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Solitons of mean curvature flow in certain warped products:
nonexistence, rigidity, and Moser-Bernstein type results
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ABSTRACT. We apply suitable maximum principles to obtain nonexistence and rigidity results for complete mean
curvature flow solitons in certain warped product spaces. We also provide applications to self-shrinkers in Euclidean
space, as well as to mean curvature flow solitons in real projective, pseudo-hyperbolic, Schwarzschild, and Reissner-
Nordström spaces. Furthermore, we establish new Moser-Bernstein type results for entire graphs constructed over the
fiber of the ambient space that are mean curvature flow solitons.
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1. INTRODUCTION

Let ψ : Σn → Rn+1 be an n-dimensional hypersurface in the (n+ 1)-dimensional Euclidean
space Rn+1. If the position vector ψ evolves in the direction of the mean curvature vector H⃗ ,
then it gives rise to a solution to mean curvature flow:

Ψ : [0, T )× Σn → Rn+1

satisfying Ψ(0, ·) = ψ(·) and
∂Ψ

∂t
(t, p) = H⃗(t, p),

where H⃗(t, p) stands for the (non-normalized) mean curvature vector of the hypersurface Σn
t =

Ψ(t,Σn) at a point Ψ(t, p). This equation is called the mean curvature flow equation. The study of
the mean curvature flow from the perspective of partial differential equations was started with
Huisken [24] on the flow of convex hypersurfaces. One of the most important problems in the
mean curvature flow is to understand the possible singularities that the flow goes through. A
key starting point for singularity analysis is Huisken’s monotonicity formula [24] because the
monotonicity implies that the flow is asymptotically self-similar near a given type I singularity
and thus, is modeled by self-shrinking solutions of the flow.

An n-dimensional two-sided hypersurface ψ : Σn → Rn+1 is called a self-shrinker if it satisfies

H = −⟨ψ,N⟩,
where H and N denote the (non-normalized) mean curvature function and the unit normal
vector field of the hypersurface, respectively. It is known that self-shrinkers play an important
role in the study of the mean curvature flow because they describe all possible blow up at a
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given singularity of the mean curvature flow and, as it was pointed out by Colding and Mini-
cozzi in [14], self-shrinkers are critical hypersurfaces for the entropy functional. The subject
experienced an increasing activity after the seminal paper by Colding and Minicozzi [14] that
inspired an impressive amount of work on existence and classification problems, rigidity and
gap results, stability and spectral properties, see for instance [7, 8, 10, 11, 12, 13, 15, 18, 19, 23,
26, 27, 31] and the references therein.

More recently, Alías, de Lira and Rigoli [4] extended these investigations introducing the
general definition of self-similar mean curvature flow in a Riemannian manifold M

n+1
en-

dowed with a vector field K and establishing the corresponding notion of mean curvature
soliton. In particular, when M

n+1
is a warped product of the type I ×f M

n and K = f(t)∂t,
they applied weak maximum principles to guarantee that a complete n-dimensional mean cur-
vature flow soliton is a slice of M

n+1
. In [16], Colombo, Mari and Rigoli also studied some

properties of mean curvature flow solitons in general Riemannian manifolds and in warped
products, with emphasis on constant curvature and Schwarzschild type spaces. They focused
on splitting and rigidity results under various geometric conditions, ranging from the stability
of the soliton to the fact that the image of its Gauss map be contained in suitable regions of the
sphere. Moreover, they also investigated the case of entire mean curvature flow graphs.

Proceeding with this picture, our purpose in this paper is to apply suitable maximum prin-
ciples in order to obtain nonexistence and rigidity results concerning complete n-dimensional
mean curvature flow solitons with respect to the conformal vector fieldK = f(t)∂t of a warped
product space of the type I ×f M

n (see Sections 3 and 4). Applications to self-shrinkers in the
Euclidean space, as well as to mean curvature flow solitons in the real projective, pseudo-
hyperbolic, Schwarzschild and Reissner-Nordström spaces are also given. Furthermore, we
study entire graphs constructed over the fiber Mn and which are mean curvature flow solitons
with respect to K, obtaining new Moser-Bernstein type results (see Section 5).

