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Abstract
In this paper, we introduce the concept of strongly completely monotonic functions on time
scales and investigate several properties of such functions. Meanwhile, we present some
key results considering three special cases including continuous, discrete, and quantum.
As applications, we prove that certain functions involving the confluent and Gaussian
hypergeometric functions are strongly completely monotonic.
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1. Introduction
Prior to the 1980s, continuity and discreteness were two separate lines of research con-

sidered by academics. Stefan Hilger introduced the time scale and its related concepts
and properties in his PhD thesis [12] and academic paper [13], and succeeded in unifying
the discrete and continuous analyses under the single framework of the time scale. Thus,
the theory of time scale was established. After then, scholars provided some concepts on
times scale, such as Taylor expansions [5], Laplace transforms [7], convolution [19] and
some special functions [6]. In recent years, Mao and Tian established the concept of com-
pletely monotonic degree [16] and monotonicity rules [17] within the framework of time
scales. Furthermore, time scales have found widespread applications in a variety of fields,
including physics [22], chemical engineering [25], economics [2,3] and neural networks [15].

One of the key differences between real analysis and time scale analysis lies in the
definition of derivatives. Here, we provide a brief introduction. In time scale analysis,
there are three types of derivatives: the delta derivative (∆), the nabla derivative (∇),
and their linear combination, the diamond-alpha derivative (3α). Let T is a time scale,
which is an arbitrary nonempty closed subset of the real numbers. Define the forward
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and backward jump operator by σ(x) = inf {t ∈ T : t > x} and ρ(x) = sup {t ∈ T : t < x},
respectively. The delta derivative (see [15]) of a continuous function f on Tk is defined by

f∆(x) =
{f(σ(x))−f(x)

σ(x)−x if σ(x) > x,

limt→x+
f(t)−f(x)

t−x if σ(x) = x,

where

Tk =
{
T \ (ρ(supT), supT) if supT < ∞,

T if supT = ∞.

The nabla derivative (see [15]) of a continuous function f on Tk is defined by

f∇(x) =
{f(x)−f(ρ(x))

x−ρ(x) if ρ(x) < x,

limt→x−
f(x)−f(t)

x−t if ρ(x) = x,

where

Tk =
{
T\{m} if T has a right-scattered minimum m,

T otherwise.

And the diamond-alpha derivative [21] is defined by

f�α(x) = αf∆(x) + (1 − α)f∇(x), α ∈ [0, 1], x ∈ Tk ∩ Tk.

We recall the concepts of completely monotonic functions and absolutely monotonic
functions [4,24]. Let D∞(0, ∞) denote the set of all functions defined on (0, ∞) that have
derivatives of all orders.

Definition 1.1 ([4, 24]). Let f ∈ D∞(0, ∞) and

(−1)nf (n)(x) ≥ 0, x > 0
for all n ∈ N. Then f is said to be a completely monotonic function on (0, ∞).

Definition 1.2 ([24]). Let f ∈ D∞(0, ∞) and

f (n)(x) ≥ 0, x > 0
for all n ∈ N. Then f is said to be an absolutely monotonic function on (0, ∞).

In 1989, Trimble, Wells and Wright[23] introduced the concept of strongly completely
monotonic functions, which is defined as follows.

Definition 1.3 ([23]). Let f ∈ D∞(0, ∞) satisfy that the function

x 7→ (−1)nxn+1f (n)(x),
is non-negative and non-increasing on (0, ∞) for all n ∈ N. Then f is said to be a strongly
completely monotonic function on (0, ∞).

Clearly, if a function is strongly completely monotonic, it is also completely monotonic
[14]. A function f is strongly completely monotonic on (0, ∞) if and only if the function
xf(x) is completely monotonic on (0, ∞) (see [26]) or there exists a non-negative and
increasing function p such that f(x) =

∫∞
0 e−xtp(t)dt for all x > 0 (see [23]). In order to

systematically research completely monotonic functions, Guo and Qi [11] established the
concept of completely monotonic degree.

In 2023, the concept of complete monotonicity [18] has been further extended to the
time scale domain, by using delta derivative.

