have been less 
prevalent. Most of the multi-objective models proposed 
tend to focus solely on non-monetary criteria. Examples 
include the works of [45] and [46], which prioritize 
factors such as service coverage and response times. 

However, a growing number of studies have started 
integrating both monetary and non-monetary objectives 
into their optimization models, recognizing the 
importance of balancing cost efficiency with timely and 
effective disaster response. Research by [33, 47-48] 
among others, has demonstrated the potential of multi-
objective approaches in improving overall logistics 
performance. These studies frequently employ weight-
assigning methods such as Weighted Goal Programming 
(WGP) and the Weighted Sum Method (WSM) to address 
the multi-objective nature of humanitarian logistics.  

Unlike natural disasters, nuclear disasters often 
require evacuees to remain in shelters for extended 
periods, possibly weeks or even months, due to the 
dangers posed by radiation [2]. As a result, shelters must 
be equipped not only for short-term emergencies but 
also for prolonged stays. This necessitates thorough 
planning to ensure that shelters can be continuously 
resupplied with food, water, medical supplies, and other 
essential items. A significant limitation in many existing 
shelter location optimization studies is the lack of focus 
on logistical concerns, such as resupply chains and the 
availability of services over time. The ability to sustain 
long-term shelter operations is crucial for maintaining 
the health and safety of evacuees, especially in large-
scale nuclear disasters where external support may be 
delayed or restricted. 

 
 
 
 

2.4. Discussions on literature review  
 
The review of literature highlights significant 

advancements in nuclear evacuation planning, shelter 
location optimization, and supply chain logistics, 
particularly through the use of models that enhance the 
efficiency of disaster response. However, a notable 
research gap remains in integrating logistical concerns 
for prolonged shelter operations, especially in nuclear 
disaster scenarios. While many studies focus on 
optimizing shelter locations and minimizing evacuation 
times, few address the complexities of maintaining long-
term operations in shelters where evacuees may need to 
remain for extended periods, such as in the aftermath of 
nuclear disasters.  

Most shelter optimization models prioritize short-
term objectives, like minimizing travel distances or 
maximizing coverage, but fail to account for the critical 
issue of shelter overcrowding, which can compromise 
safety and comfort during prolonged stays. This lack of 
integration between shelter location optimization and 
the management of population capacity poses a 
significant gap, particularly in scenarios where evacuees 
may need to stay for extended periods. Therefore, our 
research focuses on developing a model that accounts for 
both immediate evacuation logistics and the prevention 
of overcrowding, ensuring the well-being of evacuees 
throughout their stay. 

 
3. Methodology 
 
3.1. Model formulation and study framework 

 
The proposed methodology in this study, illustrated 

in Figure 1, involves three key steps: (1) collection and 
preparation of input data, (2) model formulation, and (3) 
optimization process. 

In the first step, raw data is gathered, including 
information about the road network, shelter and depot 
locations, population distribution, and shelter capacities. 
Using GIS network tools, two crucial analyses are 
performed: the calculation of the evacuation time matrix 
and the supply-access matrix. The evacuation time 
matrix represents the time required for residents to 
evacuate to various shelters, while the supply-access 
matrix measures the time needed for suppliers to reach 
each shelter. Both matrices serve as input data for the 
subsequent analysis. The second step involves the 
formulation of objective functions, aligned with the 
study’s goals, which are combined into a weighted sum 
to balance the different objectives. In our study, we 
determined the weights by assigning logical priority to 
each objective based on the critical demands of a nuclear 
emergency. Recognizing that rapid evacuation is 
paramount, we assigned the highest weight of 0.40 to 
minimizing evacuation time. Although supply access and 
overcrowding are also essential considerations, we 
allocated them lower, yet meaningful, weights of 0.30 
each. This weighting reflects our prioritization of quick 
evacuation, while still addressing the importance of 
timely supply delivery and preventing shelter  
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Figure 1. Flowchart of the proposed methodology. 

 
 

overcrowding. The optimization process, as outlined in 
the final step, consists of four stages: (1) Populations are 
initially assigned to shelters based on the lowest 
objective function values; (2) Shelter capacity is checked 
to ensure it can accommodate the assigned population; 
(3) Shelter capacities are updated based on the number 
of evacuees; and (4) If a shelter is full, the remaining 
population is reassigned to the next available shelter. 

The following sections provide a detailed explanation 
of the research methodology employed in this study. 

 
3.2. Weighted sum method 

 
The Weighted Sum Method (WSM) is a widely used 

decision-making technique in MCDA [49]. It allows for 
the evaluation and comparison of various alternatives 
based on multiple criteria, each assigned a specific level 
of importance through weights. When applied to a 
nuclear emergency scenario, WSM can help optimize 
three critical objectives: minimizing evacuation time, 
minimizing the time required to access supplies, and 
avoiding the overcrowding of shelters. In this context, the 
four key criteria are: evacuation time, the population of 
each neighborhood, the capacity of each shelter, and the 
supply access time.  