2. PRELIMINARIES

2.1. Two-sided hypersurfaces in a warped product. Let (Mn, gM ) be an n-dimensional (n ≥
2) connected Riemannian manifold and let I ⊂ R be an open interval in R endowed with the
metric dt2. The product manifold M

n+1
= I ×Mn endowed with the Riemannian metric

g = π∗
I (dt

2) + f(πI)
2π∗

M (gM ),(2.1)

where f is a positive smooth function on I , the maps πI and πM denote the projections onto I
and Mn, respectively, is called a warped product with fiber Mn, base I and warping function
f . Along this work, we will simply write M

n+1
= I ×f M

n.
In this setting, we will consider the conformal closed vector field K = f(t)∂t globally de-

fined on M , where ∂t = ∂
∂t stands for the unit coordinate vector field tangent to I . From

the relationship between the Levi-Civita connections of M and those of the base and the fiber
(see [30, Proposition 7.35]) , it follows that

(2.2) ∇XK = f ′(t)X

for any X ∈ X(M), where ∇ is the Levi-Civita connection of g.
Along this work, we will deal with connected two-sided hypersurfaces ψ : Σn → M

n+1

immersed inM
n+1

= I×fM
n, which means that its normal bundle is trivial, that is, there is on

it a globally defined unit normal vector field N ∈ TΣ⊥. In this setting, we will denote by g the
induced metric of Σn and we will consider its shape operator (or Weingarten endomorphism),
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A : X(Σ) → X(Σ), which is given byA(X) = −∇XN . So, the (non-normalized) mean curvature
function of Σn is defined as been H = tr(A).

In the warped product M
n+1

= I ×f M
n there exists a remarkable family of two-sided

hypersurfaces: its slices Mt∗ = {t∗} × M , with t∗ ∈ I . The shape operator and the mean

curvature of Mt∗ with respect to N = ∂t are, respectively, At∗ = −f
′(t∗)

f(t∗)
I , where I denotes the

identity operator, and Ht∗ = −nf
′(t∗)

f(t∗)
.

We will deal with two particular functions naturally attached to a two-sided hypersurface
ψ : Σn → M

n+1
, namely, the (vertical) height function h = πI ◦ ψ and the angle function

Θ = g(N, ∂t). Let us denote by ∇ and ∇ the gradients with respect to the metrics g and g,
respectively. With a straightforward computation we show that the gradient of πI on Mn is
given by

∇πI = g(∇πI , ∂t)∂t = ∂t

so that the gradient of h on Σn is

∇h = (∇πI)⊤ = ∂⊤t ,(2.3)

where ∂⊤t = ∂t −ΘN is the tangential component of ∂t along Σn. From (2.3) we deduce that

|∇h|2 +Θ2 = 1,(2.4)

where ∇h is the gradient of h in the metric g and |X|2 = g(X,X) for any X ∈ X(Σ). Moreover,
from (2.2) and (2.3) we deduce that the Hessian of h in the metric g is given by

∇2h(X,X) = g(∇X∂
⊤
t , X)

= ḡ(∇X(∂t −ΘN), X)(2.5)

=
f ′(h)

f(h)
(|X|2 − g(∇h,X)2) + g(AX,X)Θ

for any X ∈ X(Σ). Hence, from (2.5) we obtain that the Laplacian of h in the metric g is

∆h =
f ′(h)

f(h)

(
n− |∇h|2

)
+HΘ.(2.6)

2.2. Mean curvature flow solitons. We recall that the mean curvature flow Ψ : [0, T ) × Σn →
M

n+1
of an immersion ψ : Σn → M

n+1
in a (n+ 1)-dimensional Riemannian manifold M

n+1
,

satisfying Ψ(0, ·) = ψ(·), looks for solutions of the equation

∂Ψ

∂t
= H⃗,

where H⃗(t, ·) is the (non-normalized) mean curvature vector of Σn
t = Ψ(t,Σn). In our context,

according to [4, Definition (1.1)], a two-sided hypersurface ψ : Σn → M
n+1

immersed in a
warped productM

n+1
= I×fM

n is said a mean curvature flow soliton with respect toK = f(t)∂t
with soliton constant c ∈ R if its (non-normalized) mean curvature function satisfies

(2.7) H = cf(h)Θ.

