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Abstract 

 

In this study, the application of deep learning, particularly Convolutional Neural Networks (CNNs), 

to analyze comet assay images for DNA damage assessment is explored. The comet as-say is a pivotal 

method for detecting DNA strand breaks at the cellular level, essential in geno-toxicity and 

carcinogenicity research. Traditional approaches to analyze these images often in-volve manual labor 

or basic computational tools, which are inefficient, especially with noisy data. This research addresses 

these inefficiencies by developing a custom CNN model to auto-matically classify DNA damage levels 

in comet assay images. The dataset consists of 5,326 im-ages, categorized into six damage levels: from 

undamaged (C0) to extensively damaged (C4), plus an unidentifiable category (C6). Data 

augmentation was employed to enhance the model's robustness by creating varied inputs for training. 

The CNN processes the raw images through several layers to extract features and identify patterns, 

facilitating the classification of DNA damage levels. The model's performance was assessed using a 

confusion matrix, achieving an overall classification accuracy of approximately 92%. Although the 

model was highly accurate in distinguishing severe damage levels, it struggled with closely related 

classes, such as slightly and moderately damaged DNA. This study underscores the potential of deep 

learning in auto-mating and improving the analysis of comet assay images. CNNs offer a more accurate 

and effi-cient alternative to traditional methods, which could significantly advance research in 

genotoxi-city and clinical diagnostics, leading to a better understanding and monitoring of DNA 

damage in biological systems.  
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Derin Öğrenme Algoritmaları ile DNA Görüntülerindeki Hasarın 

Tanımlanması ve Sınıflandırılması 
 

Cengiz GÜNGÖR1*, Ali AKTAŞ2 

 

Özet 

 

Komet testi görüntülerindeki DNA hasarını değerlendirmek için derin öğrenme, özellikle de Evrişimli 

Sinir Ağları (CNN) uygulaması incelenmiştir. Komet testi, hücresel düzeyde DNA kırılmalarını tespit 

etmek için kullanılan ve genotoksikite ve kanserojenite araştırmalarında temel bir yöntemdir. Bu 

görüntülerin geleneksel analiz yöntemleri genellikle manuel işlemler veya basit hesaplamalı araçlar 

içermekte olup, özellikle gürültülü verilerde verimsizdir. Bu çalışma, komet testi görüntülerindeki 

DNA hasar seviyelerini otomatik olarak sınıflandırmak için özel bir CNN modeli geliştirerek bu 
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verimsizliklerin üstesinden gelmeyi amaçlamıştır. Veri seti, hasarsız (C0) durumdan yoğun hasarlı 

(C4) duruma kadar altı farklı hasar seviyesi ve tanımlanamayan bir kategori (C6) olmak üzere toplam 

5.326 görüntüden oluşmaktadır. Modelin sağlamlığını artırmak için veri genişletme tekniği 

kullanılmıştır. CNN, ham görüntüleri çeşitli katmanlardan geçirerek özellik çıkarma ve desen tanıma 

yaparak DNA hasar seviyelerinin sınıflandırılmasını kolaylaştırır. Modelin performansı, bir karışıklık 

matrisi kullanılarak değerlendirilmiş ve yaklaşık %92 genel sınıflandırma doğruluğuna ulaşmıştır. 

Model, şiddetli hasar seviyelerini ayırt etmede oldukça başarılı olsa da, hafif ve orta derecede hasarlı 

DNA gibi yakın sınıflarda zorluk yaşamıştır. Bu çalışma, derin öğrenmenin komet testi görüntülerinin 

analizini otomatize etme ve iyileştirme potansiyelini vurgulamaktadır. CNN'ler, genotoksikite ve 

klinik teşhis alanındaki araştırmalara önemli katkılar sağlayabilecek daha doğru ve verimli bir 

alternatif sunarak biyolojik sistemlerdeki DNA hasarının daha iyi anlaşılmasına ve izlenmesine olanak 

tanıyabilir. 

 

 Anahtar Kelimeler : Tek Hücreli Jel Elektroforezi, Derin Öğrenme, Komet Testi 

 

 

1. Introduction 
 

The single-cell gel electrophoresis test, commonly known in the literature as the "comet assay," is one 

of the most frequently used methods in molecular and cellular biology for detecting DNA damage. 

Developed by Ostling and Johansson in 1984, this test has been refined over the years to accurately 

measure DNA fragmentation levels. DNA plays a critical role in drug development and toxicology, 

and concerns about DNA damage are significant due to its potential to lead to various diseases, 

including cancer and chronic conditions. The comet assay or single-cell gel electrophoresis is 

recommended for detecting DNA strand breaks. In this assay, damaged DNA migrates out of the 

nucleus, forming a comet-like tail while undamaged DNA remains in a circular shape. The comet 

assay is highly sensitive, efficient, and cost-effective, providing researchers with extensive 

information. It is utilized to evaluate the genotoxicity and carcinogenic potential of compounds in 

toxicology, understand disease pathogenesis in medical research, and monitor disease conditions in 

clinical medicine [1-7]. 

