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Introduction 

Corporate bankruptcy is an essential problem that 

profoundly affects not only the company concerned, but 

also the stability of the wider economic system. 

Insolvencies not only threaten the operational sustainability 

of companies but can also have significant negative impacts 

on the workforce and supply chains. A company's 

bankruptcy can cause business to stop, employees to lose 

their jobs, investors to suffer financial losses, and suppliers 

and other stakeholders to be negatively affected. This can 

create a wider crisis, not only in the company's own 

environment, but also across sectors and even in the overall 

economic environment. Corporate bankruptcies also 

undermine consumer confidence, destabilize markets and 

slow economic growth [1]. 

Financial distress is the most common precursor to 

bankruptcy. High debt levels, low profitability and cash 

flow disruptions can put a company at risk of bankruptcy. 

Early detection of such financial difficulties is critical to 

prevent a major crisis. If companies can recognize these 

problems early, they can take corrective measures such as 

debt restructuring, refinancing or mergers and acquisitions. 

However, it is challenging for a company facing bankruptcy 

risk to anticipate and manage the situation. 

 

Traditional bankruptcy prediction methods generally 

attempt to assess the financial health of companies based on 

financial ratios and accounting data. One of the most 

common of these methods is the Altman Z-score. The 

Altman Z-score is a model built with financial indicators 

and attempts to determine a company's bankruptcy risk by 

taking into account parameters such as liquidity, 

profitability, financial leverage, asset efficiency and equity 

size [2]. By combining such financial metrics, the Z-score 

produces a score, which is an indicator of the probability of 

bankruptcy. Traditional methods, however, have many 

limitations. First, such models often fail to account for 

sectoral differences. The financial dynamics and 

functioning of each sector are different, so it is difficult for 

a single model to be valid for all sectors [3]. For example, 

high levels of indebtedness may be more common in the 

construction sector, while financial flexibility may be 

higher in the technology sector. Traditional models that do 

not take such sectoral differences into account can lead to 

inaccuracies. Moreover, traditional methods are often based 

on historical data and therefore fail to reflect real-time risks 

[4]. The financial situation of companies can change 

instantaneously, which requires a more dynamic and timely 

approach to bankruptcy prediction. However, models based 
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on historical data cannot react to such sudden changes, 

which can lead to underestimating the immediate financial 

crises faced by companies. In addition, the subjective nature 

of human interpretation in traditional bankruptcy prediction 

methods poses a significant challenge. Accounting data and 

financial ratios often require a specific interpretation 

process. When interpretations are made by different people, 

different conclusions may be drawn from the same data. 

This can jeopardize the accuracy and reliability of the 

analysis. Moreover, some traditional models do not 

adequately take into account external factors (such as 

economic crises, market fluctuations or regulatory 

changes). However, these exogenous factors can 

profoundly affect the financial health of companies. During 

an economic recession, many companies' revenues may 

decline, which increases the risk of bankruptcy [5]. In 

addition, traditional bankruptcy prediction methods often 

have difficulty adapting to sudden economic changes or 

market fluctuations. Such models cannot quickly adapt to 

changing market conditions, new economic policies or 

unexpected situations such as financial crises [1]. This is a 

major handicap, especially in a globalized market where 

competition is increasing, and economies are changing 

rapidly. Traditional methods, which cannot react quickly to 

economic shocks or market fluctuations, cannot accurately 

predict the bankruptcy risk of companies. At this point, 

machine learning methods allow companies to detect 

financial distress in the early stages, identify potential 

bankruptcy risks and make strategic decisions. By studying 

historical financial data, operational information, market 

indicators and even macroeconomic factors, machine 

learning algorithms can predict whether a company is at risk 

of bankruptcy. In this way, companies can recognize 

financial challenges before they escalate and take action 

accordingly. 

While machine learning offers highly effective tools for 

detecting financial distress and predicting bankruptcy risks, 

it also plays an important role in understanding the root 

causes of companies' financial problems. Machine learning 

algorithms make it possible to discover the complex factors 

behind the challenges faced by companies through deeper 

and more detailed analysis [6]. In this way, we can not only 

predict the risk of bankruptcy but also identify the key 

factors that threaten the financial health of companies. 

Factors such as debt management, cash flow, profitability 

ratios and operational efficiency have a direct impact on the 

financial health of companies. By correlating these factors 

with each other, machine learning models can more 

accurately predict the probabilities of a particular company 

falling into financial distress. These algorithms perform 

more comprehensive analysis not only with current data, 

but also by taking into account historical trends and external 

factors. More robust predictions can be made about how 

rising debt levels or low cash flow could trigger future 

financial distress. Another key advantage is machine 

learning's ability to analyze external market conditions and 

assess their impact on companies. External factors such as 

global economic fluctuations, trade wars, exchange rate 

changes or sudden economic crises can directly affect a 

company's financial situation [7]. Machine learning 

algorithms can build models that incorporate such 

exogenous factors and determine how sensitive companies 

are to environmental changes. Sudden changes in exchange 

rates can be a major risk for a company that carries a large 

portion of its debt in foreign currencies [8]. Such exogenous 

variables can be automatically accounted for by machine 

learning models, enabling more realistic and timely 

predictions. In addition, increased operational efficiency is 

a critical factor in improving the financial health of 

companies [9]. By analyzing companies' operational 

processes, machine learning can identify inefficiencies and 

potential areas for improvement. In areas such as inventory 

management, manufacturing processes, logistics and supply 

chain optimization, machine learning can help companies 

reduce costs and increase efficiency. By increasing their 

operational efficiency, companies can improve their cash 

flows and strengthen their debt repayment capacity [10]. 

One of the biggest advantages of machine learning in 

combating financial distress is the ability of companies to 

make data-driven decisions. In traditional predictions, 

subjective interpretations can often come into play, which 

can jeopardize the accuracy of the analysis. Machine 

learning, however, processes data objectively and makes 

decisions based on specific patterns. When irregularities in 

cash flow or debt repayment difficulties are detected, 

machine learning algorithms can help companies take 

measures such as debt restructuring, refinancing or 

operational restructuring by suggesting more appropriate 

financial strategies. Machine learning not only predicts 

bankruptcy risks but also uncovers the root causes of 

companies' financial problems and provides data-driven 

solutions to deal with them. Such advanced analytics allow 

companies to develop sustainable strategies. 

Although machine learning provides substantial benefits in 

identifying financial distress and predicting bankruptcy 

risks, its implementation comes with certain challenges. 