Adopting the terminology introduced in [4], we will also consider the soliton function

ζc(t) = nf ′(t) + cf(t)2.
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As it was observed in [4], a sliceMt∗ = {t∗}×Mn is a mean curvature flow soliton with respect
to K = f(t)∂t and with soliton constant c given by

(2.8) c = −n f
′(t∗)

f(t∗)2
.

Moreover, t∗ is implicitly given by the condition ζc(t∗) = 0.

2.3. Standard examples. In this subsection we quote important examples which will be ad-
dressed along the next two sections. In the first one, we consider a suitable warped product
model for the Euclidean space minus a point.

Example 2.1. Let o = (0, . . . , 0) be the origin of the (n + 1)-dimensional Euclidean space Rn+1. We
have that Rn+1 \ {o} is isometric to R+ ×t Sn (see [28, Section 4, Example 1]), whose slices {t} × Sn
are isometric to n-dimensional Euclidean spheres Sn(t) of radius t ∈ R+. In this setting, the mean
curvature flow solitons with respect to K = t∂t with soliton constant c = −1 are just the self-shrinkers.
So, from (2.8) we conclude that Sn(

√
n) ≡ {

√
n} × Sn is the only slice which is a self-shrinker.

In our next example, we consider a suitable warped product model for the real projective
space.

Example 2.2. We recall that the (n + 1)-dimensional real projective space is given by the quotient
RPn+1 = Sn+1/{±1}, where {±1} is the group of diffeomorphisms of (n + 1)-dimensional unit Eu-
clidean sphere Sn+1 consisting of the identity map q 7→ q and the antipodal map q 7→ −q. We consider
the Riemannian metric in RPn+1 in such a way that the natural projection π : Sn+1 → RPn+1 be-
comes a local isometry. If P stands for the north pole of Sn+1, then we denote by CutP the cut locus
of π(P ) ∈ RPn+1. We have that CutP is the image of the equator of Sn+1 orthogonal to P via the
natural projection, namely, CutP = π(Sn) = RPn . Moreover, as it was proved in [6, Section 9.111],
RPn+1 \ {π(P ) ∪ CutP} is isometric to the warped product

(
0, π2

)
×sin t Sn. From (2.8) we conclude

that the slice {cos−1(
√
4c2+n2−n

2|c| )} × Sn is the only one that is a mean curvature flow soliton with
respect to K = sin t∂t with soliton constant c < 0.

Proceeding, we consider the so-called pseudo-hyperbolic spaces.

Example 2.3. According to [32], warped products of the type I ×et M
n are called pseudo-hyperbolic

spaces. This terminology is due to the fact that the (n + 1)-dimensional hyperbolic space Hn+1 is
isometric to the warped product R×et Rn, where the slices constitute a family of horospheres sharing a
same fixed point in the asymptotic boundary ∂∞Hn+1 and giving a complete foliation of Hn+1 (for more
details about pseudo-hyperbolic spaces see, for instance, [2, 28, 32]). From (2.8) we conclude that the
slice {log(−n

c )} ×Mn is the only one that is a mean curvature flow soliton with respect to K = et∂t
with soliton constant c < 0.

In our last examples, we deal with the Schwarzschild and Reissner-Nordström spaces.

Example 2.4. Given a mass parameter m > 0, the Schwarzschild space is defined to be the product
M

n+1
= (r0(m),+∞) × Sn furnished with the metric ḡ = Vm(r)

−1dr2 + r2gSn , where gSn is the
standard metric of Sn, Vm(r) = 1− 2mr1−n stands for its potential function and r0(m) = (2m)1/(n−1)

is the unique positive root of Vm(r) = 0. Its importance lies in the fact that the manifold R ×M
n+1

equipped with the Lorentzian static metric −Vm(r)dt2 + ḡ is a solution of the Einstein field equation in
vacuum with zero cosmological constant (see, for instance, [30, Chapter 13] for more details concerning
Schwarzschild geometry).
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As it was observed in [16, Example 1.3], M
n+1

can be reduced in the form I×f Sn with metric (2.1)
via the following change of variables:

(2.9) t =

∫ r

r0(m)

dσ√
Vm(σ)

, f(t) = r(t), I = R+.