Definition 1.4 ([18]). Suppose the function f : T → R has delta derivatives of all orders
and satisfies

(−1)nf∆n(x) = (−1)n(f∆n−1(x))∆ ≥ 0
for all n ∈ N, then f is said to be a delta completely monotonic function.
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This concept can be easily extended to results concerning nabla derivatives and diamond-
alpha derivatives.

Definition 1.5. Suppose the function f : T → R has nabla derivatives of all orders and
satisfies

(−1)nf∇n(x) ≥ 0
for all n ∈ N, then f is said to be a nabla completely monotonic function.

Definition 1.6. Suppose the function f : T → R has delta derivatives and nabla deriva-
tives of all orders and satisfies

(−1)nf3α13α2 ...3αn (x) ≥ 0
for all α1, · · · , αn ∈ [0, 1] and n ∈ N, then f is said to be a diamond-alpha completely
monotonic function.

Remark 1.7. If α1 = · · · = αn = 1, then diamond-alpha completely monotonic function
reduces to delta completely monotonic function, and it reduces to the nabla completely
monotonic function if α1 = · · · = αn = 0.

Inspired by the aforementioned studies, in this paper, we first aim to establish the
concept of strongly completely monotonic functions within the framework of time scales,
utilizing not only delta derivatives but also nabla derivatives and diamond-alpha deriva-
tives. Subsequently, we explore various properties of these functions.

The paper is organized as follows. In Section 2, we introduce the concept of strongly
completely monotonic functions on time scales. Based on these, we establish several the-
orems and corollaries on the three most commonly used time scales: continuous, discrete,
and quantum. In Section 3, we investigate the applications of strongly completely mono-
tonic functions in the field of special functions.

2. Strongly completely monotonic functions on time scales
This section is divided into two parts. In the first part, we will provide the definition

of strongly completely monotonic functions on time scales. In the second part, we will
explore the properties of these functions.

Firstly, we introduce the concepts of strongly completely monotonic functions on time
scales, which are defined as follows.

Definition 2.1. Suppose the function f : T → R has delta derivatives of all orders and
satisfies the function

(−1)nxn+1f∆n(x)
is non-negative and non-increasing for all n = 0, 1, · · · , then the function f is said to be
delta strongly completely monotonic, ∆-SCMT for short.

Definition 2.2. Suppose the function f : T → R has nabla derivatives of all orders and
satisfies the function

(−1)nxn+1f∇n(x)
is non-negative and non-increasing for all n = 0, 1, · · · , then the function f is said to be
nabla strongly completely monotonic, ∇-SCMT for short.

Definition 2.3. Suppose the function f : T → R has delta derivatives and nabla deriva-
tives of all orders and satisfies the function

(−1)nxn+1f3α13α2 ···3αn (x)
is non-negative and non-increasing for all α1, · · · αn ∈ [0, 1] and n = 0, 1, · · · , then the
function f is said to be diamond-alpha strongly completely monotonic, 3α-SCMT for
short.
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Next, we present several theorems involving strongly completely monotonic functions
on time scales, as follows.

Theorem 2.4. If the function f : T → R has delta derivatives of all orders, and the
inequalities

(−1)nxn+1f∆n(x) ≥ 0
and

(−1)n

(
n∑

k=0
xkσn−k(x)f∆n(x) + σn+1(x)f∆n+1(x)

)
≤ 0

hold for all n = 0, 1, · · · , then the function f is delta strongly completely monotonic.

Theorem 2.5. If the function f : T → R has nabla derivatives of all orders, and the
inequalities

(−1)nxn+1f∇n(x) ≥ 0
and

(−1)n

(
n∑

k=0
xkρn−k(x)f∇n(x) + ρn+1(x)f∇n+1(x)

)
≤ 0,

hold for all n = 0, 1, · · · , then the function f is nabla strongly completely monotonic.

Theorem 2.6. If the function f : T → R has delta derivatives and nabla derivatives of
all orders, and the inequalities

(−1)nxn+1f3α13α2 ...3αn (x) ≥ 0

and

(−1)n
((

αn+1g∆
n (x)+(1−αn+1)g∇

n (x)
)
h(x)+αn+1gσ

n(x)h∆(x)+(1−αn+1)gρ
n(x)h∇(x)

)
≤ 0

hold for α1, · · · αn ∈ [0, 1] and n = 0, 1, · · · , where gn(x) = xn+1 and h(x) = f3α13α2 ...3αn (x),
then the function f is said to be diamond-alpha strongly completely monotonic.