DNA damage in comet assay images can be determined through visual scoring or computer image 

analysis tools. Various image analysis programs, such as CometQ, OpenComet, and HiComet, have 

been developed to automate the analysis process. These tools use predefined methods to segment and 

assess comet scores; however, they all rely on manually labeled image features and general machine 

learning techniques, such as support vector machines. Manual labeling and feature adjustment are 

labor-intensive and time-consuming tasks that limit the efficiency of these methods, especially when 

dealing with noisy images and multiple aspect ratios. These tools enhance the efficiency and 

impartiality of evaluating DNA damage, providing valuable insights for research in toxicology, 

medical research, and clinical medicine. Neural networks have the capability to process raw images 

and can be particularly successful in detecting and scoring comet tails through an end-to-end learning 

process. These networks can often be trained using transfer learning on large, general image datasets, 

enabling them to surpass manually engineered features [6-11]. 

An evaluation of the literature on DNA studies reveals that the number of studies utilizing deep 

learning methods is quite limited. Since 1992, only 17,000 publications have been indexed in the Web 

of Science database, with a similar number found in the Scopus database. Typically, these publications 

focus on assessing the results of the comet assay method to examine different cell types and DNA 

damage. The existing studies emphasize the continuous classification of images by expert researchers 

and the evaluation of the results. An analysis of the Web of Science and Scopus databases concerning 

comet assay and deep learning studies indicates that there are very few studies available. The 

distribution of these studies by country, as shown in Figure 1, illustrates the geographic distribution 

of comet assay-related research indexed in the Web of Science database [12-16]. 
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When the literature studies are examined in detail, we evaluated the following studies as important. 

Sreelatha et al. developed CometQ, an automated tool for detecting and measuring DNA damage 

using comet assay images. They primarily used the Support Vector Machine (SVM) algorithm to 

distinguish between silver-stained and fluorescent-stained images, and to classify the comet types into 

weak, moderate, or severe damage. This study utilized over 600 images, achieving a positive 

predictive value of 90.26% and a sensitivity of 93.34% [17]. Lee et al. developed a method to classify 

DNA damage patterns in comet assay images. RGB images were converted to grayscale, followed by 

preprocessing steps including scale bar correction, mean filtering, and moving average filtering. The 

Canny edge detector algorithm was used to eliminate overlapping comets. For 20 test datasets 

containing over 300 images, the average classification accuracy was calculated to be 86.80% [18]. 

Gyori et al. introduced OpenComet, an open-source software for the automatic analysis of gel 

electrophoresis images used in comet imaging experiments. The image processing involved adaptive 

thresholding based on intensity histograms to obtain binary images, where black pixels represent the 

background and white pixels denote comets. The brightest regions were assumed to be the comet 

heads, and intensity profile analysis was used to separate the head and tail regions. The system’s 

sensitivity was calculated at 63.95% [11]. The MelNet model, developed using the KITTI dataset, 

was tested alongside EfficientDet, YoloV5, and MobileNetV3. Upon evaluation, the MelNet 

architecture achieved the highest class accuracy value of 95.52%, depending on different epoch values 

[53]. Sreelatha et al. also proposed a method for effectively and fully automatically detecting comets 

in noisy silver-stained comet assay images. Their software measured parameters such as comet length, 

tail length, head diameter, percentage of DNA in the head, percentage of DNA in the tail, and tail 

moment. The analysis consisted of three stages: comet detection, comet segmentation, and comet 

measurement. Shading correction was applied to correct images, and contrast enhancement was used 

to distinguish comets from the background. Gaussian filtering was applied to smooth images and 

obtain elongated spots. Otsu thresholding was then used to obtain binary images. The detected objects' 

contours were refined using morphological closing. The system's sensitivity was calculated at 89.30% 

[19]. Sansone et al. proposed an algorithm for automatic comet analysis. The study was conducted in 

two stages: comet detection and comet segmentation. Gaussian pre-filtering and morphological 

operators were used for comet detection in the first stage, and fuzzy clustering was used for comet 

segmentation in the second stage. High sensitivity results were obtained in both stages, with an overall 

sensitivity of 78.96% [20]. Böcker et al. developed a system based on specially developed software 

and hardware for the automatic analysis of DNA damage, which also requires human interaction. The 

analysis was divided into two parts: automatic cell recognition and comet classification, and comet 

measurement. Mathematical morphology-based algorithms were used in the preprocessing, 

segmentation, and feature classification stages. The histogram analysis, entropy maximization, k-