As it was noted in [16, Example 4.1], since Vm(r) is strictly increasing on (r0(m),+∞), it follows
from (2.9) that the warping function f satisfies:

(2.10) f ′(t) =
dr

dt
=
√
Vm(r(t)) > 0 and f ′′(t) =

1

2

dVm
dr

(r(t)) > 0.

Thus, from (2.8) and (2.10) we can verify that a slice {t∗} × Sn is a mean curvature flow soliton with
respect to f(t)∂t = r

√
Vm(r)∂r with soliton constant c < 0 when t∗ = t(r∗) with r∗ > r0(m) solving

the following equation

(2.11) Vm(r) =
c2

n2
r4.

We note that such a solution exists if and only if the function φm(t) =
c2

n2 t
4 + 2m

tn−1 − 1 has a zero on
(r0(m),+∞). Notice that φm is a convex function which goes to infinity if t goes to 0 or +∞ and so
φm has a unique minimal point in (0,∞). Such value r̂ is given implicitly by φ′

m(r̂) = 0, that is,

4c2

n2
r̂3 − 2m(n− 1)

r̂n
= 0.

Therefore, the equation (2.11) has a solution if and only if r̂ > r0(m) and φm(r̂) ≤ 0. The last condition
can be rewritten in the following way:

(2.12) r̂ =

(
m(n− 1)n2

2c2

)1/(n+3)

≥
(
m(n+ 3)

2

)1/(n−1)

.

In particular, there are two solutions r0(m) < r∗,− < r̂ < r∗,+ if the strict inequality holds in (2.12),
and a unique solution r∗ = r̂ if equality holds.

Example 2.5. Given a mass parameter m > 0 and an electric charge q ∈ R, with |q| ≤ m, the Reissner-
Nordström space is defined to be the product M

n+1
= (r0(m, q),+∞)× Sn endowed with the metric

ḡ = Vm,q(r)
−1dr2 + r2gSn , where gSn is the standard metric of Sn, Vm,q(r) = 1− 2mr1−n + q2r2−2n

stands for its potential function and r0(m, q) =

(
q2

m−
√

m2−q2

)1/(n−1)

is the largest positive zero of

Vm,q(r). The importance of this model lies in the fact that the manifold R ×M
n+1

equipped with the
Lorentzian static metric −Vm,q(r)dt

2 + ḡ is a charged black-hole solution of the Einstein field equation
in vacuum with zero cosmological constant.

As in the previous example, M
n+1

can be reduced in the form I ×f Sn with metric (2.1) via the
same change of variables as in (2.9). Furthermore, following the same previous steps, the warping
function f has positive first and second derivatives. Moreover, we can verify that a slice {t∗} × Sn is a
mean curvature flow soliton with respect to f(t)∂t = r

√
Vm,q(r)∂r with soliton constant c < 0 when

t∗ = t(r∗) with r∗ > r0(m, q) solving the following equation

(2.13) Vm,q(r) =
c2

n2
r4.

We observe that such a case is more complicated to make all values explicit, but qualitatively we can say
that such a solution of (2.13) exists if and only if the function φm,q(x) =

c2

n2x
4 + 2m

xn−1 − q2

x2n−2 − 1 has
a zero on (r0(m),+∞). Note that φm,q goes to positive infinity if x goes to positive infinity and φm,q
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goes to negative infinity if x goes to zero. So, φm,q has at least one root in (0,+∞) and if such roots are
greater than r0(m, q) we get the desired solutions r∗.