Taking T = [0, ∞), we obtain the following theorem.

Theorem 2.7. Let f ∈ D∞(0, ∞) satisfying

(−1)nxn+1f (n)(x) ≥ 0

and
(−1)n

(
(n + 1)xnf (n)(x) + xn+1f (n+1)(x)

)
≤ 0

for all x ∈ (0, ∞) and any n ∈ N. Then the function f is strongly completely monotonic.

Taking T = N, we have the following theorem.

Theorem 2.8. Suppose the derivative ∆nf(x) exists for all x ∈ N and positive integer n,
and f satisfies that

(−1)nxn+1∆nf(x) ≥ 0
and

(−1)n

(
n+1∑
k=1

xk(x + 1)n−k∆nf(x) + (x + 1)n+1∆n+1f(x)
)

≤ 0,

then the function f is delta strongly completely monotonic on N, where ∆f(x) := f(x +
1) − f(x) is the forward differnece.

Taking T = hN(h > 1), we have the following theorem.
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Theorem 2.9. Suppose the n-order derivative ∆n
hf(x) exists for all x ∈ hN and positive

integer n, and f satisfies that

(−1)nxn+1∆n
hf(x) ≥ 0

and

(−1)n

(
n+1∑
k=1

xk(x + h)n−k∆n
hf(x) + (x + h)n+1∆n+1

h f(x)
)

≤ 0,

then the function f is delta strongly completely monotonic on hN, where ∆hf(x) :=
f(x+h)−f(x)

h .

Let T = qN(q > 1), the following theorem holds.

Theorem 2.10. Suppose the n-order derivative Qn
q f(x) exists for all x ∈ qN and positive

integer n, and f satisfies that

(−1)nxn+1Qn
q f(x) ≥ 0

and

(−1)n

(
n∑

k=0
qkxnQn

q f(x) + qn+1xn+1Qn+1
q f(x)

)
≤ 0,

then the function f is delta strongly completely monotonic on qN, where Qqf(x) := f(x)−f(qx)
(1−q)x .

Clearly, if a function is strongly completely monotonic on time scales, then it is also
completely monotonic on time scales. Specifically, we have the following property.

Property 2.11. We have the following three conclusions.
(i) A delta strongly completely monotonic function is also a delta completely mono-

tonic function.
(ii) A nabla strongly completely monotonic function is also a nabla completely mono-

tonic function.
(iii) A diamond-alpha strongly completely monotonic function is also a diamond-alpha

completely monotonic function.

The linear relationships for strongly completely monotonic functions defined on time
scales are easily obtainable.

Property 2.12. Let ci, ki ∈ R(i = 1, 2, · · · , n) be non-negative. If the functions fi, gi :
T → R are ∆-SCMT, then the function

∑n
i=1

(
cifi + kigi

)
is ∆-SCMT.

Property 2.13. Let ci, ki ∈ R(i = 1, 2, · · · , n) be non-negative. If the functions fi, gi :
T → R are ∇-SCMT, then the function

∑n
i=1

(
cifi + kigi

)
is ∇-SCMT.

Property 2.14. Let ci, ki ∈ R(i = 1, 2, · · · , n) be non-negative. If the functions fi, gi :
T → R are 3α-SCMT, then the function

∑n
i=1

(
cifi + kigi

)
is 3α-SCMT.

3. Applications
In this section, our main purpose is to present some applications of strongly completely

monotonic functions. We provide a series of strongly completely monotonic functions,
some of which are associated with the confluent hypergeometric function, and others with
the Gaussian hypergeometric function.