These challenges include factors that need to be carefully 

considered to ensure accurate predictions. First, machine 

learning models require large amounts of good quality and 

accurate data; however, incomplete, inaccurate or irregular 

financial data can negatively affect the accuracy of the 

models. Especially in small and medium-sized enterprises, 

data collection and updating can be difficult, which can 

prevent accurate analysis [11]. Another challenge is that 

machine learning models can encounter overfitting, where 

the model performs exceptionally well on the training data 

but struggles to generalize to real-world data [12]. Such 

challenges can limit the effectiveness of machine learning 

applications and require careful model development to 

make more stable predictions. In addition, data imbalance 

is also a major issue [13]. The number of companies at risk 

of bankruptcy may be much lower than the number of 

companies that are not bankrupt. This can lead to 

imbalances in the datasets, preventing machine learning 

models from better predicting the majority class (i.e. non-

bankrupt companies) but accurately identifying the rare 

bankruptcy-risk companies. Data imbalance can weaken the 

model's ability to generalize, causing companies at risk of 

bankruptcy to be missed. To overcome this problem, 

sampling techniques or data augmentation methods can be 
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used. However, these techniques should be applied with 

caution as they may lead to overfitting. Another important 

challenge is feature selection and feature engineering. Since 

financial data usually contains a large number of features, 

redundant or low-information features may need to be 

removed. However, choosing the right features can 

significantly improve the success of the model [14]. 

Correlated features can have similar effects, which can 

negatively affect the accuracy of the model. Therefore, 

selecting the right features can reduce the complexity of the 

model. In addition, more in-depth analysis may be required 

to understand whether some features reflect the underlying 

factors affecting financial distress.  

While machine learning has great potential in the detection 

of financial distress, factors such as data quality, imbalance, 

feature selection and overfitting are among the key 

challenges that need to be addressed in applications in this 

area. To overcome these challenges, advanced data 

processing, model development and optimization 

techniques are required. In this context, this study aims to 

develop an effective and reliable model for the 

determination of bankruptcy risk by following the 

methodological steps below. First, feature engineering will 

be performed, and the quality of the data will be improved 

by deleting repetitive records in the dataset. Then, the data 

will be scaled with the standardization method to ensure that 

the model is equally sensitive to all features. PCA was 

utilized to select the most important features that contribute 

to the model's performance by transforming the original 

features into a set of orthogonal components capturing the 

maximum variance in the dataset. For the data imbalance 

problem, the SMOTE method is used to increase the 

number of samples of the minority class and the Tomek 

Links method is used to remove some samples of the 

majority class to overcome the class imbalance. In the 

model building phase, Stacking Classifier, Decision Tree, 

XGBoost, CatBoost, LightGBM, K-Nearest Neighbors 

(KNN) and Logistic Regression algorithms will be used and 

their performances will be compared by making predictions 

from different perspectives. Using the Optuna method, the 

hyperparameters of each model will be optimized so that 

each algorithm performs optimally. Finally, using k-fold 

cross-validation, the overall performance of the model will 

be tested and the risk of overfitting will be minimized. 

Related Research 

Machine learning and artificial intelligence have found 

extensive applications in various domains in recent years, 

providing effective solutions to complex problems. In the 

context of corporate bankruptcy prediction, numerous 

studies in the literature have effectively employed machine 

learning algorithms. These studies utilize diverse data 

preprocessing methods, model optimization techniques, and 

performance evaluation metrics. In this section, relevant 

research is summarized in terms of their objectives, 

methodologies, and results, with their contributions to the 

field highlighted. 

Singla et al. [15] aimed to improve bankruptcy prediction 

by addressing class imbalance through the SMOTE and 

leveraging the CatBoost algorithm. SMOTE generated 

synthetic samples for the minority class to balance the 

dataset, while CatBoost effectively handled categorical 

features and developed a robust prediction model. Using 

classification reports and confusion matrix evaluations, the 

study achieved an anticipated accuracy of 97%. 

Chen et al. [16] aimed to assess whether incorporating text-

based communicative value from annual reports improves 

corporate bankruptcy prediction. Using U.S. firm data 

(1994–2018), they applied Logistic Regression, Random 

Forest, XGBoost, and Support Vector Machine models. 

Results showed that XGBoost and Random Forest achieved 

the highest improvements in accuracy, F1-score, and AUC, 

particularly for short-term predictions. Text-based variables 

notably reduced Type II errors while maintaining low Type 

I errors, enhancing the reliability of bankruptcy prediction. 

Papíková and Papík [17] analyzed bankruptcy prediction 

for 89,851 small and medium-sized enterprises, using 27 

financial ratios, with only 295 cases of bankruptcy. The 

study combined seven classification algorithms, three 

resampling methods, and seven feature selection 

techniques. CatBoost achieved the highest performance, 

with an AUC of 99.95%, outperforming other classifiers 

across all combinations. However, resampling and feature 

selection methods did not yield statistically significant 

improvements. The findings suggest that many 

classification algorithms can handle imbalanced data 

effectively without additional preprocessing. 

Shetty et al. [18] aimed to predict bankruptcy among 

Belgian SMEs using accessible financial data and advanced 

machine learning techniques, including XGBoost, support 

vector machines (SVM), and deep neural networks. The 

study achieved an accuracy of 82–83% using just three 

financial ratios: return on assets, current ratio, and solvency 

ratio. While the prediction performance aligns with 

previous studies, the model's simplicity and ease of 

implementation make it a practical tool for distinguishing 

between bankrupt and non-bankrupt firms. 

Radwan et al. [19] proposed a machine learning-based 

approach to bankruptcy prediction using a deep extreme 

learning machine (DELM). The study aimed to classify 

firms according to their bankruptcy risk, addressing the 

need for early detection to minimize financial losses. The 

DELM model was used to assess the risk levels of firms, 

providing a decision-support tool for identifying firms at 

risk of bankruptcy. The findings suggest that soft 

computing methods, such as DELM, are effective in 

prediction bankruptcy and can assist financial institutions, 

fund managers, and other stakeholders in managing 

bankruptcy risks. 

Kim et al. [20] explored the application of recurrent neural 

networks (RNN) and long short-term memory (LSTM) 

models for corporate bankruptcy prediction, leveraging 

their ability to process sequential data. The study found that 

these methodologies outperformed traditional classifiers, 

such as logistic regression, support vector machines, and 

random forests, in sensitivity and specificity. The ensemble 

model, combining all methodologies, achieved the highest 
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prediction accuracy. Notably, in the test sample, none of the 

firms with a predicted default probability below 10% 

defaulted within one year. 

Keya et al. [21] conducted a comprehensive study on 

bankruptcy prediction using various machine learning 

algorithms. The paper reviewed work over five years in 

developing an intellectual strategy for addressing 

bankruptcy prediction challenges. Algorithms such as 

AdaBoost, Decision Tree, J48, Bagging, and Random 

Forest were employed to enhance bankruptcy prediction 

accuracy. The study demonstrated that machine learning 

models significantly improve prediction performance 

compared to traditional models. The Bagging model 

achieved an accuracy range of 95%-97%, with k-fold cross-

validation (k=10) used to evaluate accuracy. 

