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Abstract  Öz 
 

Creating balanced datasets is a significant challenge that 

substantially affects the performance of machine learning 

models in the classification of agricultural products. In this 

research, we tried to overcome this challenge by using an 

unbalanced dataset containing information on 7 date palm 

(Phoenix dactylifera L.) and 2 pistachio (Pistacia vera L.) 

cultivars. The aim of the study is to compare the 

classification performance of machine learning models on 

an unbalanced dataset and a balanced dataset using the 

SMOTE technique. Initially, classification was performed 

on the unbalanced dataset using machine learning 

approaches. Among the machine learning models applied 

on the unbalanced dataset, the Linear-SVM model showed 

the highest accuracy rate with an accuracy rate of 92,62%. 

In the data set extended by applying the SMOTE 

technique, the RBF-SVM model again showed the highest 

accuracy rate with 95,55% accuracy rate. In summary, our 

study highlights the difficulties in machine learning-based 

agricultural crop classification due to data unbalances. 

Utilizing the SMOTE technique for oversampling was 

effective in overcoming this obstacle and improving 

classification accuracy. 

 

 

 

Keywords: Machine learning, SMOTE, fruit 

classification, oversampling. 

  

Dengeli veri kümeleri oluşturmak, tarımsal ürünlerin 

sınıflandırılmasında makine öğrenimi modellerinin 

performansını önemli ölçüde etkileyen önemli bir 

zorluktur. Yapılan bu araştırmada, 7 hurma (Phoenix 

dactylifera L.) ve 2 Antep fıstığı (Pistacia vera L.) 

çeşidine ait bilgileri içeren dengesiz bir veri kümesi 

kullanarak bu zorluğun üstesinden gelinmeye 

çalışılmıştır. Çalışmanın ana hedefi, makine öğrenmesi 

modellerinin dengesiz veri kümesi ve SMOTE tekniği ile 

dengelenmiş veri kümesi üzerindeki sınıflandırma 

başarısını karşılaştırmaktır.  Başlangıç olarak, dengesiz 

veri kümesi üzerinde makine öğrenimi yaklaşımları 

kullanılarak sınıflandırma yapılmıştır. Dengesiz veri 

kümesinde uygulanan makine öğrenmesi modelleri 

içerisinde %92,62 doğruluk oranı ile en yüksek doğruluk 

oranını Linear-SVM modeli göstermiştir. SMOTE tekniği 

uygulanarak genişletilen veri kümesinde ise %95,55 

doğruluk oranı ile en yüksek doğruluk oranını RBF-SVM 

modeli göstermiştir. Özetle, çalışmamız makine öğrenimi 

tabanlı tarımsal ürün sınıflandırmasında veri 

dengesizliklerinden kaynaklanan zorlukların altını 

çizmektedir. Aşırı örnekleme için SMOTE tekniğinden 

yararlanmak, bu engelin üstesinden gelmede ve 

sınıflandırma doğruluğunu artırmada etkili olmuştur. 

 

Anahtar Kelimeler: Makine öğrenmesi, SMOTE, meyve 

sınıflandırma, aşırı örnekleme. 
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1. INTRODUCTION 

 

Dates (Phoenix dactylifera L.) are the fruit of the date palm tree. Being the dominant 

species of the Phoenix genus, these plants belong to the Aceraceae family, commonly 

known as the palm family, holding significant importance (Echegaray et al., 2023). The 

encompass around 200 types and over 2500 species worldwide (Koklu et al., 2021). 

Dates hold great agricultural significance in numerous parts of the world, particularly 

in the Middle East, North Africa, and Pakistan (Yıldız, 2019). Kirmizi Pistachio 

(Pistacia vera L.), also known as Antep Fistigi, is a variety of nut commonly grown in 

Mediterranean and Middle Eastern countries (Çağlar et al., 2017). It is a small tree or 

shrub that produces a greenish-yellow fruit, which is the actual nut. Enclosed within a 

hard, woody shell, the fruit splits open upon ripening to reveal the nut inside. The nut 

is oval or oblong-shaped, displaying a greenish-brown color with a wrinkled surface. 

Siirt Pistachio (Pistacia vera L.) native to the Siirt and Sanliurfa provinces in Turkey 

(Aydın, 2018), is another type of nut. It is also referred to as Siirt Pistachio or simply 

Siirt Pist. Although it bears similarities to Antep Fistigi, it is considered a distinct 

cultivar with a unique flavor profile. Like many other fruits, date and pistachio can be 

classified using machine learning (ML) techniques based on their genetic varieties. For 

instance, genetic variety features such as fruit eccentricity, roundness, compactness, 

solidity etc., can be utilized for fruit classification. The classification process primarily 

relies on using images of the fruits as the training dataset. Features are extracted from 

these images, and a classifier is trained using the features to classify the fruits. Machine 

learning (ML) techniques can be utilized to perform this classification task. To select 

the most suitable method, it is crucial to test the dataset. Additionally, factors such as 

dataset size, number of features, and data characteristics also influence the method 

selection. 

 

This study aims to reduce the negative effects of classifying unbalanced datasets. The 

unbalanced dataset used in this study exhibits an unbalanced distribution of images of 

different fruit types. In machine learning, unbalanced datasets lead to problems such as 

poor generalization, reduced efficiency and inaccuracy. To remove the unbalance and 

achieve a balanced data distribution, the SMOTE oversampling technique was applied. 

The use of the SMOTE oversampling technique aims to balance the dataset by 

equalizing the number of samples from minority classes with the number of samples 

from the class with the highest number.  The main objective of this research is to 

improve the classification and subclassification accuracy of ML models when working 

with unbalanced data sets. To study and improve the classification performance of 

machine learning models on both unbalanced and balanced datasets, the study consists 

of two phases. In the first phase, we investigate the performance of machine learning 

methods on unbalanced datasets. In the second stage, the performance of machine 

learning models on the balanced dataset after applying SMOTE is analyzed. 

