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Abstract— Predictive maintenance now heavily relies on digital 

twins and the Internet of Things (IoT), allowing industrial assets 

to be monitored and make real-time decisions. However, adding 

human components to conventional optimization processes 

creates new difficulties as Industry 5.0 moves toward human-

centric systems. Existing frameworks frequently disregard 

human preferences, intuition, and safety considerations, which 

makes human operators distrustful and unwilling to accept 

them. This paper presents a novel multi-objective optimization 

framework to enable predictive maintenance that incorporates 

human feedback into IoT-driven digital twins. The framework 

uses an enhanced particle swarm optimization (PSO) algorithm 

to reconcile competing goals, including maintaining operator 

safety, optimizing asset reliability, and minimizing maintenance 

costs. Furthermore, maintenance tasks are adaptively scheduled 

using built-in reinforcement learning (RL), and optimized model 

parameters are fine-tuned to improve predictive accuracy using 

Bayesian optimization. The latter is based on real-time 

operational data. In addition to promoting a safer working 

environment, the suggested approach significantly reduces 

unplanned downtime and maintenance costs. This research 

contributes to developing more resilient, adaptive, and 

collaborative industrial systems by aligning with the human-

centric principles of Industry 5.0. The proposed model was tested 

using the maintenance duration and improved 10 to 100 hours. 

The model was compared with the PSO algorithm, 

demonstrating its superiority with a 7.5% reduction in total 

maintenance cost and a 6.3% decrease in total downtime. These 

improvements enhance operational efficiency and better human-

machine collaboration by minimizing unnecessary interventions 

and optimizing resource allocation. 

Keywords— Industry 5.0, Digital twin, IoT, Predictive 

maintenance, Enhanced PSO 

I. INTRODUCTION 

The integration of digital twin and Internet of Things (IoT) 
technologies into the industry makes a significant contribution 
to its innovation potential [1-4]. Digital twin technology is a 
real-time virtual representation of physical environments, 
which simulates industries' operations and optimizes 
companies' processes [5-8]. 

The continuous data flow from the sensors updates the 
historical data in operation. Compared to traditional methods, 
proactive and predictive maintenance approaches minimize 
operational interruptions in industries and extend equipment 
lifespan [9-12].  

The advent of Industry 5.0 has shifted the focus towards a 
deeper collaboration between human intelligence and machine 
capabilities, moving beyond the automation-driven approach 
of Industry 4.0. This transition introduces new technological 
requirements, including the need for systems that prioritize 
human factors such as safety, satisfaction, and collaborative 
decision-making alongside technical efficiency [13, 14]. As 
such, Industry 5.0 calls for more advanced optimization 
frameworks that integrate human-machine synergy, allowing 
for more adaptable, context-aware systems in rapidly evolving 
environments. Compared to the old version, Industry 5.0 
requires an advanced optimization approach that considers 
human and technical aspects to ensure performance and user-
centricity. Despite the increasing importance of human-
machine collaboration in existing predictive maintenance 
frameworks, human preferences, intuition, and real-time 
feedback are not sufficiently considered. This deficiency leads 
to wrong decisions, reduced trust in automated systems, and 
reduced adaptability in rapidly changing industrial 
environments [15-20]. 

This study proposes a framework to improve and optimize 
maintenance processes by considering the human factor using 
IoT-based digital twins. This method is established to solve the 
weaknesses in the current system to increase system and 
employee safety, reduce maintenance costs, and balance 
conflicting objectives. The algorithm provides a flexible 
optimization system that complies with Industry 5.0 standards 
and strengthens human-machine collaboration, enabling 
effective decision-making [21-26]. 

The proposed optimization offers three main contributions. 
The first is to interface humans with the machine, allowing 
humans to be integrated into the process. The second is to 
weight the parameters to minimize cost and time using the 
digital twin process. The third is introducing a framework to 
reduce maintenance costs, increase accuracy, and promote 
calibration between humans and the automated system.  

This paper is organized as follows: Section 2 presents the 

related work. Section 3 provides the proposed system 

architecture and optimization methodology. Section 4 

introduces the mathematical model and problem formulation. 

Section 5 gives the simulation setup and results. Section 6 

concludes the research work. 
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II. RELATED WORK 

The predictive maintenance process became significant 
after IoT and digital twin technology were introduced. The 
main task in such an operation is to improve equipment 
reliability, allow data-driven decision-making, and enable real-
time monitoring. The work in this paper investigates a research 
method for Industry 5.0 using optimization method, IoT, and 
digital twin for a successful predictive maintenance method. 
There are several research papers [27, 28] investigating the use 
of IoT to enable real-time data collection for industrial 
equipment. The latest research papers [29, 30] are considering 
machine learning methods to predict the failures of industrial 
systems. The paper in [31] presented a framework that 
combines machine learning with IoT-related data to forecast 
the lifespan of critical components. The studies indicate precise 
predictions by using IoT technology. The work in Industry 4.0 
did not include the human factor in the operation. However, the 
upcoming Industry 5.0 requires the human factor to be 
essential to the operation to increase trust and cooperation. The 
operational accuracy of Industry 5.0 has further increased by 
applying digital twins.  