The Gauss hypergeometric function [1] is defined by

F (a, b; c; x) =
∞∑

k=0

(a)k(b)k

(c)kk!
xk, a, b, c ∈ R, −c /∈ N, x ∈ (0, 1),
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where
(a)0 = 1, (a)k := a(a + 1) · · · (a + k − 1) = Γ(a + k)

Γ(a)
,

is Pochhammer symbol, and
Γ(x) =

∫ ∞

0
e−ttx−1dt

is the gamma function. The Gauss hypergeometric function not only plays a foundational
role in the fields of mathematics and applied mathematics, but also is widely used in
physics [20], signal processing [10], economy [8], communication technology [9], and so on.
The confluent hypergeometric function of the first kind and that of the second kind are
defined by

M(a, c; x) =
∞∑

k=0

(a)k

(c)kk!
xk, a, c ∈ R, −c /∈ N,

and
U(a, c; x) = 1

Γ(a)

∫ ∞

0
e−xtta−1(1 + t)c−a−1dt, a > 0, x > 0,

respectively.
First, we prove that some functions, related with confluent hypergeometric function of

the second kind are strongly completely monotonic.

Proposition 3.1. Let a ≥ 1 and c ≥ 2. Then the confluent hypergeometric function of
the second kind U(a, c; x) is strongly completely monotonic on (0, ∞).

Proof. Define a function by

ϕ1(t) := ta−1(1 + t)c−a−1, a ≥ 1, c ≥ 2.

This function is non-negative and non-decreasing since

ϕ′
1(t) = ta−2(t + 1)−a+c−2((c − 2)t + a − 1) ≥ 0.

Noticing that the function

(−1)nxn+1U (n)(a, c; x) = xn+1

Γ(a)

∫ ∞

0
tne−xtta−1(1 + t)c−a−1dt

= xn+1

Γ(a)

∫ ∞

0
e−xttnϕ1(t)dt

= 1
Γ(a)

∫ ∞

0
e−ssnϕ1

( s

x

)
ds,

is non-negative and non-increasing, by Definition 2.1, the function U(a, c; x) is strongly
completely monotonic. □

Since a strongly completely monotonic function must be completely monotonic, we have
the following result.

Corollary 3.2. Let a ≥ 1 and c ≥ 2. Then the function U(a, c; x) is completely monotonic
on (0, ∞).

Taking c = a in Proposition 3.1, we have the following example.

Example 3.3. Let c = a ≥ 2. Then the function

U(a, a; x) = exΓ(1 − a, x)

is strongly completely monotonic and completely monotonic on (0, ∞).

Taking c = a + 1 in Proposition 3.1, we have the following example.
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Example 3.4. Let c = a + 1 ≥ 2. Then the function

U(a, a + 1; x) = x−a,

is strongly completely monotonic and completely monotonic on (0, ∞).

Taking c = 2a in Proposition 3.1, we have the following corollary.

Corollary 3.5. Let c = 2a ≥ 2. Then the function

U(a, 2a; x) =
ex/2x1/2−aKa−1/2

(
x
2
)

√
π

is strongly completely monotonic and completely monotonic on (0, ∞), where

Kν(x) =
∫ ∞

0
e−x cosh(t) cosh(νt)dt

is the modified Bessel functions of the second kind.

Taking a = 1 in Proposition 3.1, we have the following example.

Example 3.6. Let c ≥ 2. Then the function

U(1, c; x) = exx1−cΓ(c − 1, x)

is strongly completely monotonic on (0, ∞).

Since the sum of multiple strongly completely monotonic functions is also strongly
completely monotonic, it follows naturally that the function

∑m
i=1 U(a, ci; x) is strongly

completely monotonic if each ci ≥ 2. Furthermore, we have the following proposition.

Proposition 3.7. Let m ∈ N, a ≥ 1 and
∑m

i=1 ci ≥ 2m. Then the function
∑m

i=1 U(a, ci; x)
is strongly completely monotonic on (0, ∞).

Proof. Define a function by

ϕ2(t) = ta−1
m∑

i=1
(1 + t)ci−a−1.

This function is non-negative, and we assert that it is also non-decreasing. In fact, taking
derivative leads to

ϕ′
2(t) = (a − 1)ta−2

m∑
i=1

(1 + t)ci−a−1 + ta−1
m∑

i=1
(ci − a − 1)(1 + t)ci−a−2

=
m∑

i=1
ta−2(1 + t)ci−a−2

(
(a − 1)(1 + t) + (ci − a − 1)t

)
=

m∑
i=1

ta−2(1 + t)ci−a−2
(
(a − 1) + (ci − 2)t

)
= (a − 1)

m∑
i=1

ta−2(1 + t)ci−a−2 +
m∑

i=1
ta−1(1 + t)ci−a−2(ci − 2).