The first objective is the minimization of evacuation 
time, where the evacuation time for residents of 
neighborhood i to shelter j, denoted as tij, is minimized. 
This component is weighted by w1, representing the 
importance of evacuation time in the overall objective 
function (Eq. 1):  

 
𝑍𝑒𝑣𝑎𝑐(𝑖, 𝑗) = 𝑤1 × 𝑡𝑖𝑗    Eq. 1 

The second objective focuses on minimizing the 
supply accessibility time. The supply access time from a 
depot to shelter j, denoted as sj, is minimized. This 
component is weighted by w2, reflecting the relative 
importance of supply accessibility in the optimization 
(Eq. 2): 

 
𝑍𝑠𝑢𝑝𝑝𝑙𝑦(𝑗) = 𝑤2 × 𝑠𝑗    Eq. 2 

 
To avoid shelter overcrowding, the model introduces 

a constraint based on the remaining capacity of each 
shelter. The remaining capacity of shelter j after 
population assignment is calculated as (Eq. 3): 

 
𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗 = 𝐶𝑗 − ∑ 𝐴(𝑖, 𝑗)𝑚

𝑖=1  Eq. 3 

 
where Cj is the capacity of shelter j, and A (i, j) represent 
the assignment of population from neighborhood i to 
shelter j. The assignment A (i, j) is defined as (Eq. 4): 

 

𝐴(𝑖, 𝑗) = {
𝑃𝑖, 𝑖𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑠ℎ𝑒𝑙𝑡𝑒𝑟 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 Eq. 4 

 
where Pi is the population of neighborhood i. The penalty 
for overcrowding is captured through the term (1 −

(𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗/𝐶𝑗)), which is weighted by w3, 

representing the importance of avoiding overcrowding.  
 
The total objective function, Z (i, j), for each 

neighborhood i and shelter j, is a weighted sum of the 
above components (Eq. 5): 
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𝑍(𝑖, 𝑗) = 𝑤1 × 𝑡𝑖𝑗 + 𝑤2 × 𝑠𝑖 + 𝑤3 × (1 −
𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗

𝐶𝑗
) Eq. 5 

 
where w1, w2, and w3 are the weights corresponding to 
evacuation time, supply accessibility, and overcrowding, 
respectively.  

 
The optimization problem is subject to two key 

constraints: capacity constraint and population 
assignment constraint, which are defined by the 
expressions (Eq. 6) – (Eq. 7). 

 
The total population assigned to a shelter must not 

exceed its capacity: 
 

∑ 𝐴(𝑖, 𝑗) ≤ 𝐶𝑗
𝑚
𝑖=1    ∀𝑗   Eq. 6 

 
Each neighborhood must be assigned to exactly one 

shelter: 
 

∑ 𝐴(𝑖, 𝑗) = 𝑃𝑖
𝑛
𝑖=1    ∀𝑖   Eq. 7 

 
The goal of the model is to minimize the total 

objective function across all neighborhoods and shelters, 
taking into account the weighted contributions of 
evacuation time, supply accessibility time, and 
overcrowding prevention (Eq. 8): 

 
𝑚𝑖𝑛 ∑ ∑ 𝑍(𝑖, 𝑗) × 𝐴(𝑖, 𝑗)𝑛

𝑗=1
𝑚
𝑖=1   Eq. 8 

 
where A (i, j) is the decision variable indicating whether 
neighborhood i is assigned to shelter j.  

 
By using the WSM, the optimization model finds a 

balance between minimizing evacuation time, 
minimizing supply accessibility time, and preventing 
shelter overcrowding. This approach ensures that 
shelters are utilized effectively while considering key 
criteria and respecting their capacities, providing a 
robust decision-making framework for emergency 
response planning in nuclear disaster scenarios. 

 
3.3. Origin-Destination Cost Matrix analysis 

 
Origin-Destination (OD) Cost Matrix analysis is a 

method used in emergency planning to evaluate the 
travel costs, typically in terms of time or distance, 
between multiple origin points (e.g., population centers) 
and destination points (e.g., shelters, hospitals) [50]. In 
the context of a nuclear emergency, this analysis helps 
identify the most efficient evacuation routes and 
estimate the time required to move people from affected 
areas to safer locations. The core formula for calculating 
travel time between an origin and a destination is as 
follows (Eq. 9): 

 

𝑇𝑖𝑗 =
𝐷𝑖𝑗

𝑉𝑎𝑣𝑔
   Eq. 9 

 
where Tij is the total travel time from origin i to 
destination j; Dij is the distance between the origin and 
the destination; and Vavg is the average speed of travel 

(adjusted for road conditions), often derived from 
evacuation time estimates models (km/h).  