The paper [32] introduces a digital twin operation that 
duplicates physical assets for major predictive maintenance. 
The advantage of this operation is that it allows real-time 
simulation and analysis for predictive maintenance. The paper 
also demonstrates the precision of decision-making stages. The 
paper [33] indicated that digital twins can lower the risk of 
failures for unplanned operations.  

The studies are important to highlight the application of the 
digital twins, but human-centric factors and multi-objective 
optimizations are not considered in the process. The multi-
objective optimization method is one of the suitable algorithms 
for predictive maintenance strategy. The paper [34] optimizes 
the maintenance schedule, considering reliability and cost 
factors. Furthermore, the paper [35] utilizes machine learning 
methods to modify maintenance in real-time based on the 
conditions of the equipment. Most research papers concentrate 
on technical performance majors without cooperating user 
references as needed in Industry 5.0.  

The literature provides optimization methods for predictive 
maintenance. These methods include IoT and digital twins. 
The methods used today concentrate on cost and reliability 
factors, but little is known about dynamic, real-time 
optimization methods.   

The proposed model presents an optimization framework 

using a multi-objective algorithm that considers the IoT-driven 

digital twins and humans in the mechanisms. The proposed 

model prioritizes safety and human concerns for predictive 

maintenance systems. This research aims to increase the 

flexibility and understandability of predictive maintenance 

approaches. 

III. SYSTEM ARCHITECTURE  

This section describes the methodology for combining 

advanced optimization methods and IoT digital twins into a 

maintenance framework for Industry 5.0. As shown in Figure 

I, the main difference between Industry 4.0 and Industry 5.0 

is the human interaction, including resilience and 

sustainability. 

 
FIGURE I. ARCHITECTURE OF INDUSTRY 4.0 AND INDUSTRY 

5.0 

Figure I illustrate the transition from Industry 4.0, which 
focuses on automation and robotics, to Industry 5.0, which 
integrates human intelligence into production. 

On the left side of the figure, Industry 4.0 is depicted with 
a robot-driven factory where robots receive instructions and 
perform mass production. The primary characteristic here is 
automation, with minimal human involvement. 

In the center, human intelligence plays a crucial role in 
shifting from repetitive tasks to more complex decision-
making. 

On the right side of the figure, Industry 5.0 introduces 
human-robot collaboration, emphasizing mass customization 
rather than generic mass production. This approach enhances 
resilience and sustainability, as seen in the accompanying 
icons representing these principles. 

The flow between the two paradigms highlights how 
industries are evolving to balance automation with human 
creativity and flexibility. 

The work adopts a digital twin model that enables the 

analysis of the equipment's life cycle using real-time data sent 

from the sensors. Digital twin processing offers the advantage 

of simulating the behaviour and monitoring the maintenance 

procedure of the equipment and machinery in the production 

line. The main block of the digital twin architecture is shown 

in Figure II. 

 
FIGURE II. DIGITAL TWIN STRUCTURE 
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The main parts of the framework consist of the IoT sensing 
layer, the digital twin layer, and the human interaction 
optimization layer to operate a maintenance prediction 
mechanism. The designed architecture provides real-time 
monitoring, a data-driven decision model, and human-
machine interaction. Figure II illustrates physical and virtual 
equipment interaction through a digital twin. 

At the bottom, physical equipment collects data through 
embedded sensors. The collected data moves to the processing 
stage, where a system interprets and stores it. 

The processed data is used in the top section to generate a 
virtual representation of the equipment. The cycle is 
completed as the generated insights are used for managing 
physical equipment, enabling real-time monitoring, fault 
detection, and predictive maintenance. 

The digital twin system creates a feedback loop, ensuring 
continuous optimization and improved efficiency. 

The complete framework architecture was generated using 

ChatGPT and demonstrated in Figure III. 

 
FIGURE III. FRAMEWORK ARCHITECTURE LAYERS 

The main units consisting of the framework layers are 
described in the following subsections.  

Figure III provides a multi-layered visualization of an 
advanced smart factory that integrates IoT sensors, Digital 
Twins, and AI-driven decision-making for optimized 
industrial operations. 

The bottom layer represents Digital Twins, creating a 
virtual simulation of machinery and processes. The middle 
layer focuses on IoT sensing optimization, where 
interconnected devices collect real-time data. The top layer 
emphasizes decision-making and maintenance, where AI-
driven analytics predict potential failures, ensuring proactive 
maintenance. 

The human operator's role is also evident, as decision-

making is enhanced through human expertise rather than 

being fully automated. The factory benefits from predictive 

maintenance, resource efficiency, and enhanced operational 

reliability. 