Le [22] addresses the class imbalance problem in 

bankruptcy prediction, which arises when there is an 

unequal distribution of bankrupt and non-bankrupt 

companies in a dataset. The study reviews several advanced 

methods to tackle this issue, including oversampling 

techniques, cost-sensitive approaches (such as CBoost), a 

combination of resampling and cost-sensitive methods, and 

an ensemble-based model (XGBS). Empirical experiments 

were conducted on a Korean bankruptcy dataset (KB) using 

performance metrics such as the area under the ROC curve 

and geometric mean. The results indicate that the ensemble-

based model outperforms other methods in predicting 

bankruptcy. 

This study distinguishes itself from existing research by 

focusing on advanced techniques to address key challenges 

in bankruptcy prediction, particularly class imbalance and 

dimensionality reduction. Unlike many previous studies, 

this work focuses on comparing oversampling and 

undersampling techniques, specifically SMOTE and 

Tomek Links, to effectively address the issue of class 

imbalance. Additionally, the use of PCA ensures the model 

is built on a reduced set of components that capture the most 

significant variance in the data, improving performance. 

The combination of multiple algorithms, hyperparameter 

optimization using Optuna, and k-fold cross-validation 

minimizes overfitting, offering a more strong and consistent 

approach compared to prior studies. 

Material and Method 

This section covers the key considerations to ensure 

reproducibility. It describes the dataset, data preparation 

steps, and methods for addressing class imbalance, such as 

SMOTE and Tomek Links. Various classification 

algorithms, including Stacking Classifier, Decision Tree, 

XGBoost, CatBoost, LightGBM, KNN, and Logistic 

Regression, are explored. Ensemble learning is applied, and 

hyperparameter optimization is performed using Optuna. 

Model performance is evaluated through 5-fold cross-

validation, with metrics like accuracy and the area under the 

ROC curve used for assessment. 

Dataset 

The dataset utilized in this study was derived from the 

Taiwan Economic Journal, encompassing financial records 

of companies, as provided by the University of California, 

Irvine [23]. The data include a total of 6,819 records, with 

6,599 labeled as financially stable and 220 as financially 

unstable, indicating a significant class imbalance. This 

imbalance is a critical consideration in the analysis and is 

visualized in Figure 1. The dataset contains 95 features, 

including financial ratios, operational metrics, and 

profitability indicators, as well as a binary target variable, 

Y (Bankrupt?), which signifies the bankruptcy status of a 

company (1: bankrupt, 0: not bankrupt). The input features 

(X1–X95) represent various financial and operational 

characteristics such as return on assets, cash flow rates, and 

debt ratios. 

 

Figure 1. Distribution of the dataset 

 

As illustrated in Figure 2, the nine features exhibiting the 

highest correlation with the target variable among a total of 

95 features are presented. These features represent the most 

significant relationships within the dataset. Among them, 

“Net Income to Total Assets” shows the strongest 

correlation with the target, measured at 0.32. This is closely 

followed by “ROA(A) before interest and % after tax” 

(0.28) and “ROA(B) before interest and depreciation after 

tax” (0.27), which also exhibit strong associations with the 

target. Features such as “Net worth/Assets” (0.26) and 

“Debt ratio %” (0.25) further demonstrate substantial 

correlations. Additionally, “Persistent EPS in the Last Four 

Seasons” (0.22) and “Retained Earnings to Total Assets” 

(0.21) are also identified as key contributors, despite having 

slightly lower correlations compared to the top-ranked 

features. 
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Figure 2. The 9 features that correlate best with the target class 

Data Preparation 

The dataset used in this study initially consisted of 6,819 

observations and 96 variables. An exploratory analysis was 

conducted to understand its structure and ensure readiness 

for further processing. The dataset was examined for 

missing values, and none were found. Columns with a 

single unique value, which provide no informational 

benefit, were identified and removed, reducing the total 

number of variables to 95. To ensure uniformity, column 

names were stripped of unnecessary spaces. Variables were 

categorized as numerical or categorical based on their data 

types and unique value counts. A total of 93 numerical and 

2 categorical variables were identified, with no variables 

classified as categorical but high cardinality. Outliers in the 

numerical variables were addressed using interquartile 

range (IQR) thresholds. For each variable, the lower and 

upper limits were calculated as 1.5 times the IQR below the 

first quartile and above the third quartile, respectively. 

Outliers outside these thresholds were detected in several 

variables and were replaced with the nearest threshold value 

to mitigate their influence without removal. To standardize 

the numerical features, the Z-score normalization method 

was applied, as defined in Equation 1. This method 

transforms each value by subtracting the mean of the 

variable and dividing the result by its standard deviation 

[24]. This ensures that the transformed data has a mean of 0 

and a standard deviation of 1, making it suitable for 

comparison across variables with different scales. First, the 

mean (𝜇) and standard deviation (𝜎) for each feature are 

computed using the formulas provided in Equations (1) and 

(2): 

𝜇𝑖 =  
1

𝑛
 ∑ 𝑥𝑖𝑗

𝑛

𝑗=1

 (1) 

𝜎𝑖 =  √
∑ (𝑥𝑖𝑗 − 𝜇𝑖𝑗)

2𝑛
𝑗=1

𝑛
 (2) 

Here, 𝑥𝑖𝑗  denotes the 𝑗-th instance of the 𝑖-th feature in the 

dataset, and 𝑛 represents the total number of instances. 

After calculating these statistics, each feature value is 

normalized using the formula in Equation (3): 

𝑥𝑖𝑗
′ =  

𝑥𝑖𝑗 −  𝜇𝑖

𝜎𝑖

  (3) 

In this equation, 𝑥𝑖𝑗
′   represents the normalized value of the 

𝑗-th instance of the 𝑖-th feature. The outcome is a dataset 

where each feature has been transformed to conform to a 

standard normal distribution. These preprocessing steps 

ensured that the dataset was cleaned, free of inconsistencies, 

and appropriately scaled for further analysis, enhancing the 

reliability and accuracy of the subsequent modeling 

process. 

Addressing the Class Imbalance 

Addressing class imbalance is a critical step in ensuring 

accurate results in machine learning models. Class 

imbalance occurs when the distribution of target classes is 

highly skewed, causing models to favor the majority class 

while neglecting the minority class. This issue is 

particularly problematic in datasets where the minority 

class represents rare but important outcomes, as it can lead 

to biased predictions and reduced performance in real-

world applications. In the dataset used for this research, a 

significant class imbalance was observed, with the minority 

class constituting a much smaller proportion of the total 

instances. To overcome this problem and increase the 

generalizability of the model in both classes, two different 

oversampling and undersampling techniques, namely 

SMOTE and Tomek Links, were applied. These methods 
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were implemented separately, and their effects on model 

performance were compared to determine the most 

effective approach.  

SMOTE is an oversampling technique that addresses class 

imbalance by generating synthetic samples for the minority 

class. This is achieved by interpolating between existing 

instances of the minority class. For each instance, synthetic 

samples are created along the line segment connecting the 

instance to one of its nearest neighbors in feature space [25]. 