 
Once the travel costs are calculated for each origin-

destination pair, they can be organized into a matrix 
format. This matrix helps planners visualize and 
compare travel times for different routes, enabling better 
decision-making during an evacuation. The matrix is 
structures as follows (Table 1): 

 
Table 1. OD cost matrix  

                              Destination 
Origin 

D1 D2 D3 … 

O1 T11 T12 T13 … 
O2 T21 T22 T23 … 
O3 T31 T32 T33 … 
… … … … … 

 
where O1, O2, … represent the origins; D1, D2, … represent 
the destinations; and Tij represent the travel cost (time) 
from origin Oi to destination Dj.  

 
3.4. Evacuation time estimates 

 
Evacuation Time Estimates (ETE) during a nuclear 

emergency depend on several key factors, such as the 
time it takes for people to mobilize, load vehicles, travel, 
and account for road conditions [51]. These elements can 
be combined into a total formula that represents the 
overall evacuation time (Eq. 10): 
 

𝑇𝑒𝑣𝑎𝑐 = 𝑇𝑚𝑜𝑏 + 𝑇𝑙𝑜𝑎𝑑 + 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 + 𝑇𝑐𝑙𝑒𝑎𝑟  Eq. 10 
 

where Tmob represents the time, it takes for the 
population to start evacuating; Tload is the time required 
for people to prepare for and load into vehicles; Ttravel is 
the time taken to reach a safe area; and Tclear accounts for 
the time needed to clear the road during evacuation, 
including any delays caused by congestions or obstacles.  

 
Mobilization time refers to the period between the 

issuance of an evacuation order and when people begin 
to act on it. This can be influenced by the population’s 
preparedness, reaction speed, and the efficiency of the 
communication system in place. For practical purposes, 
mobilization time is often estimated as a constant based 
on prior emergency response data or pre-determined 
planning assumptions. 

Loading time represents the time required for 
evacuees to prepare for evacuation and get into vehicles. 
This includes gathering belongings, organizing family 
members, and getting into cars. Like mobilization time, 
loading time is scenario-dependent and can vary but is 
often treated as a constant for simplicity in modeling 
evacuation scenarios. 

Travel time represents the time required to drive 
from the evacuation starting point to a designated safe 
location. It depends on the distance, average speed, and 
any delays due to traffic congestion. Travel time can be 
calculated using the following equation (Eq. 11): 

 

𝑇𝑡𝑟𝑎𝑣𝑒𝑙 =
𝐷𝑠𝑎𝑓𝑒

𝑉𝑎𝑣𝑔
+ 𝑇𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛  Eq. 11 
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where Dsafe is the distance to a safe location (km); Vavg is 
the average speed of travel, which considers the road 
conditions (km/h); and Tcongestion is the additional time 
due to traffic congestion, which increases as more people 
evacuate simultaneously.  

 
Road clearness time accounts for delays caused by 

bottlenecks, obstacles, or other factors that slow the 
evacuation process. This can be modeled using flow rate 
equations that depend on the number of vehicles to be 
evacuated and the capacity of the evacuation routes. 
Road clearness time is given by (Eq. 12 – Eq. 14): 

 

𝑇𝑐𝑙𝑒𝑎𝑟 =
𝑁𝑣

𝑄
    Eq. 12 

 

𝑁𝑣 =
𝑁𝑝

𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦
   Eq. 13 

 
𝑄 = 𝐶 × 𝐿    Eq. 14 

 
where Nv is the total number of vehicles to be evacuated 
with Np being the total population and “occupancy” 
representing the average number of people per vehicle; 
Q is the flow rate of the road (vehicles per hour), 
determined by the road capacity C (vehicles per hour per 
lane) and the number of lanes L available for evacuation.  

 
By combining all these components, the evacuation 

time estimate provides a comprehensive approach to 
evaluating how long an evacuation will take during a 
nuclear emergency, allowing for better preparedness 
and planning. 

 
3.5. K-fold cross-validation  

 
K-fold cross-validation is a statistical method used to 

evaluate the model’s performance by dividing the dataset 
into k subsets (folds). Mathematically, the dataset 𝐷 =
{𝑥1, 𝑥2, … , 𝑥𝑛} is randomly partitioned into k 
approximately equal-sized subsets: D1, D2, … Dk. For each 
fold i, the model is trained on the data D\Di (all data 
except fold i) and validated on the holdout set Di [52].  