Figure 1. Studies on the Comet Assay in conjunction with deep learning in the Web of Science database. 
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means clustering, and contour-based procedures reported in the study failed. Therefore, two 

procedures were used to calculate the threshold value and analyze the image content. Adaptive 

thresholding was used to improve segmentation results. Parallel programming was utilized in their 

software to achieve faster results. The system's sensitivity was calculated at 95.20% and specificity at 

92.70% [21]. Gonzalez et al. developed a software program called CellProfiler for automatically 

identifying, measuring, and extracting comet assay information. The Gaussian mixture model and 

expectation-maximization algorithm were used to identify comets. The methods used in the study 

were not explicitly explained. The performance of the CellProfiler software was mainly compared 

with the CASP software [22]. Rosati et al. conducted a review comparing deep learning models 

trained on publicly available datasets for comet damage detection. They achieved a sensitivity of 74% 

from the training process  [23]. Attila et al. developed an application using existing classifier methods 

in MATLAB for special analysis of comet images. The success rate achieved was around 68% [24]. 

Srikanth et al. used the VGG19 architecture from the transfer learning structure in their deep learning 

model. By changing the hyperparameter values on the model, different test results ranging from 39% 

to 84% were obtained [25]. Afiahayati et al. used the Faster R-CNN object detection algorithm in 

their study and achieved a 95% success rate using the ResNet50 and ResNet101 architectures, which 

were trained on the COCO dataset using the transfer learning method [26]. 

 

1.1. Deep learning 

Deep learning is a machine learning technique that enables computer systems to maximize the use of 

experience hidden in data, work with complex real-world data, handle these complex data with nested 

hierarchies, and achieve more successful results by defining these hierarchies with simple 

relationships. According to another definition, deep learning is a machine learning technique that 

combines artificial neural networks, artificial intelligence, graphical modeling, optimization, model 

recognition, and signal processing to make more powerful predictions [27]. In deep learning, multi-

layered machine learning models apply non-linear transformations to the data at each layer and 

transfer it to a higher, more abstract layer, where supervised or unsupervised learning takes place. The 

performance of a machine learning technique greatly depends on the good representation of input 

data. Therefore, preprocessing of data is a critical step in the process of creating learning systems. 

During the feature extraction process, experts work to reduce the dimensions of the input data's 

features. The performance of shallow learning models like Support Vector Machines (SVMs) and 

logistic regression depends on this feature extraction process. This process is important but also very 

time-consuming and exhausting. Solving this problem with algorithms that simplify the task is a more 

practical approach. Deep learning techniques are one of the best solutions for handling high-

dimensional data and extracting distinguishing information from data. Deep learning algorithms have 

the ability to automate feature extraction without needing expert knowledge [28]. Since deep learning 

is a type of machine learning, the basic principles of traditional machine learning have influenced the 

development of deep networks [29]. Components such as the activation function and optimization 

algorithm play a crucial role in producing accurate results in the efficient and effective training of a 

deep learning model [30]. 

 

1.2. Activation Functions 

In biological neurons, signals coming from dendrites accumulate in the cell body, and if the resulting 

signal strength exceeds a certain threshold, it is transmitted to the output, i.e., the axon; otherwise, it 

is not transmitted. Similarly, in an artificial neuron, this task is performed by the activation function. 

The activation function decides whether to transmit the signal [31]. Commonly used activation 

functions in the literature are given in Figure 2. 
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The step activation function, a simple step function commonly used for a single neuron model, 

produces values of “1” or “0” based on the threshold. If the input is less than zero, it produces “0”; 

otherwise, it produces “1”. As seen in Figure 2-A, the function loses its distinctiveness because the 

input takes the value of 0. Moreover, it is not possible to use this function to update weights since it 

only produces values of 0 or 1. Therefore, it is not used in deep learning algorithms [32]. The linear 

activation function is defined as  f(x)  =  Wx  or ŷ = 𝑊𝑇x + b. Here, ŷ is the output produced by the 

network, 𝑊𝑇  is the weight vector, 𝐱 is the independent variables or network inputs, and bbb is the 

bias. As seen in Figure 2-B, the dependent variable changes proportionally with the independent 

variable. The linear activation function is effectively used in shallow architectures, but its use in deep 

learning problems is limited [33]. The sigmoid activation function, also known as the logistic 

activation function, converts the independent variables of the infinite range into simple probabilities 

between 0 and 1 [33]. The graph of the sigmoid activation function is shown in Figure 2-C [29]. The 

