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Abstract 

Federated Learning (FL) has become an important research area in recent years, particularly 

when dealing with sensitive data such as healthcare information. Since healthcare data contains 

critical and personal information, FL provides a major advantage by enabling training on local 

devices without requiring data to be collected on a central server. In the analysis of healthcare 

data, such as electrocardiography (ECG), FL enables local processing of data while preserving 

privacy. However, despite its privacy benefits, FL can be vulnerable to attacks. Malicious inputs 

aim to degrade model accuracy, known as adversarial attacks (AA), can pose a major threat. 

Adversarial Training (AT) offers a defence mechanism by increasing model’s robustness against 

such attacks. Federated Adversarial Training (FAT) extends AT into the FL environment, 

combining privacy advantages with enhanced resistance to adversarial inputs. In this work, we 

propose the use of FAT to improve both privacy and security when classifying ECG signals, 

ensuring robustness against AAs. This approach involves applying AT at the client level by 

augmenting clean ECG data with adversarial examples generated using the Projected Gradient 

Descent (PGD) method. A Convolutional Neural Network (CNN) architecture was employed for 

local training. Experiments are conducted on the MIT-BIH Arrhythmia Database (MIT-DB). For 

comparison, we also trained an FL model without incorporating FAT. Both models were tested on 

the original test data as well as on adversarially attacked versions generated using PGD, Fast 

Gradient Sign Method (FGSM), Carlini & Wagner (CW), and Basic Iterative Method (BIM). The 

results show that the FL system with FAT significantly outperforms the system without FAT in 

resisting AAs, with a slight compromise in performance on the original test data, thus highlighting 

the effectiveness of FAT in enhancing model robustness against AAs for ECG classification tasks. 

Code is available at https://github.com/Skyress1/ECG-FAT-Code. 
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1. Introduction 

Machine learning enables the development of more accurate and intelligent systems by 
processing large datasets and provides revolutionary advances in various fields such as 
health [1], finance [2], and the Internet of Things [3]. However, in traditional machine 
learning methods, the need to collect data on a central server leads to privacy and 
security issues. Especially in cases where personal and sensitive data is used, these 
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issues can expose user privacy. In response to these challenges, FL [4] is a machine 
learning paradigm that allows data to be processed on local devices without creating a 
centralized dataset. FL allows each device to train models on its local data instead of 
collecting and processing data from different sources. Thus, it offers significant 
advantages in terms of data privacy and security, especially in areas where sensitive 
data is used. In recent years, FL has been widely used in studies on health data to reduce 
privacy concerns and improve the accuracy of machine learning models. 

Health data is highly sensitive, especially as data sets containing personal and biometric 
information. Among such data, electrocardiography (ECG) signals provide critical 
information about heart health by monitoring heart rhythms. While ECG data is a widely 
used tool for diagnosing heart conditions, the collection and processing of this data can 
also pose the risk of privacy violations. The high sensitivity of health data makes it 
imperative to ensure data privacy and security. 

Protecting privacy in health data is crucial to prevent unauthorized use and sharing of 
individuals' personal information. While traditional centralized data processing methods 
require data to be collected and stored in a single location, FL reduces this risk and 
allows data to be processed on local devices. Thus, the protection of privacy in health 
data can be secured with a FL approach. Especially when it comes to highly sensitive 
biometric data such as ECG, the data privacy advantage provided by FL plays a critical 
role. 

The impact of FL on health data is dramatic. FL not only ensures data privacy but also 
enables collaboration between different data sources. Thus, data from different hospitals 
or clinics can be used to train the same model without being aggregated in a centralized 
system. This enables improved diagnostic models for diverse patient populations. 

Attacks in FL are a vulnerability that needs to be addressed in addition to the advantages 
offered by this technology. Especially since FL systems have a structure where model 
updates are made locally by each participant, malicious participants can manipulate this 
process. These attacks, known as AA, can degrade the accuracy and performance of 
the model by introducing misleading data into the model. Such attacks pose a serious 
threat as they can have irreversible consequences in critical areas such as health data. 