The error for each fold i, denoted as Li, is computed 
based on the model’s performance on the validation set. 
The overall performance of the model is then calculated 
as the average of the objective values across all folds (Eq. 
15):  

 

𝐿𝑎𝑣𝑔 =
1

𝑘
∑ 𝐿𝑖

𝑘
𝑖=1   Eq. 15 

 
This ensures that every data point is used for both 

training and validation, leading to a more generalized 
estimate of the model’s performance. Additionally, the 
variance of the model’s performance across folds can be 
calculated to assess its stability (Eq. 16): 

 

𝜎2 =
1

𝑘
∑ (𝐿𝑖 − 𝐿𝑎𝑣𝑔)

2𝑘
𝑖=1   Eq. 16 

 
where 2 is the variance, Li is the error for fold i, and Lavg 
is the mean error across all folds. This variance measures 

the consistency of the models’ performance across 
different subsets of the data.  

 
4. Case study 
 
4.1. Study area and data sources  

 
The study focuses on the Akkuyu Nuclear Power Plant 

(NPP), located in Mersin Province, Turkey, along the 
Mediterranean coast. As Turkey’s first NPP, Akkuyu 
serves as a critical energy source for the region [53]. 
However, its proximity to densely populated areas 
underscores the need for comprehensive emergency 
preparedness, particularly in terms of efficient 
evacuation and shelter strategies in the event of a nuclear 
accident [54]. Moreover, Mersin is rich in agriculture, 
with fertile lands that play a vital role in regional food 
production and economic stability. Protecting this region 
from the impacts of a potential nuclear accident is crusial 
to safeguard its agricultural resources and 
environmental sustainability [55, 56].  

A key area of concern is the 30-kilometer radius 
around the NPP, designated as the Emergency Planning 
Zone (EPZ). This zone is highly vulnerable to radioactive 
contamination in the event of an accident due to 
meteorological conditions such as frequent rainfall, 
which can accelerate the deposition of radioactive 
particles onto the ground [57]. The EPZ includes diverse 
communities, ranging from densely populated urban 
centers to sparsely populated rural districts. In total, the 
zone encompasses 56 neighborhoods with a combined 
population of approximately 38,000 people. Figure 2a 
illustrates the study area, highlighting the varying 
population across these communities. To mitigate 
potential risks in the EPZ, a network of [59] shelters and 
25 depots has been established (Figure 2b). These 
shelters were selected from existing buildings, each 
meeting the requirement of having a wall thickness of at 
least 0.7 meters, which is essential for substantially 
reducing gamma radiation exposure during an 
emergency. Notably, most shelters and depots are 
concentrated in the southern part of the EPZ, where 
population density is highest, further emphasizing the 
importance of precise evacuation and resource 
distribution planning. 

In Turkey, including Mersin Province, roads are 
classified into several categories based on their function 
and traffic capacity. Table 2 provides an overview of the 
main road types considered in this study. The 
classification of roads, ranging from state roads to local 
and urban roads, helps to inform evacuation routes and 
supply delivery strategies, particularly in areas where 
road capacity and speed limits vary significantly [58].  

To enhance the accuracy and effectiveness of the 
multi-dimensional optimization process, the study area 
was divided into three distinct regions (Figure 2b). This 
division was based on several critical factors, including 
geographical and population diversity, evacuation and 
supply logistics, and shelter capacity management. The 
population is distributed relatively evenly across the 
three regions, with 32% residing in regions A and C each, 
and the remaining 36% in region B. 
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(a) 

 
(b) 

 
Figure 2. Study area: (a) Population within the 30 km radius zone (EPZ); (b) Location of shelters, depots, and 
neighborhoods’ centroids, as well as road network  
 
Table 2. Road description [59]. 

Type of road 
Typical lane capacity 

(vehicles per hour 
per lane) 

Speed limit 
(km per hour) 

for cars 
State roads 1,800 – 2,200 90 
Provincial 

roads 
1,200 – 1,800 90 

Local roads 500 – 1,000 50-90* 
Highways 2,000 – 2,500 120 

Urban roads 800 – 1,500 50 
*Depending on the specific location and road conditions 

 
Segmenting the EPZ allows the model to account for 

the unique characteristics of each region. For example, 
different areas of the EPZ have distinct road networks, 
infrastructure constraints, and shelter capacities. By 
analyzing smaller, more manageable segments, the 
model ensures that shelters in each sub-region are used 
efficiently, thereby reducing the risk of overcrowding. 
This approach also allows for more targeted 
optimization of evacuation times and supply delivery 
routes, avoiding the pitfalls of applying a uniform 
solution across a diverse and complex study area. 

 
4.2. Results and analysis 
 
4.2.1. OD analysis for evacuation route planning 

 
Figure 3 illustrates the results of an OD Cost Matrix 

analysis, aimed at evaluating evacuation routes between 
residential neighborhoods and emergency shelters. The 

evacuation times were computed as outlined in Section 
3.4, based on the road network and calculated for three-
time thresholds: 75 minutes, 90 minutes, and 115 
minutes. The dashed black lines represent the possible 
evacuation routes from each neighborhood to one or 
more shelters. While these lines are depicted as straight 
connections, they reflect real-time evacuation routes, 
accounting for the road network’s curves and travel 
constraints. 