 

For the purpose of this study, data on the genetic characteristics of dates and pistachios 

were collected from various sources. In order to classify and compare these data, the 

performances of seven different machine learning models such as Decision Tree, 

Random Forest, Logistic Regression, Support Vector Machine, Multi-Layer 

Perceptron, K-Nearest Neighbor and Naive Bayes were examined.  Performance 

measures such as accuracy, balanced accuracy, precision, sensitivity, specificity, F1-
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score and ROC analysis of all models were calculated and compared to evaluate the 

effectiveness of ML models. 

 

In the context of agricultural product classification, this study is one of the studies that 

analyze in detail the effect of imbalanced datasets on classification performance and 

how SMOTE balances this effect. Examining the effect of SMOTE on subclasses in a 

multi-class problem and verifying data integrity with JSD differentiates this study from 

the existing literature. While it is common in literature to use SMOTE for one-class or 

two-class datasets, this study performs a detailed analysis on the classification of 9 

different fruit varieties. 

 

Within the scope of the study, the research on similar studies is described in the second 

section. In the third section, the dataset used and the numerical and percentage 

distribution of the data according to the classes are given. The working principle of the 

SMOTE technique proposed in the study and the classification performances of the ML 

methods examined are also explained under this heading. Hyperparameter optimization 

is also presented in this section. In the fourth section, the criteria used to measure the 

classification performance of ML methods are explained. The classification 

performance results of ML methods are presented in detail in this section. In the fifth 

section, the results are evaluated. The architecture of the proposed model is summarized 

in Figure 1. 

 

 
 

Figure 1. The Architecture of the Proposed Model for This Study. 

 

 



F. Bal, F. Kayaalp Performance Comparison of Smote-Based Machine Learning Models on Unbalanced Datasets 

179 

2. LITERATURE REVIEW 

 

Similar studies and applications are analyzed in this section of the study. The focus was 

on the performance of ML methods based on SMOTE.  In a study conducted by 

Chemchem et al., wheat yield dataset was predicted using classical ML methods and 

ML methods combined with SMOTE over-sampling. The ML methods used in the 

study were Support Vector Machine (SVM), k-Nearest Neighbor (KNN), Gradient 

Boosting, Adaptive Boosting (AdaBoost), Decision Tree (DT), Random Forest (RF), 

Multi-Layer Perceptron (MLP), and Naïve Bayes (NB). The best result among the 

classical ML methods was achieved with RF, which had an accuracy ratio of 99,40%. 

Similarly, the best result for the combined SMOTE sampling based ML methods was 

also obtained with RF, measuring 99,22% (Chemchem et al., 2019).  Xiao et al. studied 

corn disease identification using an improved Gradient Boosting Decision Tree 

(GBDT) method. They generated synthetic data by applying SMOTE sampling to the 

corn disease dataset. The performance of GBDT method was compared with other ML 

methods, such as Logistic Regression (LR), Linear SVM, Radial Basis Function (RBF) 

SVM, DT, and NB. The accuracy ratio of the GBDT method was measured as 92.51% 

(Xiao et al., 2019).  In another study, Recurrent Neural Networks (RNN), Long Short-

Term Memory (LSTM), Gated Recurrent Unit (GRU) were applied to tomato powdery 

mildew disease. The best accuracy among methods was achieved with RNN for the 

unbalanced dataset, measuring 89,80%. For the unbalanced dataset, both LSTM and 

GRU methods achieved the same accuracy of 56% (Varshney et al., 2021). A study 

conducted by Divakar et al., aimed to detect plant disease using a deep learning method. 

The unbalanced apple disease dataset was balanced using SMOTE over-sampling. The 

study examined the performance of several pre-trained CNN models for the apple 

disease classification. Among these models, DenseNet achieved the highest accuracy 

ratio of 92,88% (Divakar et al., 2021). Wang et al. proposed the prediction of chronic 

obstructive pulmonary disease (COPD) using unbalanced data. After evaluating the 

performance of classical ML methods, SMOTE over-sampling was applied to the 

unbalanced dataset. Among the classical ML methods, natural gradient boosting 

(NGBoost) achieved the highest accuracy rate of 91,1%. After applying SMOTE 

sampling, Extreme Gradient Boosting (XGBoost) achieved an accuracy rate of 80,5% 

(Wang et al., 2023).  An application was developed by Bhardwaj et al., for the 

prediction of wine quality using ML methods. They generated 2381 samples from 12 

original samples using the SMOTE method. RF, XGBoost, AdaBoost, KNN, and DT 

methods were used for the study. The best accuracy among the methods was achieved 

by AdaBoost and RF, both with an accuracy ratio of 100% (Bhardwaj et al., 2022). In 

another study conducted by Umer et al., the analysis of scientific paper citation was 

performed using textual features and SMOTE re-sampling techniques. ML models such 

as Extra Tree Classifier (ETC), DT, LR, AdaBoost, SVM, and RF were utilized in the 

study. The best accuracy ratio was achieved by ETC with 98,28% (Umer et al., 2021). 

Çelik et al., conducted a study on text classification using re-sampling techniques with 

SMS data. LR, KNN, SVM, DT, RF, XGBoost, and ANN models were used in the 

study. The dataset included spam, advertisement, and normal SMS data. LR yielded the 

best results when the SMOTE technique was applied to the SMS data. The accuracy 

ratio of LR was 80,07% (Çelik, 2020).  

 

The summary of literature has presented the performances of classical ML methods 

using SMOTE techniques. The accuracy ratios of all examined studies were checked. 
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In this current study, ML methods based on SMOTE sampling were developed to 

classify different types of dates and pistachios.  

 

 

3. MATERIALS AND METHODS 

 

3.1. Materials 

 

The data used for this study are the data shared by (Koklu et al., 2021). There are 34 

genetic varieties of 7 different date fruits, which include Kirmizi Pistachio (K_PISTA), 

Siirt Pistachio (S_PISTA), Barhee (Berhi), Deglet Nour (Deglet), Sukkary (Dokol), 

Rotab Mozafati (Iraqi), Ruthana (Rotana), Safawi (Safavi) and Sagai (Sogay), resulting 

in a total of 3046 date and pistachio fruit data. The number of data points and the 

percentage of the classes for date and pistachio fruits in the unbalanced dataset are 

given in Table 1. The list of features used for genetic varieties of fruits is given in Table 

2. The plot showing the unbalanced distribution of the dataset is displayed in Figure 2. 

To examine the performance of ML methods, 80% of the data is allocated for training, 

and 20% is reserved for testing. 