One of the methods used to prevent AA is the AT approach. AT aims to make the model 
more resistant to attacks by using adversarial data during model training. AT provides a 
more robust learning process by not only improving the accuracy of the model but also 
its reliability. AT is used in traditional centralized learning systems. Its equivalent in FL 
systems is FAT. 

FAT is a technique that combines the approaches of FL and AT. The FAT technique was 
proposed by Zizzo et al [5]. This method aims to develop models that are more resilient 
to AAs while maintaining the privacy advantages of FL. In terms of protecting the privacy 
and security of health data, FAT is considered as an important step towards developing 
more secure and effective machine learning models in the future. 

There have been many studies on FL and ECG in the literature. Tang et al. [6] proposed 
a personalized FL method for ECG classification task. Manocha et al. [7] proposed a 
new algorithm using deep learning to classify ECG arrhythmias in a federated 
environment. In their proposed algorithm, they integrated a Support Vector Machine 
classifier with a Bi-directional Long Short-Term Memory based Auto-Encoder network. 
Alreshidi et al. [8] presented Fed-CL, an advanced method that combines Long Short-
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Term Memory networks and Convolutional Neural Networks to accurately predict AFib 
utilizing FL. Çelik and Güllü [9] conducted a comparison study on server-side 
aggregation algorithms on Independently and Identically Distributed (IID) and Non-IID 
data distributions for ECG classification task.  

There have also been many studies on FAT in the literature. Bondok et al. [10] used FL 
and AT to address privacy and security concerns in smart grids. Catak and Kuzlu [11] 
used FL to train a segmentation model for spectrum sensing in the presence of radar 
and wireless communication systems. They also used AT to combine model flexibility 
and local model updates into a robust global model. Luo et al. [12] proposed a new 
Ensemble Federated Adversarial Training (EFAT) method that enables AT to perform 
better in non-IID environments by extending the training data with different distortions. 

In this study, we propose the use of FAT for ECG classification task to be robust against 
AAs while maintaining privacy and security. For this purpose, in each of the clients, the 
PGD [13] discarded versions of the clean data were added to the training set and the 
clients were made to perform AT. The original test data, PGD attacked version of the test 
data, FGSM [14] attacked version, CW [15] attacked version and BIM [16] attacked 
version of the test data were tested respectively. The results obtained are compared. 

2. Materials and Methods 

2.1. MIT-BIH Arrhythmia Database 

The MIT-BIH Arrhythmia Database [17] (MIT-DB) was used in this study. The MIT-DB 
contains 48 ECG recordings of 30 minutes each. These 48 ECG recordings belong to 47 
patients. The sampling frequency of all recordings is 360 Hz. The labels in the MIT-DB 
were edited according to the Association for the Advancement of Medical 
Instrumentation (AAMI) standard. The label editing is shown in Table 1. There are 5 
classes in total from the AAMI standard. These are N (normal beats), S (supraventricular 
ectopic beats), V (ventricular ectopic beats), F (fusion beats), and Q (unclassifiable 
beats). 

Table 1. AAMI Standards and MIT-BIH Annotation 

AAMI MIT-BIH 

Normal Beat (N) N, L, R, j, e 
Supraventricular Ectopic Beat (S) a, S, A, J 

Ventricular Ectopic Beat (V) E, V 
Fusion Beat (F) F 

Unknown Beat (Q) /, Q, f 

2.2. Data Preparation and Normalization 

Each ECG signal in MIT-DB was divided into 180-length windows. 180-length windows 
were created by taking 90 indices before and 90 indices after the beats in the ECG 
signals. The values in each window were normalized using Min-Max scaler to be in the 
range [0, 1]. The min-max scaler is given in equation (1). 

𝑥′ =  
𝑥 − min (𝑥)

max(𝑥) − min (𝑥)
 (1) 
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2.3. Deep Learning Architecture 

In this study, Convolutional Neural Network (CNN) is used as the deep learning 
architecture. CNN architecture has 4 Convolutional layers, 4 MaxPool layers, 1 Flatten 
layer and 3 Linear layers. Convolutional layers consist of 16, 32, 64 and 128 filters 
respectively. They all have a kernel_size of 3 and a padding of 1. There is also a ReLU 
activation function at the output of each convolutional layer. In the MaxPool layers, 
kernel_size is set to 2. Linear layers consist of 256, 64 and 5 units respectively. The 256- 
and 64-unit linear layers have a ReLU activation function at the output. The 5-unit linear 
layer is the output layer of the model. The number of parameters of the architecture used 
is 410021. The architecture used in the study is given in Figure 1. 