3. NONEXISTENCE OF COMPLETE MEAN CURVATURE FLOW SOLITONS

3.1. Auxiliary results. In order to investigate the nonexistence of complete mean curvature
flow solitons, initially we introduce the following definition:

Definition 3.1. The Laplacian operator ∆ on a Riemannian manifold (Σ, g) satisfies the Omori-Yau
maximum principle if for any u ∈ C2 bounded from above, there exists a sequence (pk)k≥1 in Σn such
that

lim
k
u(pk) = sup

Σ
u = u∗, lim

k
|∇u(pk)| = 0 and lim sup

k
∆u(pk) ≤ 0.

Now we recall the maximum principle due to Omori [29] and Yau [34]. Such concept gives
us conditions to the validity of a maximum principle for the hessian or the Laplacian on a
Riemannian manifold. Specifically, we quote the following result for the Laplacian:

Lemma 3.1 (Yau, [34]). Let Σn be an n-dimensional complete Riemannian manifold whose Ricci cur-
vature is bounded from below. Then the Laplacian ∆ satisfies the Omori-Yau maximum principle on
Σ.

Denoting by KM the sectional curvature of the fiber Mn, we will consider warped product
spaces I ×f M

n satisfying the convergence condition

(3.14) KM ≥ sup
I
(f ′2 − ff ′′).

Warped products satisfying (3.14) have been studying, for instance, in [4, 5, 17, 21]. The
case that this condition holds for the Ricci curvature instead of the sectional curvature is also
well known (see, for instance, [1, 3, 28]). Furthermore, it is not difficult to verify that there
exists a wide class of warped product satisfying (3.14), including, for instance, the Euclidean
space minus a point Rn+1 \ {o} = R+ ×t Sn, the real projective space (minus a suitable point
and its cut locus)

(
0, π2

)
×sin t Sn, the pseudo-hyperbolic spaces I ×et M

n with fiber having
nonnegative sectional curvature and the Schwarzschild and Reissner-Nordström spaces I×f Sn
(see Examples 2.1, 2.2, 2.3, 2.4 and 2.5).

Indeed, this verification for the Euclidean, the real projective, the pseudo-hyperbolic and
the Schwarzschild spaces is quite simple. In the case of the Reissner-Nordström space, with a
straightforward computation we get that

(3.15) f ′(t)2 − f(t)f ′′(t) = 1−mr(t)1−n − n
{
m− q2r(t)1−n

}
r(t)1−n.

But, since r(t) > r0(m, q) =

(
q2

m−
√

m2−q2

)1/(n−1)

, it is not difficult to verify that we must have

(3.16) q2r(t)1−n < m.

Consequently, from (3.15) and (3.16) we conclude that the convergence condition (3.14) is also
satisfied in the Reissner-Nordström space.

We recall that a hypersurface Σn lies in a slab of a warped product I ×f M
n when Σn is

contained in a region of the type

[t1, t2]×Mn = {(t, p) ∈ I ×f M
n : t1 ≤ t ≤ t2 and p ∈Mn}.

We also recall the first and second Newton transformations, which are given by P1 = HI−A
and P2 = S2I−AP1, and here S2 stands for the second mean curvature, that is, S2 =

∑
i<j kikj ,
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where ki are the principal curvatures of Σn. Finally, we say that an operator T on Σ is f -bounded
whether there are continuous functions G,H : R2 → R such that

G(f, f ′) ◦ h(p)|u|2 ≤ ⟨Tu, u⟩ ≤ H(f, f ′) ◦ h(p)|u|2

for all u ∈ TpΣ and p ∈ Σ.
Next, considering an immersed hypersurface Σn in a slab of a warped product space I×fM

n

satisfying (3.14), we will verify that the Omori-Yau maximum principle is satisfied.

Proposition 3.1. Let M
n+1

= I ×f M
n be a warped product which satisfying the convergence con-

dition (3.14), for n ≥ 3, and, let ψ : Σn → M
n+1

be a complete hypersurface with second Newton
transformation f -bounded and lying in a slab. Then, the Laplacian on Σn satisfies the Omori-Yau
maximum principle.