The results demonstrate that the density and 
complexity of these routes increase as the time threshold 
is extended, allowing more feasible evacuation paths to 
emerge. In the 75-minute scenario, fewer routes are 
visible, meaning only neighborhoods in close proximity 
to shelters are accessible within this time frame. As the 
threshold increases to 90 and 115 minutes, a greater 
number of shelters become reachable, as indicated by the 
increasingly dense network of connections. 

 
4.2.2. OD analysis of supply-access routes for 
emergency shelters 

 
The results presented in Figure 4 illustrate an 

independent analysis of supply-access routes for shelters 
across three distinct regions. The analysis evaluates the 
availability of depots and their geographical distribution 
in relation to the shelters. In each of the graphs, the red 
dots represent supply depots, which serve as the starting 
points for emergency supply distribution, while the blue 
dots represent emergency shelters, the end points where  
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(a) (b) (c) 

   
(d) (e) (f) 

  
 

(g) (h) (i) 

Figure 3. OD analysis of evacuation routes to emergency shelters: (a), (b), (c) Evacuation routes for Region A – thresholds 75 

min, 90 min, and 115 min, respectively; (d), (e), (f) Evacuation routes for Region B – thresholds 75 min, 90 min, and 115 min, 

respectively; (g), (h), (i) Evacuation routes for Region C – thresholds 75 min, 90 min, and 115 min, respectively.  

 

   
(a)  (b)  (c)  

   
(d)  (e)  (f)  

   
(g)  (h)  (i)  

 

Figure 4. OD analysis of supply-access routes to emergency shelters: (a), (b), (c) Supply-access routes for Region A – thresholds 

5 min, 15 min, and 20 min, respectively; (d), (e), (f) Supply-access routes for Region B – thresholds 5 min, 50 min, and 90 min, 

respectively; (g), (h), (i) Supply-access routes for Region C – thresholds 15 min, 50 min, and 90 min, respectively. 
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supplies must be delivered to support evacuees. The 
black lines connecting depots to shelters indicate the 
potential routes supplies may take. Similar to an OD 
analysis described in Section 4.2.1., these routes are 
evaluated based on factors such as distance, travel time, 
and potential road conditions during a nuclear 
emergency. 

 
4.2.2. OD analysis of supply-access routes for 
emergency shelters 

 
The results presented in Figure 4 illustrate an 

independent analysis of supply-access routes for shelters 
across three distinct regions. The analysis evaluates the 
availability of depots and their geographical distribution 
in relation to the shelters. In each of the graphs, the red 
dots represent supply depots, which serve as the starting 
points for emergency supply distribution, while the blue 
dots represent emergency shelters, the end points where 
supplies must be delivered to support evacuees. The 
black lines connecting depots to shelters indicate the 
potential routes supplies may take. Similar to an OD 
analysis described in Section 4.2.1., these routes are 
evaluated based on factors such as distance, travel time, 
and potential road conditions during a nuclear 
emergency. 

The graphs depict varying levels of accessibility to 
shelters based on different time thresholds: 5, 15, and 20 
minutes for Region A; 5, 50, and 90 minutes for Region B; 
and 15, 50, and 90 minutes for Region C. These time 
thresholds were selected based on the minimum, 
average, and maximum travel times from each depot to 
the shelters within the respective region. For instance, in 
Region A, the minimum, average, and maximum travel 
times were 5, 15, and 20 minutes, respectively, so there 
was no need to use extended thresholds (such as 90 
minutes) in this case. 

In Region A (Figure 4a, 4b, and 4c), there are 14 
shelters and 12 depots. The results show that nearly all 
shelters can be reached by at least one depot within 15 to 
20 minutes. This indicates a well-distributed network of 
depots, which ensures that most shelters can be supplied 
efficiently, provided there are no significant roadblocks 
or other disruptions. 

Moving to Region B (Figure 4d, 4e, and 4f), there are 
10 depots available for a total of 30 shelters. The analysis 
shows that shelters located further from depots 
experience significant delays in receiving supplies. This 
suggests the need for additional depots in remote areas 
or the optimization of transportation routes to minimize 
travel times and improve supply access. 

Finally, in Region C (Figure 4g, 4h, and 4i), there are 3 
depots and 15 shelters. Similar to Region B, the results 
indicate that the geographical distribution of depots is 
insufficient, and their remoteness from the shelters 
makes it challenging to achieve adequate supply access 
within the 15-minute window. In this case, the analysis 
highlights the importance of addressing logistical 
challenges, either by increasing the number of depots or 
developing alternative strategies to expedite supply 
distribution. 

 

4.2.3. Optimization process 
 
The optimization results for shelter allocation are 

presented in Figure 5, showing the population 
assignment across different regions. The map illustrates 
how residents from various neighborhoods are assigned 
to specific shelters. 