A. IoT Sensing Layer 

The IoT sensing layer is responsible for real-time data 

collection from the equipment's sensor units. The sensors 

transmit data to the digital twin using an IoT gateway. The data 

includes important parameters such as vibrations, temperature, 

pressure, and operational status. 

B. Digital Twin Layer 

The digital twin receives data continuously from the IoT 

sensors within the units and machinery. The data received from 

IoT sensors update the historical data in the storage. The 

updated data remains a database that can be used for failure 

prediction purposes. The prediction is an analysis to identify 

the variation between the historical data and updated data. The 

digital twin model tests various scenarios with different 

maintenance approaches using different decision variables 

before they are implemented in the real system. Implementing 

the digital twin model improves the model’s predictive 

accuracy and reduces the risk included in maintenance 

decisions. 

C. Human Interaction Optimization Layer 

Human interaction optimization contributes by integrating 
real-time user preferences, domain expertise, and adaptive 
decision-making feedback into the optimization process. By 
using the enhanced PSO algorithm with human-in-the-loop 
adaptation, the aim is to reduce cost, increase reliability, and 
enhance safety. 

The human interface actively gathers inputs, including 
operator adjustments, expert-driven parameter tuning, 
heuristic insights, and contextual awareness, ensuring the 
optimization process remains dynamic and responsive to real-
world conditions. Unlike traditional autonomous optimization 
approaches, this framework allows human operators to inject 
qualitative judgment, adjust constraints, and fine-tune 
algorithmic parameters in response to environmental changes, 
operational demands, or unexpected anomalies. 

To facilitate seamless human-machine collaboration, the 
system employs interactive dashboards, real-time monitoring 
tools, and feedback loops that provide users with actionable 
insights and performance metrics. These interfaces enable 
operators to analyze optimization trends, compare different 
parameter configurations, and introduce modifications that 
align with specific operational goals such as energy efficiency, 
resource allocation, or fault tolerance. 

Furthermore, integrating AI-driven decision support 
systems enhances the interaction layer by offering suggestive 
feedback mechanisms, predictive analytics, and scenario-
based recommendations. This ensures that human inputs are 
reactive and proactive in anticipating challenges, mitigating 
risks, and optimizing outcomes. 

By embedding human expertise within the optimization 

cycle, the system achieves a hybrid intelligence approach, 

where algorithmic efficiency is complemented by human 

intuition, strategic reasoning, and contextual adaptability. This 

ultimately leads to a more robust, adaptive, and user-centric 

optimization framework. 
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IV. METHODOLOGY 

The maintenance prediction operation has multiple inputs 
and a single output. The inputs are considered to be multi-
objective functions that produce an efficient system output. 
The multi-objective functions are represented with different 
parameters as input to the system. The introduced 
optimization method fine-tunes the parameter values to yield 
the most efficient system output. The typical multi-objective 
parameters are sensor data, historical repair, operational 
feedback, and asset condition data.  

The introduced optimization method uses the best of three 
different algorithms to produce an accurate solution. The 
algorithms are known as PSO, RL, and Bayesian optimization 
algorithms. The PSO optimization can consider multiple input 
parameters to form a correlation between variables and 
increase the system's efficiency. The RL optimization uses 
feedback from the system to update the learning procedure. 
The updated learning procedure enables accurate decisions to 
be taken with real data. The system operating under such 
conditions is classified as a dynamic operation. The Bayesian 
optimization algorithm can fine-tune the parameters for such 
an operation.  

The combinational use of three methods increases the 

system's reliability and accuracy. Initially, the PSO considers 

a large number of solution functions but reduces to the most 

accurate solution to yield the most accurate output. The RL 

algorithm continuously monitors the system's behaviour and 

feeds back to update the historical data. The Bayesian 

algorithm provides more accurate results for the maintenance 

prediction operation. The combinational use of three 

algorithms provides accuracy for maintenance prediction at 

minimum periods and minimizes the overall cost of the 

operation.  

The enhanced combination of the introduced optimization 

is described in Algorithm I. 

ALGORITHM I. ENHANCED OPTIMIZATION  

Parameter Definitions: 

• swarm_size (N): Number of particles 

• dimensions (D): Size of the problem (number of 

parameters to be optimized) 

• max_iter: Maximum number of iterations 

• w: Inertia weight (coefficient of preservation of the 

previous speed of the particles) 

• c1: Cognitive coefficient (coefficient of attraction of 

a particle to its best solution) 

• c2: Social coefficient (coefficient of regression to the 

best solution in the swarm) 

• v_min, v_max: Speed limits 

• x_min, x_max: Position limits 

Step 1: Initialization Process for the particles  

1. For each and individual particle: 

• [x_min, x_max] ⟵ random selection 

• [v_min, v_max] ⟵ random selection 

• Set the best local position of the particle as the 

starting position. 

2. Set the particle's best local fitness value to infinity. 

• Set the best global position in the swarm equal to 

the position of a random particle. 

• Set the global best fitness value to infinity. 