Proof. First, we recall that the curvature tensor R of Σn can be described in terms of its Wein-
garten operator A and the curvature tensor R of the ambient I ×f M

n by the so-called Gauss’
equation given by

(3.17) g(R(X,Y )Z,W ) = ḡ(R(X,Y )Z,W ) + g(A(X,Z), A(Y,W ))− g(A(X,W ), A(Y, Z))

for every tangent vector fields X,Y, Z,W ∈ X(Σ).
Let us consider X ∈ X(Σ) and take a local orthonormal frame {E1, . . . , En} of X(Σ). Then,

it follows from Gauss equation (3.17) that the Ricci curvature Ric of Σn with respect to the
induced metric g is given by

Ric(X,X) =
∑
i

ḡ(R(X,Ei)X,Ei) +H⟨AX,X⟩ − |AX|2

=
∑
i

ḡ(R(X,Ei)X,Ei)− ⟨(AP1)X,X⟩

=
∑
i

ḡ(R(X,Ei)X,Ei) + S2|X|2 − ⟨P2X,X⟩.(3.18)

Moreover, with a straightforward computation, we get

R(X,Ei)X = R(X∗, E∗
i )X

∗ + ḡ(X, ∂t)R(X
∗, E∗

i )∂t + ḡ(X, ∂t)ḡ(Ei, ∂t)R(X
∗, ∂t)∂t

+ ḡ(Ei, ∂t)R(X
∗, ∂t)X

∗ + ḡ(X, ∂t)R(∂t, E
∗
i )X

∗ + ḡ(X, ∂t)
2R(∂t, E

∗
i )∂t,(3.19)

where X∗ = X − ḡ(X, ∂t)∂t and E∗
i = Ei − ḡ(Ei, ∂t)∂t are the projections of the tangent vector

fields X and Ei onto the fiber Mn, respectively.
Thus, by repeated use of the formulas of [30, Proposition 7.42] and using equation (2.3), from

(3.19) we get∑
i

ḡ(R(X,Ei)X,Ei)

=
∑
i

ḡ(RM (X∗, E∗
i )X

∗, E∗
i )− (n− 1)

f ′(h)2

f(h)2
|X|2

+

(
f ′(h)2 − f(h)f ′′(h)

f(h)2

)
|∇h|2|X|2 + (n− 2)

(
f ′(h)2 − f(h)f ′′(h)

f(h)2

)
g(X,∇h)2,(3.20)

As in [30], the curvature tensor R of the hypersurface Σn is given by R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z, where
[ ] denotes the Lie bracket and X,Y, Z ∈ X(Σ).
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where RM denotes the curvature tensor of the fiber Mn. But, it is not difficult to verify that∑
i

ḡ(RM (X∗, E∗
i )X

∗, E∗
i ) =

1

f2

∑
i

KM (X∗, E∗
i )(|X|2 − g(∇h,Ei)

2|X|2

−g(X,∇h)2 − g(X,Ei)
2 + 2g(X,∇h)g(X,Ei)g(∇h,Ei)).

Thus, by using the convergence condition (3.14) and a direct computation, from (3.20) we ob-
tain

(3.21)
∑
i

ḡ(R(X,Ei)X,Ei) ≥ −(n− 1)
f ′′(h)

f(h)
|X|2.

Thus, inserting the estimate (3.21) into the equation (3.18), and using the f -boundedness of P2,
we deduce that

Ric(X,X) ≥
(
−(n− 1)

f ′′(h)

f(h)
+

n

n− 2
G(f, f ′)−H(f, f ′)

)
|X|2.(3.22)

Therefore, taking into account that Σn lies in a slab of the ambient space, from (3.22) we
conclude that the Ricci curvature is bounded from below and by Lemma 3.1 the Laplacian
satisfies the desired property. □

Corollary 3.1. Let M
n+1

= I ×f M
n be a warped product which satisfying the convergence condition

(3.14), and let ψ : Σn → M
n+1

be a complete mean curvature flow soliton with respect to K = f(t)∂t
and soliton constant c ̸= 0. If the second mean curvature is bounded from below and Σ lies in a slab,
then the Laplacian on Σn satisfies the Omori-Yau maximum principle.