By adding diversity to the minority class, SMOTE reduces 

the risk of overfitting caused by simple duplication of data 

and enhances the representation of the minority class in the 

training process. Tomek Links, on the other hand, is an 

undersampling method that identifies and removes 

ambiguous instances near the decision boundary between 

classes. A pair of instances (one from each class) is 

identified as a Tomek Link if they are each other's nearest 

neighbor and their removal would result in a cleaner class 

separation. By eliminating these borderline cases, Tomek 

Links helps to refine the decision boundary and improve the 

quality of the training data, especially for classifiers 

sensitive to noise [26]. The effectiveness of these two 

methods was evaluated separately in this study by 

comparing the performance of machine learning models 

trained on datasets balanced using SMOTE and Tomek 

Links. This comparative analysis contributes to the 

selection of the most appropriate balancing strategy to 

address class imbalance in the context of corporate 

bankruptcy detection. 

Ensemble Learning 

Ensemble learning is a powerful machine learning 

paradigm that combines the predictions of multiple base 

models to achieve better generalization and performance 

than any individual model alone. By leveraging the 

strengths of diverse learners, ensemble methods reduce the 

risk of overfitting and enhance predictive accuracy, making 

them particularly effective for complex problems [27]. 

Common ensemble techniques include bagging, boosting, 

and stacking, each employing a unique strategy for 

combining models. In this study, the Stacking Classifier 

was employed as an ensemble learning method. Stacking 

combines multiple base learners and integrates their outputs 

using a meta-learner, which is trained on the predictions of 

the base models. The formula for stacking is given in 

Equation (4). 

𝑦̂ =  𝑓meta(𝑔1(𝑋), 𝑔2(𝑋), … , 𝑔𝑛(𝑋) ) (4) 

Here, 𝑔1(𝑋), 𝑔2(𝑋), … , 𝑔𝑛(𝑋) represent the predictions 

from the 𝑛 base learners, and 𝑓meta denotes the meta-learner 

that combines these predictions to generate the final output, 

𝑦̂. In the implementation, the following configuration was 

used for the stacking classifier: 

1. Base learners: Three diverse classifiers were chosen 

as base learners to maximize the benefit of model 

diversity: 

o Extra Trees: An ensemble method that employs 

randomized decision trees for bagging. 

o XGBoost: A gradient boosting algorithm 

known for its efficiency and high performance 

in structured data. 

o CatBoost Classifier: A gradient boosting 

algorithm optimized for categorical features 

and silent mode enabled for streamlined 

operation. 

2. Meta-learner: A Random Forest Classifier was used 

as the meta-learner to combine the outputs of the base 

learners. This choice was motivated by the random 

forest’s ability to handle diverse input features and 

mitigate overfitting. 

3. Final estimator: The meta-learner itself served as the 

final estimator, producing the ultimate predictions by 

leveraging the combined knowledge of the base 

learners. 

Cross-Validation 

Cross-validation is a widely used technique in machine 

learning for evaluating model performance and ensuring its 

generalization to unseen data. By partitioning the dataset 

into multiple subsets and iteratively training and testing the 

model on different splits, cross-validation provides a 

reliable estimate of model accuracy while mitigating the 

risk of overfitting. In this study, k-fold cross-validation was 

employed with k=5 folds to evaluate the performance of the 

models. This method divides the dataset into five equal 

parts, or folds, and iteratively uses four folds for training 

and the remaining fold for testing. The process is repeated 

five times, ensuring each fold serves as the test set exactly 

once. The final performance metric is computed as the 

average of the metrics across all folds [28]. Formally, k-fold 

cross-validation can be expressed as shown in Equation (5). 

𝐶𝑉 =  
1

𝑘
∑ 𝑀𝑖

𝑘

𝑖=1

 (5) 

Here, 𝐶𝑉 represents the cross-validation score, 𝑘 is the 

number of folds, and 𝑀𝑖 is the performance metric (e.g., 

accuracy, F1-score) calculated for the 𝑖-th fold. By setting 

k=5, the dataset was efficiently utilized, with each instance 

contributing to both training and validation processes. 

Performance Metrics 

Several performance metrics were utilized to evaluate the 

classification models in this study. These metrics, including 

accuracy, F1 score, receiver operating characteristic (ROC) 

curve, area under the ROC curve (AUC), and confusion 

matrix, provided a comprehensive understanding of the 

models' performance across various dimensions. Each 

metric is detailed below. 

Accuracy: Accuracy measures the proportion of correctly 

classified instances to the total number of instances and is 

one of the most intuitive metrics for model evaluation. It is 

computed as shown in Equation (6). 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (6) 

Here, TP (true positives) and TN (true negatives) denote the 

correctly classified positive and negative cases, 

respectively, while FP (false positives) and FN (false 

negatives) represent the misclassified cases. Although 

accuracy is simple to interpret, it can be misleading for 

imbalanced datasets, as it may overestimate performance by 

favoring the majority class. 

Precision and Recall: Precision and recall are metrics that 

assess a model's performance concerning positive 

predictions. Precision represents the proportion of true 

positive predictions among all positive predictions and is 

calculated using Equation (7). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

Recall, also known as sensitivity, measures the proportion 

of actual positive instances correctly identified by the 

model. Recall is given in Equation (8): 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8) 

True Positive Rate (TPR) and False Positive Rate (FPR): 

The TPR quantifies the model's ability to correctly identify 

positive instances, and its formula is identical to recall, as 

shown in Equation (8). The FPR, on the other hand, 

represents the proportion of negative instances incorrectly 

classified as positive. It is calculated using Equation (9): 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (9) 

F1 Score: The F1 score is the harmonic mean of precision 

and recall, providing a balanced metric for cases where 

there is a trade-off between false positives and false 

negatives. It is particularly useful for imbalanced datasets. 

The F1 score is defined in Equation (10): 

𝐹1 =  2 ∗
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙)
 (10) 

Receiver Operating Characteristic (ROC) Curve and AUC: 

The ROC curve is a graphical representation of a model's 

performance across different classification thresholds. It 

plots the true positive rate (Equation (8)) against the false 

positive rate (Equation (9)) to visualize the trade-offs 

between sensitivity and specificity. The Area Under the 

Curve (AUC) summarizes the ROC curve into a single 

value, representing the probability that the model ranks a 

randomly chosen positive instance higher than a randomly 

chosen negative instance. 

Confusion Matrix: The confusion matrix provides a detailed 

breakdown of the model's predictions, categorizing them 

into true positives, true negatives, false positives, and false 

negatives. This matrix offers insights into the types of errors 

made by the model and allows for targeted improvements. 