Step 2: Use RL and PSO for maintenance planning 

1. Start a loop and process the following 

Adaptively schedule maintenance tasks using the RL 

model: 

▪ The RL model determines which maintenance tasks 

to perform and when based on real-time data from 

IoT sensors. 

▪ The model plans maintenance with a dynamic 

decision process based on safety, cost and failure 

risks. 

2. PSO Main Loop (Iterations): iter = 1 to max_iter: 

For each particle: 

▪ Calculate the fitness function of the particle. 

▪ If the current fitness is smaller than the best local 

fitness of the particle: 

o Update the particle's best local position. 

o Update the particle's best local fitness value.  

▪ If current fitness is less than the global best overall 

fitness: 

o Update best global position. 

o Update global fitness best. 

For each particle: 

▪ Update the particle's speed: 

𝑣[𝑖] = 𝑤 ⋅ 𝑣[𝑖] + 𝑐1 ⋅ random()
⋅ (𝑝_𝑏𝑒𝑠𝑡[𝑖] − 𝑥[𝑖]) + 𝑐2
⋅ random() ⋅ (𝑔_𝑏𝑒𝑠𝑡 − 𝑥[𝑖]) 

▪ limit speed 

𝑣[𝑖] = 𝑚𝑎𝑥(𝑚𝑖𝑛(𝑣[𝑖], 𝑣_𝑚𝑎𝑥), 𝑣_𝑚𝑖𝑛) 

▪ update the particle’s location 

𝑥[𝑖] = 𝑥[𝑖] + 𝑣[𝑖] 

▪ limit position 

𝑥[𝑖] = 𝑚𝑎𝑥(𝑚𝑖𝑛(𝑥[𝑖], 𝑥_max ), 𝑥_𝑚𝑖𝑛) 

3. Complete the Iteration 

Step 3: Fine-Tuning Model Parameters with Bayesian 

Optimization 

• Optimize model parameters with Bayesian 

optimization using parameters obtained from PSO: 
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▪ Bayesian Optimization improves the accuracy of 

the predictive maintenance model by fine-tuning 

model parameters. 

▪ This process is used to improve the performance 

and accuracy of the model, based on operational 

data. 

• According to the Bayesian model results, the model 

parameters used in the maintenance process are 

dynamically updated and optimized. 

Step 4: Combining Results with PSO, RL and Bayesian 

• At the end of each iteration: 

▪ PSO updates the position of particles and searches 

for the best solution. 

▪ RL model performs adaptive maintenance planning 

and determines the most appropriate maintenance 

processes. 

▪ Bayesian Optimization makes model parameters 

more precise. 

▪ As a result, maintenance costs are minimized, and 

fault prediction accuracy is increased. 

End Last Repeat 

Step 5: Finalizing the Solution 

• The best global position g_best is considered as the 

optimal solution. 

• The best global fitness value fitness_g_best refers to the 

best fitness result of the solution. 

• Optimized parameters as a result of Bayesian 

Optimization increase the model's prediction accuracy. 

Output: 

• g_best: Optimal solution (best global position) 

• fitness_g_best: Optimal fitness value 

• RL Plan: Adaptive maintenance plan determined by RL 

• Bayesian Optimized Parameters: Fine-tuned model 

parameters 

V. SIMULATIONS AND RESULTS 

A. Simulation Setup 

The details of the equipment used in the simulation are 
described below. 

• Operating System: Windows 11 Pro, 64-bit. 

• Processor: Intel Core i9-12900K, 16 cores with a base 
clock speed of 3.2 GHz and turbo boost up to 5.2 GHz. 

• RAM: 64 GB DDR4, operating at 3600 MHz 

• Storage: 2 TB NVMe SSD for primary storage and 4 
TB SATA SSD for data storage and backup. 

• Graphics Processing Unit (GPU): NVIDIA RTX 3080 
Ti, 12 GB GDDR6X memory. 

• MATLAB Version: MATLAB R2024a with Signal 
Processing, Communication System, and Neural 
Network Toolboxes. 

• Programming Language: MATLAB with integrated 
C/C++ MEX files for optimized computational 
performance. 

• Compiler: Microsoft Visual Studio 2022 C++ Compiler 
(for MEX file compilation). 

• Additional Toolboxes: Optimization Toolbox and 
Statistics and Machine Learning Toolbox for model 
analysis and verification. 

• Parallel Computing Setup: Utilized MATLAB's 
Parallel Computing Toolbox with up to 12 workers 
(parallel threads) for simulation acceleration. 

The predictive maintenance model in this work is trained 
and validated using a publicly available Kaggle dataset, which 
consists of sensor readings and operational data collected from 
industrial equipment.  

The dataset comprises 23,000 samples with multiple sensor 
readings collected over time, covering different operational 
states of industrial machines. Each sample represents a time-
series instance with various sensor parameters. 