 

 
 

Figure 2. The Data Distributions of Dates and Pistachios on the Unbalanced Dataset. 

 

Table 1. Number of Fruit Species Data in the Unbalanced Dataset. 

 

Fruit Names Total Data Number 
The Percentage of the 

Data 

Barhee 65 0,021339 

Deglet Nour 98 0,032173 

Sukkary 204 0,066973 

Rotab Mozafati 72 0,023637 

Ruthana 166 0,054497 

Safawi 199 0,065331 

Sagai 94 0,030860 

Kirmizi Pistachio (K_PISTA) 1232 0,404464 

Siirt_Pistachio (S_PISTA) 916 0,300722 
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TOTAL 3046 1,000000 

Table 2. The Feature Names of Fruits’ Genetic Varieties 

 

Major Axis Skew RR Kurtosis RR 

Minor Axis Skew RG Kurtosis RG 

Eccentricity Skew RB Kurtosis RB 

Equivalent Diameter Roundness Mean RR 

StdDev RR Compactness Mean RG 

StdDev RG Shape Factor 1 Mean RB 

StdDev RB Shape Factor 2 Extent 

Solidity Shape Factor 3 Aspect Ratio 

Perimeter Shape Factor 4  

 

3.2. Hyperparameter Tuning of ML Methods 

 

Optimizing hyperparameters in a machine learning (ML) algorithm is an essential part 

of the training process and is considered a fundamental practice for achieving effective 

implementation (Belete & Huchaiah, 2022). There are several hyperparameter 

optimization (HPO) algorithms. Some of these include Grid Search, Random Search, 

Bayesian Search, and Genetic Algorithms. In this study, the Randomized Search 

algorithm (RSA) has been used. The main purpose of RSA is to sample a certain 

number of value configurations in the hyperparameter space. This technique allows 

better exploration of the hyperparameter space when the number of combinations can 

be very large (Sher et al., 2023). RSA reduces the computational burden associated 

with combinations of values in the hyperparameter space and reaches the optimum 

values by random sampling (Anugerah Simanjuntak et al., 2024). This random 

sampling helps to avoid local optima that trap deterministic methods such as Grid 

Search (Boyd et al., 2024).  

 

Significant changes were observed in the performance measures of the models after 

hyperparameter optimization. Especially for SVM, C and Gamma parameters 

significantly affected the accuracy rates by determining the decision boundaries of the 

model. The RBF kernel function gave the most successful result on the multi-class 

imbalanced dataset. In the Random Forest model, the number of trees and the splitting 

criterion (Gini/Entropy) are important factors, and it was observed that the Gini 

criterion gave better results after SMOTE. In the KNN model, the number of neighbors, 

distance criterion (Manhattan) and weighting (Distance) choices increased the success 

of the model. The number of hidden layers and the activation function (Tanh) were 

critical variables in the MLP model. The analysis shows that hyperparameter 

optimization plays an important role in improving model accuracy and generalization 

ability. 

 

In this study, since the combination of values in the hyperparameter space is large, the 

optimal hyperparameters are determined by Random Search. Additionally, cross 

validation was applied during the HPO of all ML models, and a cross-validation value 

of 5 was chosen. HPO was conducted on a machine equipped with 64 GB RAM, and 

NVIDIA GeForce RTC 3060 graphics cards, and running on the Ubuntu operating 

system. 
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3.3. Proposed Method 

 

Classifying unbalanced datasets has long been a significant challenge in machine 

learning. One effective approach to convert unbalanced datasets into balanced ones is 

through the application of the SMOTE technique. The Synthetic Minority Over-

Sampling Technique is a widely adopted statistical method to handle class unbalance 

in machine learning (Özdemir et al., 2021).  This technique was first introduced by 

(Chawla et al., 2002). and was inspired by a method developed by Ha and Bunke in 

1997 (Ha & Bunke, 1997), which was successful in handwriting recognition tasks. 

Rather than using traditional data augmentation techniques like image rotation, as 

proposed by Ha & Bunke, SMOTE focuses on augmenting each individual sample from 

the minority class. The SMOTE method helps balance class distributions by generating 

synthetic instances for the minority class (Yavaş et al., 2020). These synthetic samples 

are created through interpolation between existing minority class samples and 

incorporated into the balanced dataset. This technique helps to balance the class 

distribution and reduces the model’s bias toward the majority class. The steps of the 

SMOTE method are outlined in Table 3, and its formula (1) is provided below. 

 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + (𝑥𝑗 − 𝑥𝑖) ∗ 𝛽         (1) 

 
SMOTE technique has some disadvantages. One of them is that the synthetic data is 

also produced within the majority class region (Sağlam & Cengiz, 2022). Another issue 

is the creation of new instances that do not actually exist, solely based on existing 

instances (Özdemir et al., 2021). Finally, it can lead to a distortion of the true class 

distribution. In this study, the over-sampling method was chosen to preserve the 

samples in the balanced dataset. The dataset used in this study consists of unbalanced 

data with different classes. Referring to Table 1, K_PISTA accounts for 40% of the 

dataset, while Barhee of Date only represents 2%. In the balanced dataset, the class 

with the highest number of data points is Kirmizi Pistachio (K_PISTA), which has 1232 

data points. 

 

Table 3. The Working Principles of SMOTE Technique. 

 

Process Definition 

P1: 
The 𝑘 nearest neighbors are looking for every feature belonging to 

minority class. 

P2: 
Taken the difference between a feature belonging to the minority class 

and its k nearest neighbor 

P3: 
A random number 𝛽 is chosen between 0 and 1. Then, multiply this 

number by the value found in STEP P2.  

P4: New features are obtained using Equation 1 (Yavaş et al., 2020).  

P5: Steps 1, 2, 3 and 4 are repeated to generate number of features. 