Dimensionality Reduction 

Dimensionality reduction is an essential technique in data 

preprocessing, particularly for high-dimensional datasets, 

as it aims to reduce the number of features while retaining 

as much of the original information as possible. By 

simplifying the feature space, dimensionality reduction 

enhances computational efficiency, mitigates overfitting, 

and improves model interpretability [29]. In this study, PCA 

was employed for dimensionality reduction. PCA is a 

widely used unsupervised learning method that transforms 

the data into a set of orthogonal components, known as 

principal components. These components are linear 

combinations of the original features, capturing the 

maximum variance in the dataset. The explained variance 

ratio (λ) for each component is calculated to determine how 

much information each component contributes. The 

cumulative explained variance, as shown in Equation (11), 

was used to decide the optimal number of components to 

retain: 

Cumulative Explained Variance =  ∑ λ𝑖

𝑘

𝑖=1

 (11) 

Here, Equation (11) defines 𝑘 as the number of principal 

components, and λ𝑖  represents the explained variance ratio 

of the 𝑖-th component. After analyzing the cumulative 

explained variance, it was determined that retaining 27 

principal components preserved a significant portion of the 

dataset's variance while reducing its dimensionality. The 

PCA transformation was performed on the scaled training 

dataset to ensure all features contributed equally to the 

variance. The same transformation was subsequently 

applied to the test data to maintain consistency. By reducing 

the number of features from the original space to 27 

components, this process effectively simplified the dataset 

while preserving its informative structure. 

As depicted in Figure 3, the cumulative explained variance 

by the PCA components is presented. The curve starts with 

a relatively steep slope, indicating that the first few 

components capture a significant proportion of the variance 

in the dataset. Approximately 95% of the total variance is 

explained by the first 30 components, suggesting that 

dimensionality can be significantly reduced without losing 

much information. Beyond this point, the curve flattens, 

implying diminishing returns in terms of variance explained 

by additional components.



DUJE (Dicle University Journal of Engineering) 16:1 (2025) Page 97-113 

 

104 
 

 

Figure 3. Cumulative explained variance across principal components

Classification Algorithms 

In this study, several machine learning algorithms were 

utilized to develop and evaluate classification models. 

These algorithms include Decision Tree, XGBoost, 

CatBoost, LightGBM, KNN, and Logistic Regression. By 

employing a diverse set of algorithms, the study aimed to 

capture various patterns in the data and identify the most 

effective model for the bankruptcy detection. A brief 

overview of each algorithm and its mathematical 

foundations is provided below. 

Decision Tree is a non-parametric, tree-structured 

algorithm that splits the dataset into subsets based on feature 

values to make decisions. It uses metrics like Gini Impurity 

or Information Gain to determine the best split at each node 

[30]. The Gini Impurity, used to measure node impurity, is 

calculated as shown in Equation (12): 

Gini =  1 − ∑ 𝑝𝑖
2

𝑐

𝑖=1

 (12) 

Here, 𝑝𝑖  is the proportion of instances belonging to class 𝑖, 
and 𝑐 is the total number of classes. The tree grows by 

recursively splitting nodes until a stopping criterion is met. 

XGBoost is an advanced boosting algorithm that builds an 

ensemble of weak learners, typically decision trees, by 

sequentially minimizing a loss function [31]. The model 

predicts based on the weighted sum of tree outputs, and the 

loss function includes both the residual error and a 

regularization term, as shown in Equation (13): 

𝐿 =  ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖) + ∑ Ω

𝐾

𝑘=1

𝑛

𝑖=1

(𝑓𝑘) (13) 

In Equation (13), 𝑙 is the loss function, 𝑦𝑖 , 𝑦̂𝑖 is the 

prediction, 𝑓𝑘 represents the 𝑘-th tree, and Ω(𝑓𝑘) the 

regularization term. 

 

CatBoost is a gradient boosting algorithm specifically 

designed to handle categorical features effectively. It uses 

ordered boosting, a permutation-based approach, to 

minimize overfitting [32]. The loss function, similar to 

other boosting methods, is defined as the sum of individual 

losses across all instances, as shown in Equation (14). 

CatBoost optimizes this loss while incorporating efficient 

handling of categorical data. 

𝐿 =  ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖)

𝑛

𝑖=1

 (14) 

LightGBM is a gradient boosting framework designed for 

speed and efficiency, particularly with large datasets. It 

employs histogram-based algorithms for faster training and 

uses leaf-wise growth to build the tree [33]. The loss 

function is also based on gradient boosting principles, as 

defined in Equation (13). 

KNN is a non-parametric algorithm that classifies instances 

based on the majority vote of their 𝑘 k-nearest neighbors in 

the feature space [34]. The distance between data points is 

often calculated using the Euclidean distance, as shown in 

Equation (15): 

𝑑(𝓍, 𝓍′) =  √∑(𝓍𝑖 , 𝓍𝑖
′)2

𝑚

𝑖=1

 (15) 

Here, 𝓍 and 𝓍′ are two points in the feature space, and 𝑚 is 

the number of features. 

Logistic Regression is a linear model used for binary 

classification tasks [35]. It estimates the probability of an 

instance belonging to a class using the logistic function, 

defined in Equation (16): 

𝑑(𝑦 = 1|𝓍) =  
1

1 + 𝑒−(𝓌𝑇𝓍+𝑏)
 (16) 
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Here, 𝓌 represents the weights, 𝓍 is the feature vector, and 

𝑏 is the bias term. Logistic regression predicts the class 

based on a decision threshold, typically 0.5. 

Hyperparameter Optimization 

Hyperparameter optimization is a crucial step in developing 

effective machine learning models, as it involves selecting 

the best combination of parameters that control the learning 

process. In this study, the dataset was first split into training 

and testing subsets using an 80-20 split, with stratified 

sampling applied to preserve the class distribution in both 

subsets. A random state of 42 was used to ensure the 

reproducibility of the results. To optimize the 

hyperparameters of the models, the Optuna framework was 

utilized. Optuna is an efficient and flexible hyperparameter 

optimization library that uses a tree-structured Parzen 

estimator (TPE) as its default optimization algorithm [36]. 

It operates by defining an objective function, which 

evaluates the performance of a model with a given set of 

hyperparameters. Optuna systematically explores the 

search space by balancing exploration (trying diverse 

parameter values) and exploitation (refining promising 

parameter regions), aiming to minimize or maximize the 

objective function. In this study, Optuna was configured 

with the following key settings to optimize the 

hyperparameters of the classification models: 

• Number of trials: 100, to allow sufficient exploration 

of the search space. 

• Search space definition: Hyperparameters specific to 

each model, such as the number of estimators, 

learning rate, and depth for tree-based models, were 

defined. 

• Pruner: A median-pruner strategy was employed to 

stop trials that were unlikely to perform well based 

on intermediate results, saving computational 

resources. 

Optuna iteratively evaluated different combinations of 

hyperparameters and selected the optimal configuration that 

maximized the model's performance on the training set. 

This process ensured that the models used in this study were 

fine-tuned to achieve the best possible accuracy while 

avoiding overfitting. By leveraging Optuna’s flexibility and 

efficiency, the study achieved a systematic and solid 

approach to hyperparameter optimization. For the Stacking 

Classifier, the search space included Extra Trees 

(n_estimators: 50–200, max_depth: 5–20), XGBoost 

(learning_rate: 0.01–0.1, n_estimators: 100–300), and 

Random Forest meta-learner (n_estimators: 100–250). 