The dataset includes multiple sensor modalities, such as 
temperature, vibration, pressure, rotation speed, and power 
consumption, allowing for comprehensive failure pattern 
recognition. 

The dataset provides labelled failure instances, 
distinguishing between normal operation, early warning signs, 
and critical failures. These labels are essential for supervised 
learning and model evaluation. 

The dataset includes data from various machine types and 
operating conditions, enabling robust model generalization. 

The dataset follows a time-series structure, allowing for 
trend analysis and early fault detection using sequential 
modelling techniques. 

By leveraging this dataset, the proposed model ensures that 
the proposed predictive maintenance model is trained on 
diverse, real-world industrial scenarios, improving its fault 
detection accuracy and adaptability to varying operational 
conditions. 

The maintenance intervals are realistic to show the true 
performance of the proposed model. Initially, the proposed 
algorithm iteratively generated possible solutions for the 
maintenance schedules using the defined objective functions. 
The enhanced PSO algorithm helps to escape local minima and 
improves the quality of the solution. The improved algorithm 
has introduced its significant values using the methods listed 
below. 

• Adjust Weighting Factors: Modify the outputs more 
significantly.  

• Enhance Local Search: The number of iterations in the 
local search was increased, and a more sophisticated 
local search strategy, such as gradient descent, was 
implemented. 
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• Dynamic Parameters: Adaptive parameters are adopted 
in the operation to change the iteration or performance 
metrics, leading to better solution space exploration. 

• Added Constraints: Added constraints guide the search 
towards feasible results and potentially produce more 
optimal solutions based on the specific context of the 
optimization problem. 

The algorithm aims to use performance matrices such as 
maintenance interval, cost, downtime, and reliability score. 
The performance achievement of the matrices can be described 
below.  

Maintenance Interval (Hours): 

The selection of the maintenance interval is a critical 
performance metric. The purpose of these metrics is to balance 
system downtime and preventive maintenance. The time taken 
for a repair may be shorter, but it may increase the maintenance 
cost. Therefore, the balance between the two parameters must 
be selected carefully. The other effective point is that longer 
maintenance periods may increase the failure rates. The 
optimization algorithm adjusts the interval to minimize 
unexpected breakdowns and helps to increase the equipment’s 
lifespan.  

Cost: 

The cost of the operation is a key factor in identifying the 
financial maintenance strategy. Comparing the unplanned 
downtime and the optimized preventive maintenance yields the 
system's efficiency. The resulting output produces a cost-
benefit analysis to justify the investment in IoT-based 
predictive maintenance technologies. 

Downtime: 

The downtime parameter indicates the efficiency of 
equipment and machinery. It directly increases productivity 
efficiency in the case of predictive planning against downtime. 
In a predictive maintenance algorithm, downtime reduces the 
time devices remain out of operation. 

Reliability: 

The reliability factor is directly related to the system's 

performance over time. It prevents devices from being out of 

service in critical situations, ensures smooth operation, and 

prevents unexpected breakdowns. A high-reliability value 

indicates the system's robustness and ability to promptly meet 

expected demand. 

VI. RESULTS 

The proposed algorithm considerably reduces the 

maintenance intervals for all equipment in operation. The 

maintenance intervals and scheduling were analyzed to reveal 

the algorithm's applicability. Results are plotted in Figure IV 

for visual examination. 

Figure IV demonstrates the difference between normal and 
optimized maintenance intervals. The plots show the reduction 
of optimized maintenance gain in hours. The data in the 
simulation improved between 10 to 100 hours of maintenance 
duration. The overall cost reduces as the maintenance interval 
reduces. The PSO algorithm sets the maintenance intervals to 
150 hours for all equipment indices. This occurs due to the 

PSO-based approach optimizing maintenance scheduling 
using real-time equipment data from Kaggle while maintaining 
a fixed threshold. The proposed method, however, refines the 
decision criteria, enabling dynamic adjustments to 
maintenance intervals and resulting in a more flexible and 
efficient scheduling strategy. 

 
FIGURE IV. COMPARISON OF THE MAINTENANCE INTERVALS 

The other parameter to consider is the maintenance cost. 

Figure V compares and plots the proposed and the most 

suitable PSO algorithms. 

 
FIGURE V. COST COMPARISON OF THE MAINTENANCE 

The cost reduction plots in Figure V. show the efficiency 

of the proposed method. The results prove that the proper 

allocation of resources minimizes unnecessary interactions and 

concentrates on predictive maintenance that avoids costly 

repairs. The execution of the proposed method yields results 

as: 

Total Cost with Optimized Maintenance Intervals: 

$44600.00 

Cost Reduction: 15.72% 

Cost reduction is significant for large manufacturing 

industries. 

The other effective parameter is to analyze the system's 

total downtime. The downtime analysis is compared with the 

PSO algorithm, and the results are plotted in Figure VI. 
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FIGURE VI. COMPARISON OF THE TOTAL DOWNTIME 

The total downtime under the proposed method is lower 

than that of the PSO-based method. The reduction in this 

dataset is approximately 13 hours, which means the equipment 

remains operational for longer periods, improving overall 

system availability and productivity. 