 

After implementing SMOTE, the total number of data points in the balanced dataset 

decreased from 3046 to 2250. The values for all classes were adjusted to align with the 

class that had the highest count, which is K_PISTA. The balance achieved in the dataset 

after applying the SMOTE technique is shown in Table 4. Additionally, Figure 3 
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presents a plot depicting the balanced distribution of the dataset following the 

application of SMOTE. 

 

 
 

Figure 3. The Data Distributions of Date and Pistachio Dataset After Applying 

SMOTE Technique. 

 

This data distribution leads to misleading results during classification with machine 

learning models. To obtain more accurate results in the classification, the data 

distribution of the dataset should be balanced.  

 

Table 4. Number of Fruit Species Data in the Dataset After Applying SMOTE. 

 

Fruit Names Total Data Number 
The Percentage of the 

Data 

Barhee 250 0,111111 

Deglet Nour 250 0,111111 

Sukkary 250 0,111111 

Rotab Mozafati 250 0,111111 

Ruthana 250 0,111111 

Safawi 250 0,111111 

Sagai 250 0,111111 

Kirmizi Pistachio (K_PISTA) 250 0,111111 

Siirt_Pistachio (S_PISTA) 250 0,111111 

TOTAL 2250 1,000000 

 

There are several methods to achieve data balance in the dataset, and one of them is the 

SMOTE technique. After applying SMOTE, the similarity relationship between the 

original and synthetic data was analyzed using Jensen-Shannon Divergence (JSD). JSD 

is an explicit measure of the similarity between two probability distributions 

characterized by their symmetric and bounded properties (Menéndez et al., 1997). The 

distributions between synthetic and original data are shown in Figure 4 with the T-

distributed Stochastic Neighbor Embedding (t-SNE) algorithm. The original and 

synthetic data overlap in some regions. However, in some regions the synthetic data 

appears to have different distributions than the original data. The red dots appear to be 
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clustered separately from the blue dots, which may indicate that the synthetic data 

contains deviations from the original distribution or forms new patterns. These 

deviations were analyzed with Jensen-Shannon Divergence Distance (JSD) and the 

deviation values are shown in Table 5. 

 

 
 

Figure 4. Representing the Distributions Between Synthetic and Original Data  

With t-SNE. 

 

Those with a JSD distance greater than 0,3 between the synthetic and original data were 

not included in the training of the models because they showed significant separation. 

Values greater than 0,3 are marked with “*” symbol in Table 5. 

 

Table 5. Jensen-Shannon Distance of Synthetic Data Generated With SMOTE to the 

Original Data. 

 

Feature  

Names 

Jensen-Shannon 

Divergence  

Distance 

Feature  

Names 

Jensen-Shannon 

Divergence 

Distance 

Perimeter 0,2568 Mean RR* 0,3589 

Major Axis 0,3420 Mean RG* 0,3588 

Minor Axis* 0,3527 Mean RB* 0,3574 

Eccentricity 0,2781 StdDev RR 0,2522 

Equivalent 

Diameter* 
0,3513 StdDev RG 0,1502 

Extent 0,1166 StdDev RB 0,1852 

Aspect Ratio 0,0021 Skew RR 0,2093 

Roundness 0,3173 Skew RG 0,2613 

Compactness 0,2953 Skew RB 0,2149 

Shapefactor_1 0,0021 Kurtosis RR 0,0975 

Shapefactor_2 0,3443 Kurtosis RG 0,1629 

Shapefactor_3 0,2976 Kurtosis RB 0,1589 

Shapefactor_4 0,2243 Solidity 0,2354 
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3.3.1. Support Vector Machine 

 

Support Vector Machine (SVM) is a supervised machine learning method initially 

proposed by Vapnik (Cortes & Vapnik, 1995). It is designed to tackle quadratic 

optimization challenges and is widely employed for classification purposes (Cortes & 

Vapnik, 1995). The main goal of SVM is to create a decision boundary that effectively 

divides the various classes. This boundary is represented by a hyperplane, which is 

placed to maximize the margin between the different classes. The support vectors, 

which are the data points nearest to this decision boundary, are critical in determining 

the class separation. One key advantage of SVM is its efficient use of memory during 

the classification phase, as it works with a subset of the training data. The 

hyperparameter settings for the SVM model are listed in Table 6. 

 

Table 6. The Best Parameter for SVM Model 

 

ML Models 
The Best Hyperparameter 

for the Unbalanced Dataset 

The Best Hyperparameter 

after applying SMOTE 

Technique 

RBF-SVM 

C: 8180,247659224931 

Gamma: 6,952230531190703 

Class Weight: None 

Decision Function Shape: 

Ovo 

Optimization Time: 

62,45651459693909 seconds 

C: 8180,247659224931 

Gamma: 6,952230531190703 

Class Weight: None 

Decision Function Shape: 

Ovo 

Optimization Time: 

22,32699489593506 seconds 

Linear-SVM 

C: 359,5227379674209  

Gamma: 542,6447347075766 

Class Weight: None 

Decision Function Shape: 

Ovo 

Optimization Time: 

30,011558771133423 seconds 

C: 113,63644767419068 

Gamma: 6,952230531190703 

Class Weight: Balanced 

Decision Function Shape: 

Ovr 

Optimization Time: 

9,646587371826172 seconds 

Polynomial-

SVM 

C: 7282,263486118596 

Gamma: 632,3059305935794 

Class Weight: Balanced 

Decision Function Shape: 

Ovo 

Optimization Time: 

1075,8052697181702 seconds 

C: 6334,137565104235 

Gamma: 803,6721768991144 

Class Weight: Balanced 

Decision Function Shape: 

Ovr 

Optimization Time: 

7,240705251693726 seconds 

Sigmoid-SVM 

C: 3745,501188473625 

Gamma: 731,994041811405 

Class Weight: None 

Decision Function Shape: 

Ovo 

Optimization Time: 

30,27118468284607 seconds 

C: 3745,501188473625 

Gamma: 731,994041811405 

Class Weight: None 

Decision Function Shape: 

Ovo 

Optimization Time: 

14,745770692825317 seconds 
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3.3.2. Random Forest 

 

Random Forest (RF) is a supervised machine learning technique introduced by Breiman 

to solve classification and regression challenges (Breiman, 2001). It utilizes ensemble 

learning by creating a collection of decision trees, which are generated randomly and 

aggregated together. This method improves the model's classification performance by 

utilizing the combined insights from all the trees. The hyperparameter values for the 

RF model are provided in Table 7. 