 

Figure 1.  CNN Architecture 
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2.4. Algorithm 

This section explains the proposed FAT system’s defence mechanism against AAs in 
the context of ECG signal classification. The methodology is outlined in Algorithm 1, 
which details the local training process for a client. Initially, the client receives the global 

parameters. A PGD attack is then applied to the input data 𝑥𝑗 and 𝑥𝑗
𝑎𝑑𝑣 is obtained. Input 

data 𝑥𝑗 and adversarial examples 𝑥𝑗
𝑎𝑑𝑣 are combined to obtain 𝑥𝑗. Original label 𝑦𝑗 and 

duplicate label 𝑦𝑗 are concatenated to obtain �̂�𝑗. New parameters are obtained using 𝑥𝑗 

containing both adversarial and clean samples and their labels �̂�𝑗 . Finally, the 

ClientUpdate procedure is terminated by sending the new parameters to the server. 

Algorithm 1. FAT for ECG signals  

Input: 

Client i, global parameters 𝜃,̂ local dataset 𝐷𝑖 , local epoch number E, batch size b, adversarial perturbation function 

𝑃𝐺𝐷, learning rate 𝜂 

1: procedure ClientUpdate 

2:     𝜃𝑖  ←  �̂�  

3:     for local epoch = 1, ⋯ , E do  

4:      for mini-batch {𝑥𝑗 , 𝑦𝑗}
𝑗=1

𝑏
 ~ 𝐷𝑖 do 

5:          𝑥𝑗
𝑎𝑑𝑣  ←  𝑃𝐺𝐷(𝑥𝑗 , 𝑦𝑗) 

6:          𝑥𝑗  ←  𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑥𝑗 , 𝑥𝑗
𝑎𝑑𝑣) 

7:          �̂�𝑗  ← 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒( 𝑦𝑗 , 𝑦𝑗) 

8:              𝜃𝑖  ←  𝜃𝑖 −  𝜂∇𝜃𝑖
ℓ𝐶𝐸(�̂�𝑗 , �̂�𝑗 ; 𝜃𝑖) 

9:         end for 

10:     end for 

11:     return 𝜃𝑖 

12: end procedure 

After the ClientUpdate procedure is completed on all clients selected for training, the 
parameters sent by the clients are collected on the server. Using these parameters, the 
new global parameters are determined using equation (2). 

�̂�  ← ∑
𝑛𝑖

𝑚𝑖 𝜖 𝑆
 𝜃𝑖 (2) 

Where 𝑆 is the list of clients selected in the current round, 𝑛𝑖 is the data count of the 𝑖th 

client, 𝑚 is the sum of the data counts of the clients selected in the round, 𝜃𝑖 is the local 

parameters sent by the 𝑖th client, 𝜃 is the global parameters. This equation belongs to 

the FederatedAveraging (FedAvg) [4], which is used as the server-side aggregation 
method in this study. 

3. Experimental Results 

In this study, the experiments were conducted using the MIT-BIH Arrhythmia Database 
(MIT-BIH DB). The 48 ECG signals in the MIT-BIH DB were first divided into windows 
with length of 180 samples and normalized with the Min-Max scaler. A total of 109468 
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windows were obtained. Of these, 80% were used as training data and 20% were 
reserved as testing. The training data was distributed across 10 clients. Therefore, the 
training data was divided into 10 parts for 10 clients. In each round, 5 randomly selected 
clients participated in the training. The training continued for 10 rounds in total. In each 
round, the selected clients were trained locally for 5 epochs. FedAvg was used as the 
server-side aggregation algorithm. The study utilized two training approaches. First, the 
Non-FAT Model was trained using only clean data on clients. Second, the FAT Model 
incorporated AT by augmenting the training data with adversarial examples generated 
using a PGD attack. Testing was conducted at the end of each training round, using the 
test data in five variations: original (Clean), PGD attacked, FGSM attacked, CW attacked, 
and BIM attacked. For the PGD attack, epsilon was set to 8/255, alpha to 1/255 and the 
number of steps to 20. For the FGSM attack, the epsilon value was set to 8/255. For the 
CW attack parameters were set to c = 1, kappa = 0, 50 steps, and a learning rate of 0.01. 
Finally, the BIM attack used an epsilon of 8/255, alpha of 2/255, and 10 steps. 