Since a ≥ 1, we have (a − 1)
∑m

i=1 ta−2(1 + t)ci−a−2 ≥ 0. Without loss of generality,
we assume that c1 ≥ · · · ≥ cm and complete the proof of the assert via discussing two
scenarios. If c1 ≥ · · · ≥ cm ≥ 2, then clearly we have

m∑
i=1

ta−1(1 + t)ci−a−2(ci − 2) ≥ 0.
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If there exist k ∈ {1, · · · , m − 1} such that ci ≥ 2 for all i ≤ k and ci ≤ 2 for all i ≥ k + 1,
we have

m∑
i=1

ta−1(1 + t)ci−a−2(ci − 2)

= ta−1

(1 + t)a+2

( k∑
i=1

(1 + t)ci(ci − 2) +
m∑

i=k+1
(1 + t)ci(ci − 2)

)

≥ ta−1

(1 + t)a+2

( k∑
i=1

(1 + t)ck+1(ci − 2) +
m∑

i=k+1
(1 + t)ck+1(ci − 2)

)

= ta−1

(1 + t)a+2

m∑
i=1

(1 + t)ck+1(ci − 2)

= ta−1(1 + t)ck+1−a−2
m∑

i=1
(ci − 2) ≥ 0.

Hence, we prove that the function ϕ2(t) is non-decreasing.
Now, it can be seen that the function

(−1)nxn+1 dn

dxn

m∑
i=1

U(a, ci; x) = xn+1

Γ(a)

∫ ∞

0
tne−xtta−1

m∑
i=1

(1 + t)ci−a−1dt

= xn+1

Γ(a)

∫ ∞

0
e−xttnϕ2(t)dt

= 1
Γ(a)

∫ ∞

0
e−ssnϕ2

( s

x

)
ds

is non-negative and non-increasing, by Definition 2.1, the function
∑m

i=1 U(a, ci; x) is
strongly completely monotonic. □

Taking a = 1 in Proposition 3.7, we have the following corollary.

Corollary 3.8. Let m ∈ N and
∑m

i=1 ci ≥ 2m. Then the function
m∑

i=1
U(1, ci; x) = ex

m∑
i=1

x1−ciΓ(ci − 1, x)

is strongly completely monotonic on (0, ∞).

Now, we present several strongly completely monotonic functions related to the conflu-
ent hypergeometric function of the first kind.

Proposition 3.9. Let a ≥ 0 and c > 0. Then the function M(a, c; e−x)/x is strongly
completely monotonic on (0, ∞).

Proof. It is easy to check that the function M(a, c; e−x) is completely monotonic on
(0, ∞). By using the fact that a function f is strongly completely monotonic if and only
if the function xf(x) is completely monotonic (see [26]), we conclude that the function
M(a, c; e−x)/x is strongly completely monotonic on (0, ∞). □

Remark 3.10. Let a ≥ 0 and c > 0. Then the functions M(a, c; x) and M(a, c; ex) are
absolutely monotonic on (0, ∞).

As a direct consequence of Proposition 3.9, we easily obtain the following example.



Strongly completely monotonic functions on time scales 9

Example 3.11. The following functions
M(1, 1; e−x)

x
= ee−x

x
,

M(1, 2; e−x)
x

=
ex
(
ee−x − 1

)
x

,

M(1, 3; e−x)
x

=
2ex

(
ex
(
ee−x − 1

)
− 1

)
x

,

M(2, 3; e−x)
x

=
2ex

(
ee−x + ex − ex+e−x

)
x

,

are all strongly completely monotonic on (0, ∞).
Taking c = 2a in Proposition 3.9, we obtain the following corollary.

Corollary 3.12. Let a > 0. Then the function

M(a, 2a; e−x)
x

=
22a−1e

e−x

2 (e−x)
1
2 −a Γ

(
a + 1

2

)
Ia− 1

2

(
e−x

2

)
x

,

is strongly completely monotonic on (0, ∞), where

Iν(x) =
∞∑

k=0

1
k! Γ(ν + k + 1)

(
x

2

)2k+ν

is the modified Bessel function of the first kind with order ν.
Taking a = 1 in Proposition 3.9, we obtain the following corollary.