The proposed algorithm was further examined using 

performance metrics such as the reliability score. The results 

are compared and plotted in Figure VII.  

 

FIGURE VII. RELIABILITY ACHIEVEMENT 

The reliability score identifies the success of the system 

operation. The proposed method scored a higher reliability 

value for all equipment indices. The higher reliability score is 

considered a performance measure to suggest that the proposed 

method is more robust and resilient, especially for critical 

assets. The resulting reliability score guarantees the equipment 

to meet the demands, increase the system’s robustness, and 

reduce unexpected failures. 

VII. CONCLUSION 

The proposed IoT-based predictive maintenance model 
considered well-known performance measure matrices to 
evaluate its success. The model uses real data to show its 
applicability in real-time operations and is compared with a 
well-known PSO algorithm. The proposed model reduces the 
maintenance cost by 15.72%. The tested performance metrics 

such as the maintenance interval, system reliability, and 
downtime demonstrated high improvements. 

The results indicate that the proposed model is superior in 
terms of offering successful maintenance scheduling, reducing 
maintenance intervals, and increasing the lifespan of the 
equipment. The model prevents unexpected failures from 
occurring that are costly in manufacturing.   

The comparison algorithms demonstrate the superiority of 
the proposed model by minimizing equipment downtime, 
enhancing operational availability, and increasing 
productivity. The system’s robustness, demonstrated by the 
reliability score, proves the efficacy of the proposed 
framework.  

The results validate the proposed model to provide a 
superior solution for predictive maintenance that offers a less 
costly and better maintenance strategy. The study also reveals 
another important factor that demonstrates that the proposed 
model has the potential to be integrated with IoT-based 
systems for maintenance management in Industry 5.0. 

However, several limitations of the proposed method must 
be considered. One of the primary concerns is the subjectivity 
and accuracy of human inputs. In industrial settings, the quality 
of data gathered from human-operated sensors or devices may 
vary, leading to inconsistencies that can affect the model's 
predictions. Such inaccuracies could influence the system's 
overall performance, particularly in environments with more 
prevalent human error. Future work can address this by 
improving data collection processes, integrating advanced 
automation, and using more reliable sensor technologies to 
reduce human dependency. 

Additionally, the proposed model's scalability for large-
scale industrial systems remains a challenge. As the system's 
complexity increases, so does the computational demand, 
which may affect the model's applicability in larger operations. 
Exploring ways to optimize computational efficiency, such as 
through cloud computing or parallel processing, could make 
the model more feasible for use in larger industrial settings. 

For future work, more specific research directions can be 

pursued. Applying the model across different industrial 

sectors, such as energy, transportation, or manufacturing, 

would provide valuable insights into its adaptability and 

performance in varying contexts. Testing the model with 

diverse datasets from multiple industries would help identify 

potential challenges and allow for further system refinement. 

Additionally, further integration of the model with IoT-based 

systems, particularly in Industry 5.0, could provide new 

opportunities for automating maintenance decisions and 

incorporating advanced machine learning techniques for 

continuous optimization. 

ACKNOWLEDGEMENT 

Not applicable 

FUNDING 

This research did not receive any outside funding or 

support. The authors report no involvement in the research by 

the sponsor that could have influenced the outcome of this 

work. 



Journal of Metaverse 
Sabuncu and Bilgehan 

 

 
This work is licensed under a Creative Commons Attribution 4.0 International License.  

 

71 
 

AUTHORS` CONTRIBUTIONS 

All authors have participated in drafting the manuscript. 

All authors read and approved the final version of the 

manuscript.  

CONFLICT OF INTEREST 

The authors certify that there is no conflict of interest with 

any financial organization regarding the material discussed in 

the manuscript.  

DATA AVAILABILITY 

The data supporting the findings of this study are available 

upon request from the authors. 

ETHICAL STATEMENT 

This article followed the principles of scientific research 

and publication ethics. This study did not involve human or 

animal subjects and did not require additional ethics committee 

approval. 

DECLARATION OF AI USAGE 

The complete framework architecture was generated using 

ChatGPT. 

REFERENCES 

[1] Deepu, T. S., & Ravi, V. (2021). Exploring critical success factors 
influencing adoption of digital twin and physical internet in electronics 

industry using the grey-DEMATEL approach. Digital Business, 1(2), 

100009. https://doi.org/10.1016/j.digbus.2021.100009  

[2] del Campo, G., Saavedra, E., Piovano, L., Luque, F., & Santamaria, A. 

(2024). Virtual Reality and Internet of Things Based Digital Twin for 

Smart City Cross-Domain Interoperability. Applied Sciences, 14(7), 

2747. https://doi.org/10.3390/app14072747  

[3] Bisanti, G. M., Mainetti, L., Montanaro, T., Patrono, L., & Sergi, I. 