In Region A (Figure 5a), several neighborhoods have 
been assigned to only a few shelters, while others remain 
unallocated. Notably, neighborhoods 1, 3, and 6 are 
allocated to shelter S4, with total population assignments 
of 1,016, 1,231, and 604, respectively. In contrast, many 
other neighborhoods and shelters remain unused, 
suggesting that the optimization process led to a 
concentrated use of certain shelters. This uneven 
distribution is likely driven by the proximity of these 
neighborhoods to shelters that minimize evacuation 
time, the highest-priority objective in the model. 

In Region B (Figure 5b), the results indicate 
substantial unused capacity in several shelters. For 
instance, shelter S2, with a capacity of 1,500, remains 
largely unutilized, while shelters S3 and S4 are almost at 
capacity, with only 17 and 14 remaining spaces, 
respectively. This points to an uneven distribution of 
evacuees across shelters, with some nearing full capacity 
while others remain underused. Despite this, shelter S5 
emerges as the most optimal choice, with an objective 
value of 0.52, due to its favorable balance of short 
evacuation routes, proximity to resources, and minimal 
overcrowding. In contrast, shelters like S1 (objective 
value 0.796) and S16 (1.568) have higher objective 
values, indicating either longer evacuation times, higher 
congestion, or less accessible resources compared to the 
optimal shelter S5. 

In Region C (Figure 5c), the population assignment 
shows a similar pattern, with some shelters heavily 
utilized and others underpopulated. Shelters S2 (1,532), 
S3 (1,268), and S5 (634) are assigned a large portion of 
the population, while shelters like S1, S6, and S7 are 
significantly underutilized. The remaining capacities of 
these shelters further highlight the uneven distribution, 
with some shelters, such as S12, having only 3 remaining 
spaces, while others, like S2, have 1,968 available spaces. 
The total objective values for shelters in Region C range 
from 0.580 to 1.834, with shelter S1 emerging as the 
optimal choice with the lowest objective value of 0.58. 
This suggests that shelter S1 is well-positioned in terms 
of evacuation time, resource access, and crowd control, 
despite its low utilization. Shelters S4 and S5, with higher 
objective values of 1.834 and 1.824, respectively, indicate 
inefficiencies in evacuation routes or overcrowding at 
these locations.  

Figure 6 illustrates the population assignments and 
the remaining capacities of shelters.  

The fact that not all shelters were utilized in the 
population assignment process can be explained by 
several factors related to the objectives of the 
optimization model and the constraints of the study. The 
primary objective – minimizing evacuation time – leads 
to the assignment of evacuees to shelters closer to their 
neighborhoods, inherently reducing evacuation time. 
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(a) 

 
(b) 

 
(c)  

Figure 5. Neighborhoods to shelter assignment map with shelter ranking: (a) Region A; (b) Region B; (c) Region C.
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(c)  

Figure 6. Population assignment and remaining capacity in shelters: (a) Region A; (b) Region B; (c) Region C.  
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Consequently, shelters located farther from 
population centers may remain unused, despite having 
available capacity, as they do not contribute to 
minimizing evacuation time as effectively as others. 
Additionally, the optimization process incorporates 
capacity constraints, ensuring that no shelter becomes 
overcrowded. If a shelter’s capacity is fully utilized by 
nearby neighborhoods, it cannot accommodate more 
evacuees, even if it is geographically close to other 
population centers. This constraint further limits the 
number of shelters actively used in the population 
assignment. 

The geographic distribution of shelters also plays a 
role. The southern part of the study area, where 
population density is higher, contains a greater 
concentration of shelters. Conversely, areas with lower 
population density have fewer shelters, and those 
shelters may not be filled to capacity due to the smaller 
population in need of evacuation. This uneven 
population and shelter distribution results in the 
underutilization of some shelters, particularly in less 
densely populated areas. 

While minimizing evacuation time is the primary goal, 
other factors, such as supply access time and 
overcrowding prevention, are also considered. The 
selected shelters represent a balance between these 
objectives. Some shelters, despite being available, may 
not significantly improve the overall objective score and 
are therefore left unused in the optimization process. 
This outcome highlights the complex trade-offs in 
optimizing shelter allocation during an emergency 
evacuation, where proximity, capacity, and resource 
accessibility must all be balanced. 

 
4.2.4. Model assessment 

 
In this study, we employed k-fold cross-validation to 

evaluate the performance of our neighborhood-to-
shelter assignment model. Specifically, we conducted a 3-
fold cross-validation, where the dataset was randomly 
divided into three equal subsets. In each iteration, two 
subsets were used for training, while the remaining 
subset served as the validation set. This process was 
repeated three times, ensuring that each subset was used 
as the validation set exactly once. The final model 
performance was determined by averaging the objective 
function values across all subsets, providing a robust 
estimate of the model’s effectiveness and reducing the 
risk of overfitting. The results for each region are 
presented in Figure 7. 