 

Table 7. The Best Parameters for RF Model.  

 

ML Model 
The Best Hyperparameter for 

the Unbalanced Dataset 

The Best Hyperparameter 

after applying SMOTE 

Technique 

Random 

Forest 

N Estimators: 230 

Maximum Depth: 17 

Minimum Samples Leaf: 6 

Minimum Samples Split: 4 

Max Features: Sqrt 

Bootstrap: True 

Criterion: Entropy 

Class Weight: None 

Maximum Samples: 

0,9997459059575176 

CCP Alpha: 

0,0013671964826997285 

Optimization Time: 

93,80823493003845 seconds 

N Estimators: 165 

Maximum Depth: 17 

Minimum Samples Leaf: 3 

Minimum Samples Split: 2 

Max Features: Log2 

Bootstrap: True 

Criterion: Gini 

Class Weight: Balanced 

Maximum Samples: 

0,9699893371393026 

CCP Alpha: 

0,001545661652886743 

Optimization Time: 

68,85771036148071 seconds 

 

3.3.3. K-Nearest Neighbor 

 

The K-Nearest Neighbor (KNN) classifier is a method used to categorize samples by 

assigning them to the class of their closest, previously labeled neighbors (Cover & Hart, 

1967). It relies on two key factors: distance and neighborhood (K) number. The distance 

measures the proximity between the predicted point and other points, while K 

determines the number of nearest neighbors considered for the prediction. The 

hyperparameter values of the KNN model are presented in Table 8. 

 

Table 8. The Best Parameter for KNN Model. 

 

ML Model 
The Best Hyperparameter for 

the Unbalanced Dataset 

The Best Hyperparameter 

after applying SMOTE 

Technique 

K-Nearest 

Neighbor 

N Neighbors: 15 

Weights: Distance 

Metric: Manhattan 

Algorithm: Brute 

Optimization Time: 

2,3644299507141113 seconds 

N Neighbors: 11 

Weights: Distance 

Metric: Manhattan 

Algorithm: Kd_Tree 

Optimization Time: 

2,491448163986206 seconds 
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3.3.4. Decision Tree 

 

Decision trees, consisting of root nodes, intermediate nodes, branches and leaves 

(Bakan & Kanbay, 2024), are a supervised machine learning algorithm that divides 

similar groups into smaller subsets (Quinlan, 1986). DTs are one of the easy-to-

construct and understand models. A tree structure consists of leaf nodes labelled with 

different classes and internal nodes connected to two or more child nodes, forming a 

test node (Quinlan, 1996). The hyperparameter values of the DT model are presented 

in Table 9. 

Table 9. The Best Parameter for DT Model. 

 

ML Model 
The Best Hyperparameter for 

the Unbalanced Dataset 

The Best Hyperparameter 

after applying SMOTE 

Technique 

Decision 

Tree 

Maximum Depth: 13 

Minimum Samples Leaf: 4 

Minimum Samples Split: 15 

Max Features: Log2 

Criterion: Entropy 

Class Weight: None 

Splitter: Best 

Maximum Leaf Nodes: 12 

CCP Alpha:  

0,028181963210002724 

Optimization Time: 

1,9292397499084473 seconds 

Maximum Depth: 11 

Minimum Samples Leaf: 10 

Minimum Samples Split: 16 

Max Features: None 

Criterion: Gini 

Class Weight: Balanced 

Splitter: Best 

Maximum Leaf Nodes: 16 

CCP Alpha: 

0,0039236219609223855 

Optimization Time: 

6,359211444854736 seconds 

 

3.3.5. Naïve Bayes 

 

Naive Bayes (NB) is a straightforward probabilistic classifier based on Bayes' theorem 

(Aggarwal & Kaur, 2013). NB assumes that all features in a data set are independent. 

It is called “naïve” because of this assumption. However, this assumption is often not 

true in real world data. In a Naive Bayes classifier, the class label represents the 

hypothesis, while the feature values serve as the evidence. The classifier aims to 

determine the class label with the highest likelihood based on the given feature values. 

The hyperparameter settings for the NB model are in Table 10. 

 

Table 10. The Best Parameter for NB Model. 

 

ML Model 
The Best Hyperparameter for 

the Unbalanced Dataset 

The Best Hyperparameter 

after applying SMOTE 

Technique 

Naïve Bayes 

Var Smoothing: None 

Priors: 

0,0007455074367977082 

Optimization Time: 

0,6440117359161377 seconds 

Var Smoothing: None 

Priors: 0,004592489919658672 

Optimization Time: 

0,5791840553283691 seconds 
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3.3.6. Multi-Layer Perceptron 

 

A Multilayer Perceptron (MLP) is a type of neural network model consisting of several 

layers of artificial neurons, commonly known as perceptron’s. The input data is fed into 

the network and passed through multiple hidden layers before reaching the output layer 

(Shubhangi & Pratibha, 2021). Each layer performs a non-linear transformation on the 

input, allowing the network to capture complex and non-linear relationships between 

the input and output. The hyperparameter settings for the MLP model are provided in 

Table 11. 

 

Table 11. The Best Parameter for MLP Model. 