(2023). Digital twins for aircraft maintenance and operation: A 
systematic literature review and an IoT-enabled modular architecture. 

Internet of Things, 100991. https://doi.org/10.1016/j.iot.2023.100991  

[4] Trendowicz, A., Groen, E. C., Henningsen, J., Siebert, J., Bartels, N., 
Storck, S., & Kuhn, T. (2023). User experience key performance 

indicators for industrial IoT systems: A multivocal literature review. 

Digital Business, 3(1), 100057. 

https://doi.org/10.1016/j.digbus.2023.100057  

[5] Zhong, D., Xia, Z., Zhu, Y., & Duan, J. (2023). Overview of predictive 

maintenance based on digital twin technology. Heliyon, 9(4). 

https://doi.org/10.1016/j.heliyon.2023.e14534  

[6] Yao, J. F., Yang, Y., Wang, X. C., & Zhang, X. P. (2023). Systematic 

review of digital twin technology and applications. Visual Computing 
for Industry, Biomedicine, And Art, 6(1), 10. 

https://doi.org/10.1186/s42492-023-00137-4  

[7] Moshood, T. D., Rotimi, J. O., Shahzad, W., & Bamgbade, J. A. (2024). 
Infrastructure digital twin technology: A new paradigm for future 

construction industry. Technology in Society, 77, 102519. 

https://doi.org/10.1016/j.techsoc.2024.102519  

[8] Arowoiya, V. A., Moehler, R. C., & Fang, Y. (2024). Digital twin 

technology for thermal comfort and energy efficiency in buildings: A 

state-of-the-art and future directions. Energy and Built Environment, 

5(5), 641-656. https://doi.org/10.1016/j.enbenv.2023.05.004  

[9] Van Oudenhoven, B., Van de Calseyde, P., Basten, R., & Demerouti, 

E. (2023). Predictive maintenance for industry 5.0: Behavioural 
inquiries from a work system perspective. International Journal of 

Production Research, 61(22), 7846-7865. 

https://doi.org/10.1080/00207543.2022.2154403  

[10] Murtaza, A. A., Saher, A., Zafar, M. H., Moosavi, S. K. R., Aftab, M. 

F., & Sanfilippo, F. (2024). Paradigm Shift for Predictive Maintenance 

and Condition Monitoring from Industry 4.0 to Industry 5.0: A 
Systematic Review, Challenges and Case Study. Results in 

Engineering, 102935. https://doi.org/10.1016/j.rineng.2024.102935  

[11] Ejjami, R., & Boussalham, K. (2024). Resilient Supply Chains in 
Industry 5.0: Leveraging AI for Predictive Maintenance and Risk 

Mitigation. International Journal for Multidisciplinary Research, 6(4), 

1-32. https://doi.org/10.36948/ijfmr.2024.v06i04.25116  

[12] Frick, J. (2023). Future of industrial asset management: A synergy of 

digitalization, digital twins, maintenance 5.0/quality 5.0, industry 5.0 

and iso55000. International Journal of Business Marketing and 

Management, 8(4), 93-99. 

[13] Adel, A. (2023). Unlocking the future: fostering human–machine 

collaboration and driving intelligent automation through industry 5.0 in 
smart cities. Smart Cities, 6(5), 2742-2782. 

https://doi.org/10.3390/smartcities6050124  

[14] Pizoń, J., & Gola, A. (2023). Human–machine relationship—
perspective and future roadmap for industry 5.0 solutions. Machines, 

11(2), 203; 1-22. https://doi.org/10.3390/machines11020203  

[15] Alves, J., Lima, T. M., & Gaspar, P. D. (2023). Is industry 5.0 a human-
centred approach? a systematic review. Processes, 11(1), 193;1-15. 

https://doi.org/10.3390/pr11010193  

[16] Marinelli, M. (2023). From Industry 4.0 to Construction 5.0: Exploring 

the Path towards Human–Robot Collaboration in Construction. 

Systems, 11(3), 152; 1-23. https://doi.org/10.3390/systems11030152  

[17] Peruzzini, M., Prati, E., & Pellicciari, M. (2024). A framework to 

design smart manufacturing systems for Industry 5.0 based on the 

human-automation symbiosis. International journal of computer 
integrated manufacturing, 37(10-11), 1426-1443. 

https://doi.org/10.1080/0951192X.2023.2257634  

[18] Zafar, M. H., Langås, E. F., & Sanfilippo, F. (2024). Exploring the 

synergies between collaborative robotics, digital twins, augmentation, 

and industry 5.0 for smart manufacturing: A state-of-the-art review. 