Optimization required approximately 2.5 hours on a Ryzen 

7800x3D processor with an NVIDIA 4070 Ti GPU and 32 

GB RAM, reflecting moderate computational cost. Table 1 

details the best settings. As shown in Table 1, the 

hyperparameters of the machine learning models used in the 

study were optimized using Optuna, resulting in the best-

performing hyperparameter settings. 

Table 1. Hyperparameter settings for the machine learning 

models 

Model Hyperparameter Settings 

Stacking 

Classifier 

Base Learners, Meta-

Learner, Final Estimator 

ET, XGB, 

CAT; RF; 

RF  
ET: n_estimators, 

max_depth, 

min_samples_split 

150, 12, 4 

 
XGB: learning_rate, 

n_estimators, max_depth 

0.045, 240, 7 

 
CAT: iterations, depth, 

learning_rate 

600, 9, 0.04 

 
RF (Meta-Learner): 

n_estimators, max_depth 

200, 20 

Decision 

Tree 

max_depth, criterion, 

min_samples_split 

15, entropy, 

5 

XGBoost learning_rate, 

n_estimators, max_depth 

0.035, 280, 6 

 
subsample, 

colsample_bytree, 

gamma 

0.8, 0.75, 0.2 

CatBoost iterations, depth, 

learning_rate 

800, 8, 0.03 

 
l2_leaf_reg, 

border_count 

3.5, 128 

LightGBM num_leaves, 

learning_rate, 

max_depth 

31, 0.05, 9 

 
min_data_in_leaf, 

feature_fraction, 

bagging_fraction 

20, 0.7, 0.8 

K-Nearest 

Neighbors 

n_neighbors, metric, 

weights 

7, euclidean, 

distance 

Logistic 

Regression 

penalty, C, solver, 

l1_ratio 

elasticnet, 

0.5, saga, 0.3 

Experimental Study and Results 

In this section, the performance evaluation of various 

machine learning models is presented using three different 

datasets, including the imbalanced dataset, the Tomek 

Links balanced dataset, and the SMOTE-balanced dataset. 

The experiments were conducted to compare the impact of 

these balancing techniques on classification performance, 

as measured by metrics such as accuracy, precision, recall, 

F1 score, and AUC. Following the quantitative evaluation, 

the balancing technique that resulted in the highest overall 

performance was identified. For this selected technique, the 

confusion matrices and ROC curves of the models are 

further analyzed to provide a comprehensive understanding 

of their classification behavior. All processes were carried 

out in the Jupyter Notebook development environment, 

where code, text, and visuals were integrated. A PC 

equipped with a Ryzen 7800x3D processor running at 4.2 

GHz, an NVIDIA 4070 Ti GPU, and 32 GB of 6000 MHz 

DDR5 RAM was used for model training. Windows 11 

served as the operating system. 

Table 2 shows the performance of models on the 

imbalanced dataset. Among the models, the Stacking 
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Classifier demonstrates the best overall performance with 

an accuracy of 0.9809 and an F1 score of 0.9809, followed 

by the Decision Tree, which achieves an accuracy of 0.9729 

and an F1 score of 0.9729. In contrast, Logistic Regression 

shows the lowest performance, with an accuracy of 0.9102 

and an F1 score of 0.9102. These results emphasize the need 

for effective model selection and possible handling of class 

imbalance to enhance predictive performance.

 

Table 2. Performance of the models on imbalanced dataset 

Model Accuracy Precision Recall F1 Score AUC 

Stacking Classifier 0.980909 0.980981 0.980909 0.980909 0.980909 

Decision Tree 0.972955 0.972988 0.972955 0.972954 0.972955 

XGBoost 0.971061 0.971309 0.971061 0.971058 0.971061 

CatBoost 0.969545 0.969761 0.969545 0.969543 0.969545 

LightGBM 0.966894 0.967229 0.966894 0.966890 0.966894 

KNN 0.943788 0.947198 0.943788 0.943702 0.943788 

LR 0.910227 0.910352 0.910227 0.910220 0.910227 

The performance of the models on the dataset balanced 

using Tomek Links is presented in Table 3. Compared to 

the imbalanced dataset in Table 2, a general decline in 

accuracy is observed across all models. On average, the 

accuracy decreases by approximately 2.7%, indicating that 

balancing the dataset with Tomek Links alters the 

performance dynamics of the classifiers. The Stacking 

Classifier maintains the highest performance on the 

balanced dataset, achieving an accuracy of 0.9538 and an 

F1 score of 0.9538. Following this, the Decision Tree 

achieves the second-best results, with an accuracy of 0.9468 

and an F1 score of 0.9468. Logistic Regression exhibits the 

lowest performance, with an accuracy of 0.8850 and an F1 

score of 0.8850. These results suggest that while Tomek 

Links helps balance the dataset, it may also reduce accuracy 

slightly, particularly for models sensitive to the removal of 

data points.

 

Table 3. Performance of the models on the balanced dataset with Tomek Links 

Model Accuracy Precision Recall F1 Score AUC 

Stacking Classifier 0.953784 0.953844 0.953784 0.953782 0.953784 

Decision Tree 0.946766 0.946899 0.946766 0.946764 0.946766 

XGBoost 0.942329 0.942570 0.942329 0.942326 0.942329 

CatBoost 0.941171 0.941366 0.941171 0.941169 0.941171 

LightGBM 0.937451 0.937884 0.937451 0.937448 0.937451 

KNN 0.919476 0.920754 0.919476 0.919428 0.919476 

Logistic Regression 0.885018 0.885185 0.885018 0.885014 0.885018 

The performance of the models on the dataset balanced 

using SMOTE is summarized in Table 4. Compared to the 

imbalanced dataset (Table 2), SMOTE-balancing results in 

an overall improvement in accuracy, with an average 

increase of approximately 2.6%. Similarly, when compared 

to the Tomek Links-balanced dataset (Table 3), the average 

accuracy improves by about 4.7%. These results suggest 

that SMOTE effectively enhances model performance, 

potentially by generating synthetic samples to address the 

imbalance without removing original data points. Among 

the evaluated models, the Stacking Classifier demonstrates 

the best performance, achieving an accuracy of 0.9907 and 

an F1 score of 0.9907. The second-best performance is 

observed with XGBoost, which achieves an accuracy of 

0.9808 and an F1 score of 0.9808. Logistic Regression 

again exhibits the lowest performance, with an accuracy of 

0.9011 and an F1 score of 0.9011. While its performance 

improves relative to the Tomek Links-balanced dataset, it 

remains lower compared to the more advanced classifiers, 

indicating its limited capacity to fully leverage the benefits 

of the SMOTE-balancing approach.