hyperbolic tangent activation function, widely used for artificial neural networks that need to produce 

values between -1 and 1, is shown in Figure 2-D. Its shape is similar to the sigmoid function, but it 

has the advantage of allowing negative numbers. However, like the sigmoid function, the outputs 

produced are not zero-centered and it faces the problem of vanishing gradients [34]. The softmax 

activation function is a generalization of logistic regression that can be applied to continuous data 

instead of binary classification. Since it produces output for more than two classes, it is usually located 

in the output layer of a classifier. If a high number of classes, such as a thousand, are predicted for a 

classifier, a variant of the softmax activation function, hierarchical softmax, is used. The hierarchical 

softmax activation function separates the thousands of predicted classes using a tree structure [33]. 

Recently, a simple function called the Rectified Linear Unit (ReLU) has become very popular as it 

produces very good experimental results. The ReLU activation function is defined as 𝒇(𝑥) =
max (0, 𝑥) As seen in Figure 2-E, it is zero for negative values and increases linearly for positive 

values [35]. The Leaky ReLU activation function is used to address the dying ReLU problem. The 

Leaky ReLU activation function provides a small gradient when the neuron is not active. The Leaky 

ReLU activation function is defined as shown in Figure 2-F [36]. 

 

1.3. Optimization Algorithms 

Machine learning relies on techniques that minimize errors in equations through optimization. In 

optimization, the focus is on conditions and parameters that produce predictions closest to expected 

values. Adjusting weights to produce better predictions is known as parameter optimization. Similar 

to the scientific method development process, hypotheses are repeatedly altered and tested until the 

best description for real-world events is found. Each set of weights represents a hypothesis indicating 

the significance of inputs. Weights are assumptions about the correlation between the inputs and the 

Figure 2. Activation Functions 
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desired outputs of the network. Optimization plays a central role in applied mathematics and is widely 

used for modeling real-world problems. It encompasses complex systems in fields such as image 

science, finance, signal processing, and machine learning. Most optimization algorithms are iterative, 

meaning they perform successive calculations to converge on the desired solution. In programming, 

loops are used for iteration. In the 𝒊’th iteration, the value of the input 𝒙𝒊 is calculated. The loop 

terminates only when a convergence criterion or stopping criterion is met [37]. In deep learning, 

commonly used optimization algorithms are gradient-based algorithms, including: Gradient Descent, 

Gradient Descent with Momentum, Nesterov Accelerated Gradient (NAG), Adagrad, Adadelta, 

RMSprop, Adam, AdaMax, Nadam, AMSGrad. 

 

1.4. Data Augmentation 

When selecting a model, it is crucial to choose one that not only performs quickly but also adequately 

fits the data structure. Insufficient or excessive fitting of the model to the data can significantly impact 

predictions [33]. To avoid issues like underfitting and overfitting, a balance between bias and variance 

must be found. To address overfitting, more data can be collected, or if additional data collection is 

not feasible, the existing training set can be augmented using data augmentation techniques. In image 

processing, data augmentation techniques include mirroring, flipping, scaling, adding noise, blurring, 

and cropping existing images. However, it is essential to avoid transforming the training set into a 

data dump by adding unnecessary data. Besides data augmentation, selecting a simpler model instead 

of a complex one, applying regularization, or analyzing the model's performance on the validation set 

and applying early stopping to the algorithm are viable strategies. 

 

1.5. Hyperparameters 

In machine learning, model inputs are called parameters, and hyperparameters are settings adjusted 

during optimization to train the model better and faster. Any configuration setting that can affect 

performance is a hyperparameter [33]. Many deep learning algorithms have specific hyperparameters 

that control the behavior of the algorithm. These hyperparameters affect not only the training time 

and memory cost but also the quality of the model, i.e., how well the model is trained on the training 

set and how accurately it predicts new inputs [29]. 

 

1.6. Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are deep learning models specifically designed to process 

image data and extract features. These models consist of layers capable of recognizing and classifying 

patterns in a dataset. In each layer, filters are applied to the input data to create feature maps, 

highlighting important features. These feature maps are then combined to recognize more complex 

features, ultimately leading to classification [38-39]. Advancements in neural network architectures 

have significantly progressed, especially with the success of the AlexNet architecture in achieving 

remarkable performance on image data. Improvements in computational power have enabled the 

development of more complex models. This study focuses on classifying laboratory images obtained 

from comet assay experiments into five different levels of damage using a CNN architecture. Various 

models' performances are evaluated based on their success in classifying the damage levels. 
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2. Materials and Methods 

In this study, peripheral blood mononuclear cell images were used for conducting the comet assay. 