Corollary 3.13. Let c > 0. Then the function
M(1, c; e−x)

x
= (c − 1)ee−x (e−x)1−c (Γ(c − 1) − Γ (c − 1, e−x))

x

is strongly completely monotonic on (0, ∞), where

Γ(α, x) =
∫ ∞

x
tα−1e−tdt

is the incomplete gamma function. Moreover, taking c = 3/2, the function

M(1, 3/2; e−x)
x

=
√

πe
x
2 +e−xerf

(
e− x

2
)

2x

is strongly completely monotonic on (0, ∞), where

erf(x) = 2√
π

∫ x

0
e−t2dt

is the error function.
Using Property 2.12, we obtain the following proposition.

Proposition 3.14. Let ai ≥ 0 and ci > 0 for i = 1, 2, · · · , m. Then the function∑m
i=1 M(ai, ci; e−x)/x is strongly completely monotonic on (0, ∞).
Taking ci = 2ai (i = 1, 2, · · · , m) in Proposition 3.14, we obtain the following corollary.

Corollary 3.15. Let ai > 0 for i = 1, 2, · · · , m. Then the function∑m
i=1 M(ai, 2ai; e−x)

x
=

m∑
i=1

22ai−1e
e−x

2 (e−x)
1
2 −ai Γ

(
ai + 1

2

)
Iai− 1

2

(
e−x

2

)
x

,

is strongly completely monotonic on (0, ∞).
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Taking ai = 1 (i = 1, 2, · · · , m) in Proposition 3.14, we obtain the following corollary.

Corollary 3.16. Let ci > 0 for i = 1, 2, · · · , m. Then the function∑m
i=1 M(1, ci; e−x)

x
=

m∑
i=1

(ci − 1)ee−x (e−x)1−ci (Γ(ci − 1) − Γ (ci − 1, e−x))
x

is strongly completely monotonic on (0, ∞).

At last, we provide some strongly completely monotonic functions involving Gauss hy-
pergeometric function.

Proposition 3.17. Let a, b, c > 0. Then the function F (a, b; c; e−x)/x is strongly com-
pletely monotonic on (0, ∞).

Proof. The proof can be completed by the fact that the function F (a, b; c; e−x) is com-
pletely monotonic. □

Remark 3.18. Let a, b, c > 0. Then the function F (a, b; c; x) is absolutely monotonic on
(0, 1).

Remark 3.19. Let ai, bi, ci > 0 for i = 1, 2, · · · , m. Then the function
∑m

i=1 F (ai, bi; ci; x)
is absolutely monotonic on (0, 1).

As a direct consequence of Proposition 3.17, we easily obtain the following example.

Example 3.20. Let a > 0. Then the following functions

F (1, 1; 2; e−x)
x

= −ex log(sinh(x) − cosh(x) + 1)
x

,

F (1/2, 1/2; 3/2; e−x)
x

=
ex/2 sin−1

(
e− x

2
)

x
,

F (a, 1; 1; e−x)
x

= (sinh(x) − cosh(x) + 1)−a

x
,

F (1, 1; 3/2; e−x)
x

=
ex/2 sin−1

(
e− x

2
)

x
√

sinh(x) − cosh(x) + 1
,

are all strongly completely monotonic on (0, ∞).

Taking a = b = 1/2, c = 1 in Proposition 3.17, we obtain the following corollary.

Corollary 3.21. The function

F (1
2 , 1

2 ; 1; e−x)
x

= 2K (e−x)
πx

is strongly completely monotonic on (0, ∞), where

K(x) = π

2

∞∑
k=0

( (2n)!
22n(n!)2

)2
x2k,

is the complete elliptic integrals function of the first kind.

Using Property 2.12, we obtain the following proposition.

Proposition 3.22. Let ai, bi, ci > 0 for i = 1, 2, · · · , m. Then the function∑m
i=1 F (ai, bi; ci; e−x)/x is strongly completely monotonic on (0, ∞).
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