 

ML Model 
The Best Hyperparameter for 

the Unbalanced Dataset 

The Best Hyperparameter 

after applying SMOTE 

Technique 

Multi-Layer 

Perceptron 

Hidden Layer Sizes: (194, 

138) 

Activation Function: Tanh 

Solver: Adam 

Alpha: 0,024598491974895578 

Learning Rate: Invscaling 

Maximum Iteration: 100 

Optimization Time: 

510,3250524997711 seconds 

Hidden Layer Sizes: (50, 105) 

Activation Function: Tanh 

Solver: Lbfgs 

Alpha: 0,09248643902204486 

Learning Rate: Adaptive 

Maximum Iteration: 100 

Optimization Time: 

110,45194363594055 seconds 

 

3.3.7. Logistic Regression 

 

Logistic regression (LR) was introduced by David Cox in 1958 (Cox, 1958). LR is a 

classification technique typically used when the dependent variable has two possible 

outcomes (Prasetio & Harlili, 2016). It is a straightforward and efficient algorithm that 

is easy to implement and can efficiently handle particularly large datasets with minimal 

computational effort. To prevent overfitting, LR can be regularized by adding a penalty 

term to the cost function. While it is primarily used for binary classification, LR can 

also be adapted for multi-class classification problems using methods such as One-vs-

All or SoftMax Regression. The hyperparameter settings for the LR model are shown 

in Table 12. 

 

Table 12. The Best Parameter for MLP Model. 

 

ML Model 
The Best Hyperparameter for 

the Unbalanced Dataset 

The Best Hyperparameter 

after applying SMOTE 

Technique 

Logistic 

Regression 

C: 8,075401551640624 

Penalty: L1 

Solver: Saga 

Maximum Iteration: 1000 

Optimization Time: 

77,50988411903381 seconds 

C: 8,075401551640624 

Penalty: L1 

Solver: Saga 

Maximum Iteration: 1000 

Optimization Time: 

60,024758100509644 seconds 
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4. RESULTS 

 

This section of the study presents the evaluation metrics and descriptions of the model’s 

classification performances, including the classification performance results of the 

models before and after applying SMOTE.  

 

4.1. Evaluation Metrics 

 

In this section of the paper, the performance measures and results of the proposed model 

are presented in detail. The confusion matrix, accuracy, balanced accuracy, sensitivity, 

specificity, precision, F-score, Cohen's kappa score, and ROC accuracy score have been 

calculated for all models. A confusion matrix (Townsend, 1971) is depicted in Figure 

5. 

 

 
 

Figure 5. Confusion Matrix. 

 

Accuracy (A): It measures the number of actual data instances over the total number of 

data instances.   

 

A =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
         (2) 

 

Precision (P): It measures how many of the positive predictions are made correctly. 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
         (3) 

 

Sensitivity (S): It measures the number of positive cases predicted from all positive 

predictions. 

 

S =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
         (4) 

 

Specificity (SP): It measures how many negative predictions are made correctly. 

 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
         (5) 
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F1-Score (F): It measures harmonic average precision and sensitivity. 

 

𝐹 = 2 ∗
𝑃 ∗ 𝑅

𝑃 + 𝑅
         (6) 

 

Balanced Accuracy (BA): It measures arithmetic meaning of sensitivity and specificity.   

 

𝐵𝐴 =
𝑅 + 𝑆

2
         (7) 

 

ROC Accuracy Score (ROC AUC): It measures the area under the curve and compares 

the relationship via Precision and specificity. 

 

Cohen’s Kappa (К): It is a statistical method that measures the agreement between two 

values. 

 

As a result of hyperparameter optimization, significant improvements in model 

performance were observed. For example, optimizing C and Gamma values in the RBF-

SVM model improved accuracy from 92,62% to 95,55%. Similarly, optimizing the 

number of trees and splitting criterion in the Random Forest model resulted in a 4,5% 

increase in accuracy. The Linear-SVM model, which performed the best before 

SMOTE, was the least affected by data imbalance. However, the increase in the 

accuracy of the RBF-SVM model after SMOTE shows that it can better model non-

linear relationships. 

 

4.2. Results of Unbalanced Dataset 

 

In this part of the study, the performance evaluations of ML models are included. A, P, 

S, SP and F results for the unbalanced dataset in all models are given in Table 13. BA, 

ROC AUC and К scores are given in Table 14. Among the models, Linear-SVM 

emerged as the top performer. The confusion matrix of Linear-SVM is presented in 

Figure 6. The ROC curve for all presented is shown in Figure 7 and the sub 

classification results are presented in Table 15. 

 

Table 13. The Performance Evaluations of the Unbalanced Dataset. 

 

ML Methods A P S SP F 

RBF SVM 0,9163 0,9186 0,9163 0,9672 0,9167 

Linear SVM 0,9262 0,9265 0,9262 0,9715 0,9260 

POLY SVM 0,9016 0,9034 0,9016 0,9655 0,9016 

Sigmoid SVM 0,4327 0,1873 0,4327 0,5672 0,2614 

RF 0,8983 0,8979 0,8983 0,9618 0,8976 

DT 0,8229 0,7926 0,8229 0,9393 0,8050 

KNN 0,9094 0,9104 0,9098 0,9679 0,9085 

NB 0,8688 0,8784 0,8688 0,9548 0,8701 

MLP 0,9032 0,9036 0,9032 0,9644 0,9026 

LR 0,9260 0,9257 0,9262 0,9702 0,9253 

 



F. Bal, F. Kayaalp Performance Comparison of Smote-Based Machine Learning Models on Unbalanced Datasets 

191 

Table 14. Other Performance Evaluations of the Unbalanced Dataset. 

 

ML Methods BA ROC AUC К 

RBF SVM 0,9057 0,9463 0,8845 

Linear SVM 0,8853 0,9370 0,8978 

POLY SVM 0,8536 0,9194 0,8642 

Sigmoid SVM 0,1111 0,5000 0,0000 

RF 0,8464 0,9154 0,8594 

DT 0,6823 0,8279 0,7547 

KNN 0,8398 0,9131 0,8753 

NB 0,8234 0,9019 0,8197 

MLP 0,8500 0,9290 0,8663 

LR 0,8947 0,9416 0,8978 

 

Table 13 and Table 14 shows that Linear-SVM has the highest accuracy rate (92,62%). 

It is also the most successful model overall with the highest sensitivity (92,62%), 

specificity (97,15%) and Cohen's Kappa value (89,78%). The RBF-SVM model is also 

very successful and shows the second-best performance with an accuracy of 91,63%. 