Robotics and Computer-Integrated Manufacturing, 89, 102769. 

https://doi.org/10.1016/j.rcim.2024.102769 

[19] Zhang, C., Wang, Z., Zhou, G., Chang, F., Ma, D., Jing, Y., ... & Zhao, 

D. (2023). Towards new-generation human-centric smart 
manufacturing in Industry 5.0: A systematic review. Advanced 

Engineering Informatics, 57, 102121. 

https://doi.org/10.1016/j.aei.2023.102121  

[20] Calzavara, M., Faccio, M., & Granata, I. (2023). Multi-objective task 

allocation for collaborative robot systems with an Industry 5.0 human-

centered perspective. The International Journal of Advanced 
Manufacturing Technology, 128(1-2), 297-314. 

https://doi.org/10.1007/s00170-023-11673-x  

[21] Huang, W., Liu, Y., & Zhang, X. (2023). Hybrid particle swarm 
optimization algorithm based on the theory of reinforcement learning 

in psychology. Systems, 11(2), 83. 

https://doi.org/10.3390/systems11020083  

[22] Hu, S., & Li, K. (2023). Bayesian network demand-forecasting model 

based on modified particle swarm optimization. Applied Sciences, 

13(18), 10088. https://doi.org/10.3390/app131810088  

[23] Abdul Karim, S. A., & Tamin, O. (2024). Intelligent System Modeling 

in Industrial 4.0. In Intelligent Systems Modeling and Simulation III: 

Artificial Intelligent, Machine Learning, Intelligent Functions and 
Cyber Security (pp. 1-13). Cham: Springer Nature Switzerland. 

https://doi.org/10.1007/978-3-031-67317-7_1  

[24] Soesanto, J. (2024). Digital Twin and Smart Automation for Bitumen 
Extraction Process. [Master thesis, University of Alberta]. University 

of Alberta Education and Research Archive. https://doi.org/10.7939/r3-

wgex-2h6  

[25] Marugán, A. P. (2023). Applications of Reinforcement Learning for 

maintenance of engineering systems: A review. Advances in 



Journal of Metaverse 
 Sabuncu and Bilgehan 

 

 
This work is licensed under a Creative Commons Attribution 4.0 International License.  

 

72 
 

Engineering Software, 183, 103487. 

https://doi.org/10.1016/j.advengsoft.2023.103487 

[26] Molęda, M., Małysiak-Mrozek, B., Ding, W., Sunderam, V., & 
Mrozek, D. (2023). From corrective to predictive maintenance—A 

review of maintenance approaches for the power industry. Sensors, 

23(13), 5970. https://doi.org/10.3390/s23135970  

[27] Zhong, D., Xia, Z., Zhu, Y., & Duan, J. (2023). Overview of predictive 

maintenance based on digital twin technology. Heliyon, 9(4). 

https://doi.org/10.1016/j.heliyon.2023.e14534  

[28] Abouelyazid, M. (2023). Advanced Artificial Intelligence Techniques 

for Real-Time Predictive Maintenance in Industrial IoT Systems: A 

Comprehensive Analysis and Framework. Journal of AI-Assisted 

Scientific Discovery, 3(1), 271-313. 

[29] Qiu, S., Cui, X., Ping, Z., Shan, N., Li, Z., Bao, X., & Xu, X. (2023). 

Deep learning techniques in intelligent fault diagnosis and prognosis 
for industrial systems: a review. Sensors, 23(3), 1305. 

https://doi.org/10.3390/s23031305  

[30] Meriem, H., Nora, H., & Samir, O. (2023). Predictive maintenance for 
smart industrial systems: a roadmap. Procedia Computer Science, 220, 

645-650. https://doi.org/10.1016/j.procs.2023.03.082 

[31] Rahman, M. S., Ghosh, T., Aurna, N. F., Kaiser, M. S., Anannya, M., 

& Hosen, A. S. (2023). Machine learning and internet of things in 

industry 4.0: A review. Measurement: Sensors, 28, 100822. 

https://doi.org/10.1016/j.measen.2023.100822 

[32] van Dinter, R., Tekinerdogan, B., & Catal, C. (2023). Reference 

architecture for digital twin-based predictive maintenance systems. 
Computers & Industrial Engineering, 177, 109099. 

https://doi.org/10.1016/j.cie.2023.109099 

[33] Weerapura, V., Sugathadasa, R., De Silva, M. M., Nielsen, I., & 
Thibbotuwawa, A. (2023). Feasibility of digital twins to manage the 

operational risks in the production of a ready-mix concrete plant. 

Buildings, 13(2), 447. https://doi.org/10.3390/buildings13020447 

[34] Boumallessa, Z., Chouikhi, H., Elleuch, M., & Bentaher, H. (2023). 

Modeling and optimizing the maintenance schedule using dynamic 

quality and machine condition monitors in an unreliable single 
production system. Reliability Engineering & System Safety, 235, 

109216. https://doi.org/10.1016/j.ress.2023.109216 

[35] Khan, M. F. I., & Masum, A. K. M. (2024). Predictive Analytics And 
Machine Learning For Real-Time Detection Of Software Defects And 

Agile Test Management. Educational Administration: Theory and 

Practice, 30(4), 1051-1057.

 