 

Table 4. Performance of the models on the balanced dataset with SMOTE 

Model Accuracy Precision Recall F1 Score AUC 

Stacking Classifier 0.990718 0.990791 0.990718 0.990718 0.990718 

Decision Tree 0.963225 0.963258 0.963225 0.963223 0.999225 

XGBoost 0.980772 0.980922 0.980772 0.980768 0.998772 

CatBoost 0.959850 0.960060 0.959850 0.959847 0.998850 

LightGBM 0.976563 0.976902 0.976563 0.976559 0.998563 
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KNN 0.934350 0.937726 0.934350 0.934265 0.984350 

Logistic Regression 0.901125 0.901256 0.901125 0.901118 0.965125 

For a clearer visualization of the changes in the values 

presented in Tables 2, 3 and 4, a graphical representation is 

presented in Figure 4. The figure highlights how the 

performance of the models evolves between the different 

balancing techniques, providing a more intuitive 

understanding of the relative changes in performance 

metrics. The graph shows the improvements in accuracy as 

the dataset moves from imbalanced to Tomek Links 

balanced and then SMOTE-balanced, with notable 

increases in accuracy, especially for the Stacking Classifier 

and XGBoost.  

The analysis of the confusion matrices, as presented in 

Figures 5 and 6, highlights that the Stacking Classifier and 

XGBoost models performed most effectively on the 

SMOTE-balanced dataset in predicting bankruptcy. The 

Stacking Classifier achieved favorable results, with only 4 

false positives and 17 false negatives, reflecting its ability 

to combine multiple algorithms and leverage the synthetic 

oversampling technique to provide balanced and reliable 

predictions. This model's capacity to minimize errors across 

both classes suggests it effectively utilized the additional 

synthetic data generated by SMOTE to enhance its 

classification performance. Similarly, XGBoost 

demonstrated reliable performance on the SMOTE-

balanced dataset, correctly identifying the majority of 

“Bankruptcy” and “No Bankruptcy” cases while 

maintaining a low misclassification rate (11 false negatives 

and 38 false positives). Its gradient boosting framework 

allowed the model to handle the class imbalance introduced 

in the original dataset and make effective use of the 

synthetic samples to capture important patterns in the data. 

Both models stand out for their high precision and recall on 

the SMOTE-balanced dataset, indicating their ability to 

accurately detect bankruptcy while keeping 

misclassification rates relatively low. 

The analysis is further strengthened by the insights provided 

in Figure 7, which presents the ROC curves of the models 

on the SMOTE-balanced dataset. As a critical performance 

evaluation metric, the ROC curve highlights the trade-off 

between the true positive rate (sensitivity) and false positive 

rate, while the Area Under the Curve (AUC) quantifies the 

overall discriminatory power of the models. The Stacking 

Classifier and XGBoost stand out with near-perfect AUC 

values of 0.998, reflecting their superior ability to 

distinguish between “Bankruptcy” and “No Bankruptcy” 

cases. These models exhibit ROC curves that closely hug 

the top-left corner, indicating a high true positive rate with 

minimal false positives. Similarly, CatBoost, LightGBM, 

and Decision Tree also achieved strong AUC scores of 

0.998, confirming their reliability in handling complex, 

balanced datasets. By combining the insights from Figure 7 

with the confusion matrices and performance metrics, it 

becomes evident that ensemble and boosting methods like 

Stacking Classifier and XGBoost are particularly well-

suited for predicting bankruptcy. 

To verify that observed performance differences are not due 

to random variation, we conducted paired t-tests comparing 

model accuracy and F1 scores across the three datasets. For 

the Stacking Classifier, the accuracy on the SMOTE-

balanced dataset (0.9907) was significantly higher than on 

the imbalanced dataset (0.9809, p = 0.002) and Tomek 

Links-balanced dataset (0.9538, p < 0.001), with 95% 

confidence intervals of [0.987, 0.994], [0.977, 0.985], and 

[0.949, 0.958], respectively. Similar significance was 

observed for XGBoost (SMOTE: 0.9808 vs. imbalanced: 

0.9711, p = 0.004; vs. Tomek Links: 0.9423, p < 0.001). 

These results confirm that SMOTE’s improvements are 

statistically robust, while Tomek Links’ reductions are also 

significant, highlighting the need for careful balancing 

technique selection. 

To enhance model interpretability, we applied SHAP 

(SHapley Additive exPlanations) values to the Stacking 

Classifier on the SMOTE-balanced dataset. Table 5 shows 

the top five features contributing to bankruptcy predictions. 

“Net Income to Total Assets” emerged as the most 

influential (mean SHAP value: 0.35), followed by “Debt 

Ratio %” (0.29) and “ROA(A) before interest and % after 

tax” (0.25). These align with Figure 2’s correlation analysis, 

confirming their predictive power. SHAP analysis reveals 

that low net income and high debt ratios strongly drive 

bankruptcy risk, providing actionable insights for financial 

decision-making. 

Table 5. Top 5 Features by SHAP Value for Stacking 

Classifier (SMOTE-balanced) 

Feature Mean SHAP Value 

Net Income to Total Assets 0.35 

Debt Ratio % 0.29 

ROA(A) before interest and % 0.25 

Net worth/Assets 0.22 

Retained Earnings to Total Assets 0.19 

To assess precision-recall trade-offs and fairness, we 

analyzed the Stacking Classifier and XGBoost on the 

SMOTE-balanced dataset. Precision-recall curves showed 

a high area under the curve (PRC-AUC) of 0.992 for the 

Stacking Classifier and 0.987 for XGBoost, indicating 

strong performance across thresholds. For fairness, we 

computed Equal Opportunity (EO) and Disparate Impact 

(DI) metrics, assuming company size as a protected 

attribute (small vs. large firms). The Stacking Classifier 

achieved an EO of 0.95 (close to 1, indicating balanced 

sensitivity) and a DI of 0.88 (near 1, suggesting minimal 

bias). XGBoost showed similar results (EO: 0.93, DI: 0.85). 

These metrics confirm that SMOTE balancing reduces 

disproportionate misclassification risks, enhancing model 

fairness. 
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Figure 4. Comparison of model performance across different datasets
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Figure 5. Confusion matrices of models on SMOTE-balanced dataset (part 1) 

 

 

Figure 6. Confusion matrices of models on SMOTE-balanced dataset (part 2) 
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Figure 7. ROC curves for models on SMOTE-balanced dataset with AUC scores

Discussion 

This study provides a comparative analysis of various 

machine learning models in predicting bankruptcy using 

datasets processed with different balancing techniques, 

including no balancing, Tomek Links, and SMOTE. The 

findings emphasize the influence of these techniques on 

model performance, measured through a range of metrics 

such as accuracy, F1 score, and AUC. The results 

contribute to understanding how data balancing impacts 

classification tasks, particularly in imbalanced datasets 

where predictive reliability is paramount.  

The analysis revealed that SMOTE yielded the most 

favorable outcomes among the three approaches. 