For Region A, the mean objective value across the 3 
folds is 4.14, with a standard deviation of 0.35. This 
indicates that, on average, the model achieves an 
objective score of 4.14 during validation. The standard 
deviation of 0.35 suggests a moderate level of variability 
in the model’s performance across different folds. While 
a lower standard deviation would imply greater 
consistency, this value shows that the model’s 
performance is reasonably stable across the different 
data subsets. 

 

 
Figure 7. Objective value across folds. 

 
In contrast, for Region B, the mean objective value is 

6.22, with a standard deviation of 0.46. The higher mean 
objective value indicates that the model performs worse 
compared to Region A, as lower objective values are 
typically preferred in optimization tasks. Additionally, 
the larger standard deviation of 0.46 reflects higher 
variability in the model’s performance across the folds, 
suggesting less stability in this region compared to the 
others. 

For Region C, the model performs the best, with a 
mean objective value of 3.20 and a standard deviation of 
0.30. The lower mean objective value shows that the 
model achieves the lowest error or cost in the 
optimization task for this region. Furthermore, the 
smaller standard deviation of 0.30 suggests that the 
model’s performance is the most consistent across the 
different data folds, with the least variability among the 
three regions. 

In summary, Region C shows the best overall 
performance, followed by Region A, while Region B 
demonstrates the highest error and variability. 

 
4.2.5. Sensitivity analysis 

 
Sensitivity analysis is a systematic approach used to 

evaluate how changes in input parameters influence the 
outcomes of a model [60]. By varying key variables 
within defined ranges, this analysis helps identify which 
parameters have the most significant impact on the 
results. it is widely applied in decision-making, 
optimization, and risk assessment to ensure the 
robustness and reliability of models. Sensitivity analysis 
provides critical insights into the trade-offs and 
interdependencies among variables, enabling informed 
adjustments to improve performance and achieve 
desired objectives under varying conditions.  

Figure 8 illustrates a sensitivity analysis of a multi-
dimensional optimization problem involving three 
weighted criteria: evacuation time (), supply-access 
time (), and overcrowding prevention (). The 
horizontal axis represents the weight assigned to 
evacuation time (), while the vertical axis shows the 
corresponding total objective value. The plot includes 
annotations identifying the weights for supply-access 
time () and overcrowding prevention () for each point. 
This analysis reveals how varying weight combinations 
influence the total objective value, highlighting the trade-
offs among the criteria. For instance, increasing  
generally corresponds to higher total objective values, 
which indicates a prioritization of minimizing evacuation 
time. Conversely, higher weights for  and  lead to lower 
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Figure 8. Sensitivity analysis: total objective value vs. weights.  

 
total objective values, underscoring their impact on 
overall optimization. The clustering of points shows 
interdependencies between weights and the overall 
performance of the solution.  

In conclusion, the sensitivity analysis provided a 
comprehensive understanding of how variations in the 
weights assigned to evacuation time, supply-access time, 
and overcrowding prevention influenced the total 
objective value of the model. By systematically 
evaluating the trade-offs and interdependencies among 
these criteria, the analysis highlighted the optimal 
balance necessary to achieve the most effective 
outcomes. Consequently, the weights in the model were 
selected based on these results, ensuring a well-informed 
and robust decision-making process tailored to the 
specific priorities and constraints of the scenario.  

 
5. Discussions  

 
The optimization results for shelter allocation in this 

study reveal important insights into the challenges and 
trade-offs involved in emergency evacuation planning, 
particularly in a nuclear emergency scenario. The 
analysis of population assignments across different 
regions demonstrates that while the optimization 
process effectively minimized evacuation time, it also led 
to an uneven distribution of evacuees and shelter 
utilization. These results underscore the complexities of 
balancing multiple objectives (evacuation time, shelter 
capacity, and supply access time) within the constraints 
of a real-world scenario. 

In Region A, the results show that neighborhoods 1, 3, 
and 6 were heavily assigned to shelter S4, while many 
other shelters and neighborhoods remained 
underutilized. This concentration can be attributed to the 
proximity of these neighborhoods to shelter S4, which 

minimized evacuation time, the highest-priority 
objective in the model. However, the underutilization of 
other shelters suggests that geographic location and 
proximity play a dominant role in the optimization 
process, potentially leading to congestion in a few 
shelters while others go unused. 

Similarly, in Region B, shelters such as S2 had 
significant unused capacity, while others like S3 and S4 
were almost at full capacity. Shelter S5 emerged as the 
most optimal due to its proximity and accessibility, with 
a low objective value of 0.52. In contrast, shelters like S1 
and S16 had higher objective values, reflecting longer 
evacuation times or less accessible resources. These 
findings suggest that, although the optimization process 
effectively minimizes evacuation time, it may benefit 
from additional constraints or adjustments to ensure a 
more even distribution of evacuees across shelters. 