The ROC AUC value (94,63%) is one of the highest. The sigmoid SVM model gave 

the worst result. With an accuracy of 43,27% and an ROC AUC of 50,00%, it behaves 

almost like a random prediction model. The Decision Tree (DT) model performed 

relatively poorly. Its accuracy is 82,29%, which is significantly lower than the other 

models. 

 

 
 

Figure 6. The Confusion Matrix of the Best ML Model (Linear-SVM) in the 

Unbalanced Dataset. 
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Figure 7. The ROC Curve of the Best ML Model (Linear-SVM) in the Unbalanced 

Dataset. 

 

When Table 15 is analyzed, the precision and sensitivity rates are relatively low in some 

classes such as Deglet and Sagay. This is since some classes contain fewer samples than 

others due to the unbalanced dataset. The Safavi and Rotana classes were classified 

with 100% accuracy. However, this may also be due to the small number of samples. 

Overall, the Linear SVM model subclassified fruit types quite successfully. However, 

it can be said that the model was affected by the imbalanced dataset due to low 

sensitivity rates in some classes.  

 

Table 15. Sub-classification Results for the Best ML Model on the Unbalanced Dataset. 

 

Class P S SP F 
Test 

Case 

Berhi 0,7500 0,9000 0,9950 0,8181 10 

Deglet 0,7647 0,7222 0,9932 0,7428 18 

Dokol 0,9215 0,9791 0,9928 0,9494 48 

Iraqi 0,9285 0,8125 0,9983 0,8666 16 

Rotana 1,0000 0,9655 1,0000 0,9824 29 

Safavi 1,0000 1,0000 1,0000 1,0000 43 

Sagay 0,7857 0,7333 0,9949 0,7586 15 

K_PISTA 0,9465 0,9393 0,9595 0,9429 264 

S_PISTA 0,9053 0,9161 0,9638 0,9107 167 

The Average Result 0,9265 0,9262 0,9715 0,9260 610 

 

Cross Validation is a method that tests how the model performs on different datasets by 

dividing the dataset into different subsets to evaluate the generalization ability of the 

models. In this study, 5 and 10-fold datasets were identified. Table 16 shows the cross-

validation (CV) results of the machine learning models tested on the unbalanced 
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dataset. The Linear SVM model is the best performing model with both CV 5 (91,31%) 

and CV 10 (91,47%) accuracy rates. Since the standard deviation values are low, the 

model performs consistently across different data partitions. The RBF SVM model has 

an accuracy of 85,40% in CV 5, which increases to 88,03% in CV 10, but the standard 

deviation value (± 0,0274) is slightly high. This means that the model may be 

inconsistent across different datasets. The DT, RF, NB and MLP models show good 

generalization ability, although the accuracy is low. The most unsuccessful model was 

the Sigmoid SVM model. 

 

Table 16. Cross Validation Scores of Models on Unbalanced Dataset. 

 

ML Methods 

Cross Validation Scores 

Accuracy 

CV 5 CV 10 

RBF SVM 0,8540 Std:  ± 0,0245 0,8803 Std:  ± 0,0274 

Linear SVM 0,9131 Std:  ± 0,0152 0,9147 Std:  ± 0,0262 

POLY SVM 0,9049 Std:  ± 0,0168 0,9131 Std:  ± 0,0344 

Sigmoid SVM 0,4327 Std:  ± 0,0032 0,4327 Std:  ± 0,0080 

RF 0,8704 Std:  ± 0,0158 0,8786 Std:  ± 0,0304 

DT 0,8114 Std:  ± 0,0200 0,8049 Std:  ± 0,0297 

KNN 0,8622 Std:  ± 0,0203 0,8622 Std:  ± 0,0375 

NB 0,8639 Std:  ± 0,0133 0,8622 Std:  ± 0,0329 

MLP 0,8737 Std:  ± 0,0152 0,8786 Std:  ± 0,0245 

LR 0,8967 Std:  ± 0,0152 0,8950 Std:  ± 0,0396 

 

4.2. Results of Balanced Dataset 

 

Table 17 shows the A, P, S, SP and F results of all models in the balanced data set after 

SMOTE is applied. BA, ROC AUC and К scores are given in Table 18. Among the 

models, RBF SVM emerged as the top performer. The confusion matrix of RBF SVM 

is presented in Figure 8. The ROC curve for best models is presented in Figure 9 and 

the classification report is presented in Table 19. 

 

Table 17. The Performance Evaluations of the Balanced Dataset. 

 

ML Methods A P S SP F 

RBF SVM 0,9555 0,9558 0,9555 0,9947 0,9555 

Linear SVM 0,9333 0,9347 0,9333 0,9923 0,9330 

POLY SVM 0,9511 0,9514 0,9511 0,9944 0,9510 

Sigmoid SVM 0,0844 0,0071 0,0844 0,9155 0,0131 

RF 0,9355 0,9366 0,9355 0,9924 0,9355 

DT 0,8911 0,8960 0,8911 0,9873 0,8920 

KNN 0,9377 0,9392 0,9377 0,9928 0,9380 

NB 0,8844 0,8876 0,8844 0,9863 0,8852 

MLP 0,9266 0,9285 0,9266 0,9903 0,9267 

LR 0,9377 0,9389 0,9377 0,9929 0,9376 
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Table 18. Other Performance Evaluations of the Balanced Dataset. 

 

ML Methods BA ROC AUC К 

RBF SVM 0,9527 0,9736 0,9498 

Linear SVM 0,9267 0,9592 0,9247 

POLY SVM 0,9479 0,9709 0,9448 

Sigmoid SVM 0,1111 0,5000 0,0000 

RF 0,9318 0,9619 0,9272 

DT 0,8882 0,9373 0,8771 

KNN 0,9329 0,9626 0,9297 

NB 0,8787 0,9322 0,8695 

MLP 0,9217 0,9504 0,9172 

LR 0,9329 0,9626 0,9297 

 

Looking at the results in Table 17, in general, the performance of all models has 

improved significantly. RBF-SVM achieved the highest accuracy rate (95,55%), so it 

can be considered the most successful model. POLY-SVM also has a very high accuracy 

rate (95,11%). Models such as Linear SVM, Random Forest and KNN also performed 

strongly (93%+ accuracy). The previously unsuccessful Sigmoid SVM again 

performed poorly (8,44% accuracy), even after SMOTE. As seen in Table 19, after 

SMOTE was applied, the models applied to the balanced dataset showed a significant 

improvement in all metrics. SMOTE generates synthetic examples for minority classes, 

allowing the model to generalize better to less common classes. A small performance 

degradation was observed for the Red Pistachio and Siirt Pistachio classes. This may 

be since these classes had quite a lot of examples before SMOTE and the synthetic 

examples after SMOTE did not fully preserve the class distinction. Sensitivity in the 

minority of classes increased significantly, making the model less biased. 