The preparation of images followed the steps schematically illustrated in Figure 3, adhering to the 

comet assay methodology. The comet assay, or single-cell gel electrophoresis, is a technique used to 

detect DNA damage following the interaction of cells with harmful substances. This sensitive, 

reliable, and rapid method can identify DNA damage at the cellular level. It is widely used to measure 

DNA damage levels, which are indicators of genotoxic and cytotoxic effects. The method involves 

isolating cells and embedding them in agarose gel on a slide. These cells are then subjected to an 

electrophoretic field, which causes DNA fragments of varying charge and molecular weight to migrate 

based on the extent of damage. These DNA fragments are subsequently stained with a DNA-specific 

fluorescent dye and evaluated under a fluorescence microscope. The comet assay is effective in 

accurately, precisely, and quickly measuring single or double-strand breaks in DNA caused by various 

genotoxic agents such as oxidative stress, toxic heavy metals, chemical agents, drugs, and ultraviolet 

radiation, using minimal sample volume [8-10]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset 

After completing the comet assay analysis, the next step is the labeling process, which must be 

performed by experienced researchers with great attention to detail. Various methods have been 

studied to determine the extent of DNA damage in comet assay studies. In some studies, DNA damage 

is measured by comparing the ratio of damaged cells, which show migration, to intact cells. While 

this method provides information on overall DNA damage, it does not offer insights into DNA damage 

at the cellular level. Other studies have measured DNA damage at the cellular level by scoring cells 

based on their migration rates. DNA migration is typically expressed in micrometers (μm). The length 

of migration is related to the fragmentation rate and, consequently, to DNA damage. Migration length 

can be measured in several ways: using a micrometer, rulers overlaid on cell photographs, or monitors 

in imaging systems. The length of the tail alone does not accurately reflect DNA damage; the 

percentage of DNA dragged in the tail region is also important. This has led to the definition of the 

term "tail moment," which is described by the following equation [8-9, 40]. 

Figure 3. Schematic Representation of Comet Assay Analysis Methodology 
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 tail moment = tail length 𝑥 (
fluorescence intensity in the tail

 𝑜𝑟
percentage of DNA in the tail

)  (1) 

 

In this study, the tail analysis images were independently labeled under the guidance of two 

experienced biology researchers. The open-source software LabelImg was used for manual labeling 

of the images. 

In deep learning studies, data dependency often poses a significant issue. To address this problem, 

data augmentation is employed, where different characteristics of the same image (such as rotation, 

skewing, width shift, height shift, zooming, horizontal flip, and vertical flip) are altered to increase 

the number of images and used in the training process. This approach aims to achieve higher accuracy 

rates during training. Utilizing more data can lead to greater success [41-43]. The dataset is divided 

into 80% for training and 20% for testing. 

The labeled images consist of those with noisy backgrounds and those with clean backgrounds. All 

images were included in the labeling process for training purposes. It was considered beneficial to use 

the obtained images in the study, as images captured by expert researchers may not always be clean. 

However, it was particularly noted that including all images in the training set could pose some 

challenges in classification (Figure 4). 

 

 

 

2.1. Deep Learning Methodology 

In this study, a specialized model was developed for the comet assay segmentation task and compared 

with some basic models. The model was implemented using the open-source TensorFlow library. The 

study consists of several distinct sections. The main structure can be divided into feature extraction, 

classification, and bounding box sections. As shown in Figure 5, the process begins by taking the 

images as input into the program. The labeled sections are then individually separated into training, 

testing, and validation datasets. Feature maps are generated, and a scanning process is conducted to 

identify the regions most likely to contain the objects. Subsequently, a classifier refines the position 

by creating bounding boxes around the detected objects. In the model structure, the convolutional 

layer is the most important component of the CNN. The neural structures in the first convolutional 

layer are not connected to every pixel in the input image. They are only connected to the pixels within 

their receptive fields. However, in the second convolutional layer, each neuron is connected only to 

the neurons within a small region of the first layer. This architecture allows the first hidden layer to 

focus on low-level features and then combine these into higher-level features in the subsequent hidden 

layer. The architecture of the CNN is illustrated as shown in Figure 5. 

 

 

 

 

Figure 4. Comet analysis was performed on cells using fluorescence microscopy to evaluate DNA damage. The extent of damage was 
classified into five distinct categories. (0) No damage: Characterized by a circular image with no tail, indicating a robust structure (C0). 
(1) Low damage: The tail length is up to twice the diameter of the nucleus (C1). (2) Moderate damage: The tail length ranges from two 
to three times the diameter of the nucleus (C2). (3) High damage: The tail length is approximately three times the diameter of the 
nucleus (C3). (4) Severe damage: The tail length exceeds three times the diameter of the nucleus (C4). Additionally, any objects outside 
the nuclear structure were identified as errors (C6). 
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In the convolutional layers, multiple trainable filters are applied to the inputs simultaneously, enabling 

the system to detect multiple features within the inputs. By having all neurons in a feature map share 

the same parameters, the aim is to reduce the number of model parameters. When the CNN model 

learns to recognize a pattern in one location, it will be able to recognize similar patterns in different 

locations more easily. Input images typically have three channels (R, G, B: Red, Green, Blue) since 

they are usually colored images. If the image is grayscale, it will be processed as a single channel. 