Proof. Since the second mean curvature is bounded from below and ψ(Σ) lies in a slab, notice
that k2i ≤ H2 − 2S2 ≤ c2f(h)2 + d is bounded on Σ for all i. So, P2 is bounded and the result
follows from Proposition 3.1. For n = 2, this result is immediate. □

3.2. Nonexistence results via Omori-Yau maximum principle. Into the scope of a warped
product I ×f M

n we are in position to state and prove our first nonexistence result concerning
mean curvature flow solitons immersed in a slab of a warped product.

Theorem 3.1. Let M
n+1

= I ×f M
n be a warped product whose fiber Mn satisfies hypothesis (3.14).

There is no complete mean curvature flow soliton ψ : Σn → M
n+1

with respect to K = f(t)∂t and
soliton constant c ̸= 0, with second mean curvature bounded from below, lying in a slab [t1, t2] ×Mn

and ζc(t) having a strict sign on [t1, t2].

Proof. Let us suppose by contradiction the existence of such a mean curvature flow soliton
ψ : Σn →M

n+1
. From (2.6) we have

∆h = n
f ′(h)

f(h)
− f ′(h)

f(h)
|∇h|2 + cf(h)Θ2(3.23)

= n
f ′(h)

f(h)
Θ2 + (n− 1)

f ′(h)

f(h)
|∇h|2 + cfΘ2

= (n− 1)
f ′(h)

f(h)
|∇h|2 + nf ′(h) + cf2(h)

f
Θ2

= (n− 1)
f ′(h)

f(h)
|∇h|2 + ζc(h)

f(h)
Θ2,
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where we used (2.4) in the second equality. Since the second mean curvature is bounded and
the hypersurface is contained in a slab, from Corollary 3.1 we are able to apply the Omori-Yau
maximum principle. Indeed, there are sequences {xk} and {pk} such that

lim
k
h(pk) = sup

Σ
h = h∗, lim

k
|∇h(pk)| = 0 and lim sup

k
∆h(pk) ≤ 0,

and
lim
k
h(xk) = inf

Σ
h = h∗, lim

k
|∇h(xk)| = 0 and lim inf

k
∆h(xk) ≥ 0,

and thus, using that Θ goes to 1 along the sequences {pk} and {xk}, we deduce from equation
(3.23) that

ζc(h
∗) ≤ 0 ≤ ζc(h∗),

which contradict our hypothesis on the function ζc.
□

Remark 3.1. It is worth to point out that complete mean curvature flow solitons immersed in a slab
of a warped product I ×f M

n and with second mean curvature bounded from below constitute natural
generalizations of the compact ones, and they have already been studied by Alías, de Lira and Rigoli
in [4].

Taking into account Example 2.1, it is not difficult to verify that we get from the proof of
Theorem 3.1 the following result concerning the nonexistence of complete self-shrinkers:

Corollary 3.2. There exists no complete n-dimensional self-shrinker of Rn+1 with second mean curva-
ture bounded from below and lying in the closure of an n-dimensional annulus with either inner radius
rir >

√
n or outer radius ror <

√
n .

Remark 3.2. We point out that the sphere of radius
√
n satisfies all the hypotheses if we allow the inner

radius rir (or outer radius ror) equal to
√
n. We also notice that the self-shrinkers Sk(

√
k) × Rn−k,

for 1 ≤ k ≤ n − 1, of Rn+1 have bounded second mean curvature but they do not belong to any
n-dimensional annuli.

Considering the discussion made in Example 2.2, from Theorem 3.1 we have:

Corollary 3.3. LetM
n+1

=
(
0, π2

)
×sin t Sn be the warped product model of RPn+1 \{π(P ) ∪ CutP}.

There is no complete mean curvature flow soliton ψ : Σn → M
n+1

with respect to K = sin t∂t
with soliton constant c < 0, having second mean curvature bounded from below and lying in a slab
[t1, t2]×Mn, with either cos−1(

√
4c2+n2−n

2|c| ) < t1 <
π
2 or 0 < t2 < cos−1(

√
4c2+n2−n

2|c| ).