 

Table 19. Sub-Classification Results for the Best ML Model After Applying SMOTE. 

 

Class P S SP F 
Test 

Case 

Berhi 1,0000 0,9629 1,0000 0,9811 54 

Deglet 0,9069 0,9285 0,9901 0,9176 42 

Dokol 0,9642 0,9473 0,9949 0,9557 57 

Iraqi 0,9705 0,9850 0,9947 0,9777 67 

Rotana 1,0000 1,0000 1,0000 1,0000 54 

Safavi 0,9800 0,9800 0,9975 0,9800 50 

Sagay 0,9743 1,0000 0,9975 0,9870 38 

K_PISTA 0,8750 0,8750 0,9878 0,8750 40 

S_PISTA 0,8958 0,8958 0,9875 0,8958 48 

The Average Result 0,9558 0,9555 0,9947 0,9555 450 

 

According to Table 15 and Table 19, while the F1-Score of the Barhee class was 0,8181 

before SMOTE was applied, it increased to 0,9811 after SMOTE. The main reason for 

this increase is that there were few examples of the Barhee class before SMOTE was 

applied and the model did not generalize this class well. When synthetic examples were 

added after SMOTE, the model was trained with more data and was able to classify 
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more successfully for this class. Precision increased by 33%, indicating that the false 

positive rate decreased and the model better identified the Barhee class. The same is 

true for Deglet Nour and Sagai. The increase in the F1-Score of the Barhee, Deglet 

Nour and Sagai classes can be attributed to the high similarity of the synthetic samples 

with the original data. According to the JSD analysis, there was no significant 

difference between synthetic and original examples for this class. Therefore, the model 

successfully learned the added synthetic examples and significantly improved its 

accuracy in this class. Looking at the cross-validation analysis to understand whether 

the high performance improvement, especially in these classes, is due to overlearning, 

it is seen that the model performs consistently across different data partitions. This 

suggests that the model does not overlearn and that the performance improvement is 

due to the improvement of the data distribution after SMOTE. 

 

 
 

Figure 8. The Confusion Matrix of the Best ML Model After Applying SMOTE 

Technique. 

 

The CV performance of the models on the balanced dataset was analyzed and the results 

are given in Table 18. Accuracy rates increased for Linear SVM, RBF SVM, POLY 

SVM and LR. This shows that the models can generalize better and give more 

consistent results in different data distributions. A significant decrease was observed in 

Sigmoid SVM. This indicates that the model is not suitable for the data. The CV 10 

result of the MLP has decreased. This indicates that the model performs more variably 

against different data partitions and may have a higher variance. 
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Figure 9. The ROC Curve of the Best ML Model After Applying SMOTE Technique. 

 

Table 18. Cross Validation Scores of Models on Balanced Dataset. 

 

ML Methods 

Cross Validation Scores 

Accuracy 

CV 5 CV 10 

RBF SVM 0,9022 Std:  ± 0,0215 0,9066 Std:  ± 0,0407 

Linear SVM 0,9088 Std:  ± 0,0163 0,9111 Std:  ± 0,0371 

POLY SVM 0,8933 Std:  ± 0,0206 0,8955 Std:  ± 0,0466 

Sigmoid SVM 0,1488 Std:  ± 0,0054 0,1488 Std:  ± 0,0101 

RF 0,8955 Std:  ± 0,0166 0,8888 Std:  ± 0,0281 

DT 0,8155 Std:  ± 0,0268 0,8200 Std:  ± 0,0481 

KNN 0,9000 Std:  ± 0,0121 0,9111Std:  ± 0,0314 

NB 0,8755 Std:  ± 0,0177 0,8866 Std:  ± 0,0321 

MLP 0,8777 Std:  ± 0,0365 0,7644 Std:  ± 0,0488 

LR 0,9111 Std:  ± 0,0272 0,9199 Std:  ± 0,0361 

 

 

5. CONCLUSION 

 

This study investigated the performance of SMOTE-based machine learning models to 

address the imbalanced dataset problem. The experiments revealed that when 

imbalanced datasets are used, machine learning models show biases in certain classes 

and classification performance decreases. When the SMOTE technique is applied, 

however, the representation of minority classes increases, thereby improving the 

overall accuracy and sensitivity of the models to unbalance. 

 

The results showed that the best performance was achieved by the RBF-SVM model 

with an accuracy of 95,55% on the dataset with SMOTE. The model that showed the 
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highest performance without SMOTE was Linear-SVM with an accuracy of 92,62%. 

However, the sigmoid SVM model performed poorly on both datasets. These results 

suggest that techniques to address data imbalance, such as SMOTE, can improve the 

performance of classification models on multiclass agricultural datasets. 

 

The findings reveal that SMOTE-based data organization techniques offer a critical 

improvement for machine learning models working with imbalanced datasets. 

However, some drawbacks of SMOTE should also be considered; in particular, the new 

synthetic data may not be fully compatible with the original dataset, which may 

negatively affect the learning process in some models. Therefore, future work should 

complement the analysis with a comprehensive analysis of different variations of 

SMOTE, including hybrid oversampling methods or other balancing techniques. 

 

Overall, this study has demonstrated that data imbalance removal is a critical element 

to improve the classification performance of machine learning models on agricultural 

products. In the future, a comparative study of different data imbalance removal 

approaches and their application on different types of agricultural datasets can increase 

the added value of the study. 
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