When looking more closely at the processing, in a convolutional layer, a neuron located at a specific 

row and column in the feature map depends on the outputs of the neurons in the previous layer across 

all feature maps, considering the width and height strides. The following equation shows how the 

output of a neuron is calculated: 

 

                                                                      𝑧𝑖,𝑗,𝑘 = 𝑏𝑘 + ∑  
𝑓ℎ−1

𝑢=0  ∑  
𝑓𝑤−1

𝑣=0
∑  

𝑓
𝑛′−1

𝑘′=0
𝑥𝑖′,𝑗′,𝑘′  𝑋 𝑤𝑢,𝑣,𝑘′,𝑘                                                 (2) 

 

                                                                                                         𝑖′ = 𝑖 𝑥 𝑠ℎ + 𝑢                                                                             (3) 

 

                                                                                                         𝑗′ = 𝑗 𝑥 𝑠𝑤 + 𝑣                                                                            (4) 

 

In this equation, 𝒛𝒊,𝒋,𝒌 represents the output of the neuron located at the 𝑖′𝑡ℎ row and 𝑗′𝑡ℎ column of 

the 𝑘 feature map in the convolutional layer. 𝑠ℎ and 𝑠𝑤 denote the vertical and horizontal stride 

lengths, while 𝑓ℎ and 𝑓𝑤 represent the height and width of the receptive field, respectively. 𝑓𝑛′ 

indicates the number of feature maps in the previous layer. 𝒙𝒊′,𝒋′,𝒌′ represents the output of the neuron 

located at the 𝑖′𝑡ℎ row, 𝑗′𝑡ℎ column, and 𝑘′𝑡ℎ feature map in the previous layer. 𝑏𝑘 is the bias term 

for the 𝑘′𝑡ℎ feature map. 𝑤𝑢,𝑣,𝑘′,𝑘 represents the connection weight between a neuron in the 

𝑘′𝑡ℎ feature map of the previous layer and its input located at the 𝑢′𝑡ℎ row and 𝑣′𝑡ℎ column of the 

𝑘′𝑡ℎ feature map. In TensorFlow, each input image is represented as a three-dimensional tensor with 

dimensions corresponding to height, width, and channels. The convolutional layer weights, when 

considering batch size, are represented as four-dimensional tensors. In the max-pooling or pooling 

layer, aggregation is performed, reducing memory usage and the number of parameters while 

retaining the maximum values. Typical CNN architectures are built by stacking a few convolutional 

layers, followed by a pooling layer, then additional convolutional layers, and another pooling layer. 

This structure is repeated, leading to a gradual reduction in the spatial dimensions of the image as it 

Figure 5.  CNN model Structure 
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progresses through the network, while the depth of the network increases. At the top of this stack, 

fully connected layers are added, forming a feedforward network, which ultimately outputs a 

prediction value in the final layer. When constructing the model, convolution kernels are often chosen 

to be large. As the kernel size decreases, the model uses fewer parameters and requires less 

computation, potentially resulting in better performance. In the model's operation, the first 

convolutional layer may use a large kernel size with a stride of two or more, aiming to reduce the 

spatial dimensions without losing much visual information. The input images for the model's training 

were processed at resolutions of 224x224, 180x180, 196x196, and 128x128 pixels. 

 

2.2. Performance Metrics 

Performance metrics were determined using the confusion matrix of the developed models. The goal 

is to identify, for example, how many images from the C0 class were misclassified into the C1 class. 

In the confusion matrix, each row represents the actual class, while each column represents the 

predicted class value. 

• True Positive (TP): The case where a condition that is generally positive is correctly predicted 

as positive. 

• True Negative (TN): The case where a condition that is negative is correctly predicted as 

negative. 

• False Positive (FP): The case where a condition that is negative is incorrectly predicted as 

positive. 

• False Negative (FN): The case where a condition that is positive is incorrectly predicted as 

negative. 