Region C exhibits the same trends, with some shelters 
(S2, S3, and S5) being heavily utilized while others, like 
S1, S6, and S7, remain underpopulated. This highlights 
the same geographic bias in shelter selection observed in 
Regions A and B, where shelters minimizing travel time 
are favored, potentially leading to inefficient resource 
utilization. Shelter S1 in Region C, with the lowest 
objective value (0.58), was well-positioned to balance 
evacuation time, supply access, and crowd control, but 
the high values of shelters like S4 and S5 point to similar 
inefficiencies seen across all regions. 

The underutilization of many shelters can be 
explained by several factors inherent to the optimization 
model. The primary objective (minimizing evacuation 
time) drives the assignment of evacuees to the closest 
shelters. As a result, shelters located farther from 
population centers, even if they have available capacity, 
may remain unused. This tendency to prioritize 
proximity over capacity leads to the concentration of 
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evacuees in certain shelters and the underuse of others. 
While this approach is efficient from an evacuation time 
perspective, it raises concerns about resource utilization 
and the potential for overcrowding in the most optimal 
shelters. 

The geographic distribution of shelters is another key 
factor influencing the optimization results. The southern 
part of the study area, where population density is 
higher, contains a greater concentration of shelters. In 
contrast, areas with lower population density have fewer 
shelters, and those shelters may not be filled to capacity 
due to the smaller population in need of evacuation. This 
geographic disparity leads to the underutilization of 
shelters in less populated areas and the concentration of 
evacuees in more densely populated regions. This 
uneven distribution highlights the need for a more 
balanced approach to shelter placement and utilization, 
particularly in areas with varying population densities. In 
densely populated regions, additional shelters may be 
necessary to prevent overcrowding and ensure that 
evacuees have sufficient access to resources. In less 
populated areas, flexible or mobile shelters could be 
deployed to supplement existing resources and ensure 
that all evacuees have access to safe, well-equipped 
shelters. 

The findings of this study have important 
implications for emergency planning, particularly in 
scenarios involving nuclear accidents or other large-
scale disasters. While proximity and evacuation time are 
critical factors in determining shelter assignment, the 
results suggest that additional constraints or criteria may 
be needed to ensure more balanced utilization of shelter 
resources. Incorporating dynamic factors, such as real-
time traffic conditions or shelter occupancy levels, could 
help refine the optimization process and ensure that all 
available shelters are used effectively. Moreover, the 
geographic distribution of shelters should be 
reconsidered to address disparities in population density 
and resource availability. In densely populated areas, 
additional shelters or enhanced capacity may be 
required to prevent overcrowding, while in less 
populated areas, flexible or mobile shelters could be 
deployed to ensure comprehensive coverage. 

 
6. Conclusion 

 
This study provides a comprehensive analysis of the 

multi-dimensional optimization challenges involved in 
nuclear emergency shelter allocation, focusing on 
minimizing evacuation time, ensuring efficient supply 
access, and preventing overcrowding. By integrating GIS 
and MCDA, we evaluated existing shelter locations to 
identify trade-offs between these competing objectives. 
The results demonstrate the complexities inherent in 
emergency evacuation planning, particularly in 
balancing proximity, capacity, and supply accessibility. 

The findings reveal a strong geographic bias in shelter 
allocation, with evacuees being concentrated in shelters 
that minimize evacuation time, often leading to the 
underutilization of other available shelters. This trend 
was observed across all regions in the study, where 
certain shelters were heavily utilized while others 

remained underpopulated. The primary objective of 
minimizing evacuation time, while crucial, often 
overshadowed other considerations such as shelter 
capacity and even distribution, resulting in inefficiencies 
in resource utilization. 

These insights underscore the need for a more 
balanced approach to shelter allocation, particularly in 
areas with high population density. The current 
geographic distribution of shelters, coupled with the 
focus on proximity, highlights the importance of re-
evaluating shelter locations and incorporating additional 
constraints to prevent overcrowding. In densely 
populated regions, the provision of additional shelters or 
enhanced capacities may be necessary, while in less 
populated areas, flexible or mobile shelters could be 
deployed to ensure comprehensive coverage and 
effective use of resources. 

Future models could benefit from incorporating 
dynamic factors such as real-time traffic conditions, 
shelter occupancy rates, and updated supply accessibility 
data to refine the optimization process. Additionally, the 
results suggest that a more flexible, scenario-based 
approach to shelter allocation may be needed to adapt to 
varying population densities and resource availability. 
Overall, the findings of this study contribute to the 
ongoing discourse on optimizing disaster response 
strategies and provide actionable insights for future 
nuclear emergency planning. 
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