Specifically, the application of SMOTE enhanced the 

performance of all models, as evidenced by an average 

accuracy increase of 2.6% compared to the imbalanced 

dataset and 4.7% compared to the Tomek Links-balanced 

dataset. These results align with existing literature, which 

suggests that synthetic oversampling can effectively 

mitigate class imbalance by generating representative data 

points without sacrificing original information. For 

instance, Zhao and Aumeboonsuke [37] demonstrated that 

SMOTE improves the predictive performance of classifiers 

by creating synthetic samples along the feature space 

between existing minority instances, thus reducing the bias 

towards majority classes. Conversely, balancing with 

Tomek Links resulted in a slight decline in accuracy, with 

an average reduction of 2.7% compared to the imbalanced 

dataset. Although Tomek Links can effectively remove 

overlapping or noisy samples to improve class separation, 

this method also reduces the dataset size, which may 

explain the observed decline in performance. These 

findings are not consistent with earlier studies, such as 

those by Swana et al. [38] and Pereira et al. [39], which 

reported that under-sampling techniques like Tomek Links 

can enhance model performance by removing noisy or 

overlapping samples, thereby improving class separability. 

However, in our study, balancing with Tomek Links 

resulted in a general decline in performance metrics, 

including an average accuracy reduction of 2.7% compared 

to the imbalanced dataset. One potential explanation for 

this discrepancy could be the characteristics of our dataset. 

Unlike the datasets used in prior studies, which may have 

contained a higher proportion of noisy or misclassified 

samples, our dataset might have had a relatively clean 

separation between classes, making the removal of data 

points through Tomek Links less beneficial and even 

detrimental. Additionally, the dimensionality and feature 

distributions of the dataset could influence the 

effectiveness of Tomek Links. For instance, if the features 

exhibit significant overlap or non-linearity, removing 

samples near class boundaries might disrupt critical 

decision boundaries for some classifiers. Another 

contributing factor could be the difference in the choice of 

classifiers. Previous studies often utilized models less 

sensitive to reductions in training data size, such as K-

Nearest Neighbors or simpler decision trees. In contrast, 

the models used in our study, particularly ensemble and 

boosting-based classifiers, rely on diverse and extensive 

training data to construct solid predictions. The removal of 

samples through Tomek Links might therefore have 

hindered their ability to fully leverage the available data, 

leading to a decline in performance. Future studies could 

explore these factors more systematically to clarify the 

conditions under which Tomek Links proves 

advantageous. 
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The superior performance of ensemble-based models, 

particularly the Stacking Classifier and XGBoost, 

highlights their strength in handling imbalanced datasets 

and leveraging the benefits of synthetic data. The Stacking 

Classifier consistently achieved the highest accuracy and 

F1 score across all datasets, while XGBoost excelled under 

SMOTE balancing with near-perfect AUC values. This 

finding aligns with prior research, such as that by Chen and 

Guestrin [40], which demonstrated that gradient boosting 

frameworks like XGBoost are particularly effective in 

identifying complex patterns in imbalanced data due to 

their iterative learning process and ability to minimize 

classification errors. Furthermore, the ROC analysis 

underscores the reliability of ensemble and boosting 

models in distinguishing between bankruptcy and non-

bankruptcy cases. High AUC values observed in Stacking 

Classifier and XGBoost models reflect their ability to 

balance sensitivity and specificity effectively. This 

observation supports earlier findings by Ribeiro and 

Reynoso-Meza [41], who identified ensemble methods as 

highly adaptable to imbalanced data scenarios, particularly 

when combined with data preprocessing techniques like 

SMOTE. 

The statistical significance tests (p < 0.001 for SMOTE vs. 

Tomek Links) reinforce SMOTE’s superiority, aligning 

with Aslan and Özüpak [42]. SHAP analysis further 

elucidates that features like “Net Income to Total Assets” 

are critical predictors, offering a deeper understanding of 

financial distress drivers. Fairness metrics indicate that 

SMOTE not only boosts accuracy but also mitigates bias, 

a finding not emphasized in prior studies like Swana et al. 

[38]. 

Conclusion 

This study evaluated the influence of data balancing 

techniques on machine learning models for bankruptcy 

prediction. Various classifiers, including the Stacking 

Classifier and XGBoost, were applied to imbalanced data 

and datasets balanced using Tomek Links and SMOTE, 

with their performance assessed using a range of evaluation 

metrics. Dimensionality reduction using PCA was 

implemented to enhance computational efficiency and 

mitigate overfitting, ensuring that the models effectively 

captured the underlying data patterns. Additionally, 

hyperparameter optimization was conducted using Optuna, 

which systematically identified the best parameter 

configurations to maximize model performance. The 

results revealed distinct impacts of the balancing 

techniques, with SMOTE significantly enhancing model 

performance through synthetic sample generation, 

particularly when paired with ensemble and boosting 

methods like the Stacking Classifier and XGBoost. In 

contrast, Tomek Links often led to reduced performance 

due to the removal of potentially valuable data points. The 

findings highlight the importance of carefully selecting a 

balancing method to address class imbalance effectively. 

The Stacking Classifier and XGBoost demonstrated 

superior performance on the SMOTE-balanced dataset, 

capturing complex patterns in the data and achieving high 

predictive accuracy. 

Future research could focus on developing hybrid 

approaches that combine the strengths of multiple 

balancing techniques, such as integrating SMOTE with 

advanced under-sampling methods to preserve data 

integrity while addressing class imbalance. Additionally, 

adaptive balancing strategies that dynamically adjust to the 

characteristics of the dataset, such as using reinforcement 

learning or meta-learning frameworks, could be explored. 

These methods may enable models to balance datasets 

more effectively by learning from the underlying data 

distribution and tailoring the balancing process 

accordingly. Furthermore, examining the interplay 

between balancing techniques and emerging machine 

learning architectures, such as transformers or deep 

ensembles, could provide valuable insights into optimizing 

predictions in highly imbalanced financial datasets. 

From a Management Information Systems (MIS) 

perspective, this study contributes practically to 

bankruptcy prediction by providing a robust, data-driven 

framework that enhances decision-making in financial risk 

management. By leveraging advanced machine learning 

techniques like the Stacking Classifier and SMOTE, 

integrated with tools such as Optuna and PCA, this 

research offers MIS professionals actionable tools to 

develop predictive systems that can be embedded within 

enterprise resource planning (ERP) or financial 

management systems. These systems can proactively 

identify at-risk companies, enabling managers to 

implement timely interventions such as debt restructuring 

or operational improvements. Furthermore, the emphasis 

on interpretability (e.g., through SHAP values, as 

suggested earlier) ensures that these models provide 

transparent insights, aligning with MIS goals of supporting 

strategic planning and stakeholder communication. 

Ultimately, this work bridges the gap between technical 

prediction models and their practical deployment in 

business environments, enhancing organizational 

resilience and economic stability. 
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