The CNN architecture was implemented using the Pytorch [18] library in Python. The FL 
environment was set up with the Flower [19] library, while the torchattacks [20] library  
was utilized for generating AAs (PGD, FGSM, CW, BIM). The training was performed on 
a system equipped with an AMD Ryzen 5 5600H processor, 16 GB of RAM and an 
NVDIA Geforce RTX 3050 graphics card. For the CNN architecture, the Adam optimizer 
was employed, and Cross Entropy Loss was used as the loss function. The results 
obtained are presented in tables and graphs. Table 2, 3, 4 and 5 show the Accuracy, 
Precision, Recall and F1 Score metrics for both FL system without FAT (Non-FAT Model) 
and FL system with FAT (FAT Model) across original test data (Clean) and adversarial 
datasets (PGD, FGSM, CW and BIM) in the 10th round of training. Figure 2, 3, 4, 5 and 
6 presents the variations in Accuracy, Precision, Recall and F1 Scores over 10 rounds 
on original test data and adversarial datasets. Note that round 0 represents the baseline 
results obtained using randomly initialized parameters. 

Table 2. Accuracy results of 10th round for clean and adversarial data 

Model Clean (%) PGD (%) FGSM (%) CW (%) BIM (%) 

Non-FAT Model 98.44 35.14 73.87 7.47 35.36 
FAT Model 97.60 94.82 95.44 46.65 94.81 

Table 3. Precision results of 10th round for clean and adversarial data 

Model Clean (%) PGD (%) FGSM (%) CW (%) BIM (%) 

Non-FAT Model 93.95 30.12 47.05 7.27 30.15 
FAT Model 90.55 81.72 83.76 26.80 81.55 

Table 4. Recall results of 10th round for clean and adversarial data 

Model Clean (%) PGD (%) FGSM (%) CW (%) BIM (%) 

Non-FAT Model 92.80 21.27 47.29 2.42 21.05 
FAT Model 88.79 80.13 81.85 26.78 80.06 

Table 5. F1 Score results of 10th round for clean and adversarial data 

Model Clean (%) PGD (%) FGSM (%) CW (%) BIM (%) 

Non-FAT Model 92.94 22.61 45.46 3.20 22.55 
FAT Model 89.06 79.75 81.70 24.02 79.63 

Table 2, Table 3, Table 4 and Table 5 show that the Non-FAT Model outperformed the 
FAT Model in Accuracy, Precision, Recall and F1 Score metrics in the original (clean) 
test data. However, the FAT Model also achieved very high performance. On PGD, 
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FGSM, CW and BIM attacked test data, the FAT Model outperformed the Non-FAT 
Model in Accuracy, Precision, Recall and F1 Score metrics. 

 

        

        

Figure 2.  Clean Data Metric Results (Accuracy, Precision; Recall, F1 Score) 

        

        

Figure 3.  PGD Attacked Data Metric Results (Accuracy, Precision; Recall, F1 Score) 

Figure 2 shows that the Non-FAT Model outperforms the FAT-Model across all rounds 
in all four metrics on the original test data. However, the performance gap between the 
two models is minimal. The FAT Model also achieves consistently high performance 
across all rounds and metrics, demonstrating its robustness even with slight 
compromises in comparison to the Non-FAT model. 
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Figure 3 shows that in round 1, the FAT and Non-FAT models exhibit comparable 
performance across all metrics on PGD-attacked test data, but the FAT model slightly 
outperforming the Non-FAT model. From round 2 onward, the FAT model performs even 
better, while the Non-FAT model performs very poorly against PGD-attacked data. The 
Non-FAT model was not able to achieve high performance on PGD-attacked data due 
to the lack of AT during local training and the absence of PGD-attacked instances in the 
dataset. 