The confusion matrix provides a wealth of information, including accuracy, precision, recall, and F1 

score, which are critical for evaluating the performance of the study's results. Given the imbalanced 

class distribution in the dataset, the F1 score is particularly important [45 - 47]. The F1 score is 

calculated as the harmonic mean of precision and recall, providing a single metric that balances the 

two. The equations for these metrics are as follows: 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
     (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (7) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
    (8) 

 

Considering the imbalanced numerical distribution of the dataset, focusing on the F1 score is crucial 

for a comprehensive evaluation of the model's performance. 

 

2.3. Convolutional Neural Network Architecture 

In this study, different models were developed to identify the architecture that yields the highest 

performance. The best-performing model was then compared and further developed using pre-defined 

existing model architectures. The models, defined in Table 1 below, were prepared and trained using 

the images. 
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Table 1. Hyperparameter values 

HiperParameter  Values 

CNN Layers 4, 5, 6, 7 

Filter Size 6, 16, 32, 64, 128, 256 

Pixel Size 128, 180, 196, 224 

Kernel Size 3, 5, 7 

Dense Layer 1, 2, 3, 4, 5  

Epoch 50, 100, 200 

Batch Size 16, 32, 128 

Optimizer Adam, SGD, Nadam, Adamax  

 

Hyperparameter tuning is a critical aspect of designing an effective convolutional neural network 

(CNN) architecture. CNNs have shown remarkable success in various computer vision tasks such as 

image classification, object detection, and segmentation. However, their performance largely depends 

on the choice of hyperparameters. This study highlights the importance of hyperparameter tuning in 

CNNs. Typically, CNNs include several hyperparameters that significantly affect their performance, 

such as "learning rate," "batch size," "number of filters," "kernel size," and "dropout rate." Proper 

hyperparameter tuning is crucial to ensure the model’s convergence, generalization, and efficiency. 

Additionally, selecting an appropriate learning rate is vital to prevent slow convergence or 

overshooting the target. The batch size determines the number of examples used in each training 

iteration. The number of filters and kernel size in the convolutional layers affect the model’s capacity 

to learn hierarchical features from the input data. Choosing the right number and size of filters is 

crucial for effective feature extraction. Dropout is a parameter that helps prevent overfitting by 

randomly dropping a portion of neuron outputs during training. An appropriate dropout rate is 

necessary to balance model complexity and generalization. Hyperparameter tuning can be time-

consuming and computationally expensive, especially for large datasets and complex CNN 

architectures. Improper hyperparameter settings can lead to overfitting, where the model performs 

well on training data but fails to generalize to unseen data. Proper hyperparameter selection can 

significantly impact the model’s convergence, generalization, and efficiency [37]. 

The hyperparameters in Table 1 define the specific configurations for each model, such as the number 

of CNN layers, number of filters, input image sizes, kernel sizes, dense layers, number of epochs, 

batch sizes, and optimizers. These models were trained on the dataset to evaluate their performance 

and identify the most effective architecture for comet assay segmentation. The training process 

involved inputting the labeled images, extracting features, and optimizing the model parameters to 

achieve the best classification results. The CNN model structure was carefully designed and optimized 

due to the close boundaries resulting from the similarities between classes. Considering all the 

hyperparameter values in Table 1, there are a total of 4320 different CNN network combinations. 

Training and comparing all these combinations would require significant time. Consequently, 50 

models were trained, and the results of 10 models were tabulated [48- 49]. 

In convolutional neural network architectures, increasing the depth (number of convolutional layers) 

and width (number of filters) of the hyperparameters enhances the learning capacity of the model 

during training. However, having more network weight parameters in models with limited datasets 

increases the risk of overfitting. To mitigate this overfitting issue, regularization techniques such as 

dropout, batch normalization, and data augmentation are employed. During the development phase of 

the CNN architecture, the impact of changing hyperparameter values on model training was 

investigated. The goal was to determine the most suitable hyperparameter configuration for the model. 

Table 2 presents some of the model configurations tested. Using excessively large kernel sizes in 
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model training can reduce the training performance. Smaller kernel sizes result in fewer parameters 

and require less computation. In convolution operations, the first layer can use larger kernels (such as 

5x5 or 7x7), which does not cause significant information loss but reduces the spatial dimensions of 

the image. To prevent overfitting and improve the quality of training, dropout regularization is added 

to the model [50 - 52]. The explanations of the data defined in Table-2 are provided. NCL(Neuronal 

Connectivity Layer), NF (Number of Features), KS (Kernel Size), IID(Pixel size), Bs(Batch Size), 

Opt(optimization algorithm), Acc(Accuracy). 

 

Table 2.The feature structures of a model 

 

 

 

 

 

 

 

 

 

As a result of the studies conducted, the performance levels were obtained as shown in Table 2. The 

accuracy rates and F1 scores of the developed models are presented in Figure 6. 