        

        

Figure 4.  FGSM Attacked Data Metric Results (Accuracy, Precision; Recall, F1 Score) 

        

        

Figure 5.  CW Attacked Data Metric Results (Accuracy, Precision; Recall, F1 Score) 

Figure 4 illustrates that in round 1, the FAT and Non-FAT models exhibit similar 
performance across all four metrics on FGSM-attacked test data. However, from round 
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2 onward, the FAT model performs even better, while the Non-FAT model demonstrates 
poor performance against FGSM-attacked data. The Non-FAT model was not able to 
achieve high performance on FGSM-attacked data, since no AT was performed during 
the local training of its clients or the lack of FGSM-attacked instances in the dataset. 

Figure 5 shows that the FAT model outperformed the Non-FAT model across all rounds 
(excluding round 0, which reflects the initial weights and is not evaluated) in all four 
metrics on the CW-attacked test data. The Non-FAT model achieved considerably lower 
results. Both models showed their highest performance in Round 1 across all metrics. 
However, in the following rounds, they achieved lower performance than this round. 
Although the FAT model outperformed the Non-FAT model, it’s performance remained 
below the levels achieved against other types of AAs. 

        

        

Figure 6.  BIM Attacked Data Metric Results (Accuracy, Precision; Recall, F1 Score) 

Figure 6 shows that in round 1, the FAT and Non-FAT Models exhibit similar performance 
across all four metrics on the BIM-attacked test data, with the FAT model performing 
slightly better. From round 2 onward, the FAT model consistently outperforms the Non-
FAT model, which demonstrates very poor performance on BIM-attacked data. This 
underperformance of the Non-FAT model is likely due to the absence of Adversarial 
Training (AT) during local client training and the lack of BIM-attacked instances in the 
dataset. 

Overall, the Non-FAT model demonstrated strong classification performance on the 
original data. However, it struggled with low classification performance when tested 
against PGD, FGSM, CW and BIM adversarial attacks. In contrast, the FAT model 
achieved high performance against all data except for the CW attacked data. It 
maintained its high performance across all datasets, except for the CW attacked data. 
Although its performance on CW attacks is superior to the non-FAT model, it fails to 
achieve the same success on CW attacks as it achieves on other adversarial data. 
Notably, the FAT model maintained robust performance on adversarial data with only 
minimal compromise in accuracy on the original data. Incorporating adversarially 
attacked versions of the training data during the training process, through AT, proves to 
be effective in enhancing the model’s resilience against adversarially attacked test data. 
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4. Conclusion 

In this study, we propose the use of FAT for ECG classification to enhance robustness 
against AAs while preserving privacy and security. For this purpose, in addition to clean 
data, adversarial examples generated using the PGD method are also used during local 
training on clients. The proposed framework is tested against the original test data, and 
adversarially attacked versions created using PGD, FGSM, CW, and BIM. Its 
performance was compared with that of an FL system without FAT. 

The results showed that the FL system without FAT achieved high performance in 
Accuracy, Precision, Recall and F1 Scores on the original test data. However, it’s 
performance dropped significantly across all four metrics for PGD, FGSM, CW and BIM 
attacked data. It achieved a very low performance especially against CW attacked data. 
In the proposed structure, i.e. the FL system using FAT, high performance is achieved 
in all four metrics for the original test data, PGD, FGSM and BIM attacked data. The 
performance on CW-attacked data, while improved compared to the Non-FAT system, 
was lower than for other types of adversarial attacks. When comparing the two systems, 
the FL system without FAT is more successful on the original test data. For the PGD, 
FGSM, CW and BIM attacked data, the FL system with FAT is more successful. 
However, the FL system with FAT is also successful on the original test data. The FL 
system with FAT achieves very high performance against adversarial attacked data with 
a little performance compromise from the original test data.   

Through the FAT, ECG signal classification can achieve both enhanced privacy and 
security using FL, while simultaneously providing a robust defence against potential AAs. 
This study lays a foundation for future research exploring similar techniques with diverse 
types of health data. 
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