 

In the specified 10 models, the convolutional layers were set to 5, 6, and 7, with the number of filters 

varying between models, including values such as 6, 16, 32, 64, 128, 256, and 512. The number of 

epochs was set to either 50 or 100. Additionally, in studies using transfer learning, the accuracy values 

and F1 scores of the models are shown in Figure 7. After the model trainings were completed, the 

results were evaluated, and the confusion matrix shown in Figure 8 was prepared. 

 

 

 

 

Model 

No 

NCL NF KS IID Epoch Bs Opt Acc F1 

1 6 6, 16, 32, 64, 128, 256 5, 3, 3, 3, 3,3 224 50 8 SGD 0.84 0.83 

2 6 16, 16, 32, 32, 64, 128 5, 3, 3, 5, 5, 5 196 50 8 Adam 0.86 0.85 

3 7 16, 16, 32, 32, 64, 128, 128 5, 5, 5, 5, 5, 5, 5 128 100 16 Adam 0.87 0.87 

4 7 16, 32, 32, 32, 64, 128, 256 5, 3, 3, 3, 7, 7, 7 128 200 16 SGD 0.85 0.84 

5 5 16, 32, 32, 64, 256 5, 3, 3, 5, 5 196 100 16 Adamax 0.85 0.85 

6 6 16, 32, 64, 128, 256,512 5, 3, 3, 3, 3,3 196 200 16 Adam 0.82 0.81 

7 6 6, 32, 32, 64, 128, 256 5, 3, 3, 3, 3,3 128 100 16 Adamax 0.88 0.88 

8 6 16, 32, 32, 128, 128 5, 3, 3, 3, 7, 7 224 100 16 Adam 0.89 0.88 

9 7 16, 32, 32, 128, 128, 256 5, 3, 3, 3, 3,3 224 100 8 Adam 0.9 0.9 

10 5 16, 32, 128, 256, 512 3, 3, 3, 3, 3 196 200 8 Adamax 0.92 0.92 

Figure 6. Custom models Accuracy and F1 Scores 
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Based on the DNA damage values, the classes were defined as C0, C1, C2, C3, C4, and C6, as 

previously mentioned. Predictions were made on the images in the test dataset. Out of 270 images 

with a C0 damage level, 261 were correctly predicted as C0 (True Positive). Due to similarities with 

the C1 class, 9 images were incorrectly classified as C1 (False Negative). 

Similarly, when examining the prediction values for other classes, it was generally observed that the 

errors occurred in the classes adjacent to the class being analyzed, due to high similarities. For C0 

class predictions, (2+1+3) images were classified as false positives for adjacent classes. The 

calculations were performed based on these values using equations (4, 5, 6, and 7). 

 

3. Results 

Comet images were classified into five classes (C0, C1, C2, C3, C4, C6) with approximately 92% 

accuracy. The success of the classification primarily depends on accurately labeling the data by 

determining the most precise distinctions. To further increase the success rate, it is necessary to use 

images with more distinctive features that can differentiate the classes, which means improving image 

quality is essential. One of the key observations in this study is that distinguishing between C0 and 

C3 images is easier, whereas distinguishing between C0 and C1 images is more challenging. This 

observation is evident from the confusion matrix. A detailed examination of the results shows that the 

predicted classes are very close to the actual classes, to the extent that even an expert might fail in 

Figure 7. Transfer Learning EfficientNet model and MobilNet model Accuracy and F1 scores 

Figure 8. Confusion Matrix 
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classifying the images. Similarities between images in neighboring classes directly affect the success 

rate. Therefore, having more specific data is critical to improving classification success rates. In this 

study, techniques such as group normalization and dropout were used to prevent overfitting. The 

ReLU activation function was preferred based on the results. The Adam optimizer was used as the 

optimization function. Models were developed with different network layers, trained for 50, 100, and 

200 epochs. A table of randomly selected models from these was created, as shown in Table 2. 

Overall, the aim of this study was to develop a model with a high accuracy rate capable of effectively 

classifying comet images. However, improvements can be made by increasing the sample size and 

using more specific features for training. After training and testing, the performance of the prepared 

models was compared across different model combinations. The accuracy results of the prepared 

network models and models trained with the transfer learning method are shown in Figures 7 and 8. 

 

4. Conclusion and Future Works 

 
In the continuation of the study, the developed model will be used as the backbone in the Faster-

RCNN architecture, which demonstrates very good performance in object recognition, and will be 

employed for the detection and classification of real DNA damage images. The obtained DNA 

damage images will be categorized into predefined classes based on the extent of damage. This will 

increase the number of DNA damage images using real images. Depending on the increase in the 

number of images, retraining can be performed at specific intervals, and the model's performance 

will be enhanced to higher levels. 
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