When the ambient space is a pseudo-hyperbolic space (see Example 2.3), from Theorem 3.1
we also obtain the following consequence:

Corollary 3.4. Let M
n+1

= I ×et M
n be a pseudo-hyperbolic space whose fiber Mn has nonnegative

sectional curvature. There is no complete mean curvature flow soliton ψ : Σn → M
n+1

with respect to
K = et∂t with soliton constant c < 0, having second mean curvature bounded from below and lying in
a slab [t1, t2]×Mn, with either t1 > log

(
−n

c

)
or t2 < log

(
−n

c

)
.

Considering the context of Example 2.4, from Theorem 3.1 we get:

Corollary 3.5. Let M
n+1

= I ×f Sn be the Schwarzschild space. There is no complete mean curvature
flow soliton ψ : Σn → M

n+1
with respect to K = f(t)∂t with soliton constant c < 0, having second

mean curvature bounded from below and lying in a slab [t1, t2]× Sn, with f(t2) ≥
√
−n

c .
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Proof. Using (2.10) and definition of ζc we have

n
√
Vm(r(t1)) + cr(t1)

2 ≤ ζc(t) ≤ n
√
Vm(r(t2)) + cr(t2)

2.

Since Vm(r(t)) < 1 for all t ∈ I , r(t2) = f(t2) ≥
√
−n

c implies

ζc(t) = n
√
Vm(r(t)) + cr(t)2 < 0

for all t ≥ t1. Therefore, we can apply Theorem 3.1 to conclude our result. □

In the setting of Example 2.5, we can reason as in the proof of Corollary 3.5 to obtain the
following nonexistence result:

Corollary 3.6. Let M
n+1

= I ×f Sn be the Reissner-Nordström space. There is no complete mean
curvature flow soliton ψ : Σn →M

n+1
with respect toK = f(t)∂t with soliton constant c < 0, having

second mean curvature bounded from below and lying in a slab [t1, t2]×Sn, with Vm,q(r(t)) <
c2

n2 r(t)
4

for all t ∈ [t1, t2].

Remark 3.3. In Corollaries 3.3, 3.4, 3.5 and 3.6, if we assume c > 0 the condition ζc positive is
immediate and so the nonexistence results follows directly.

4. RIGIDITY OF MEAN CURVATURE FLOW SOLITONS

4.1. Rigidity results via an extension of Hopf’s maximum principle. We initiate this section
regarding an extension of Hopf’s theorem on a complete Riemannian manifold (Σn, g) due to
Yau in [35]. For this, let us consider L1

g(Σ) := {u : Σn → R :
∫
Σ
|u|dΣ < +∞}, where dΣ is the

measure related to the metric g.

Lemma 4.2. Let u be a smooth function defined on a complete Riemannian manifold (Σn, g), such that
∆u does not change sign on Σn. If |∇u| ∈ L1

g(Σ), then ∆u vanishes identically on Σn.

Using the previous lemma, we have the following result:

Theorem 4.2. Let M
n+1

= I ×f M
n be a warped product. Let ψ : Σn → M be a complete mean

curvature flow soliton with respect to K = f(t)∂t and soliton constant c ̸= 0, that lies in a slab
[t1, t2] ×Mn, and whose ζc(t) does not change the sign. If |∇h| ∈ L1

g(Σ), then Σn is a slice Mt∗ , for
t∗ ∈ [t1, t2] given implicitly by ζc(t∗) = 0.

Proof. Considering F (t) =
∫ t

t0
f(v)1−ndv and compute the Laplacian of F (h) as follows:

∆F (h) = F ′(h)∆h+ F ′′(h)|∇h|2

=
1

f(h)n−1
∆h+ (1− n)f(h)−nf ′(h)|∇h|2

=
ζc(h)

f(h)n
Θ2 + (n− 1)

f ′(h)

f(h)n
|∇h|2 + (1− n)f(h)−nf ′(h)|∇h|2

= f(h)−nζc(h)Θ
2,

where we used equation (2.6) in the third equality. Thus F (h) is either subharmonic or super-
harmonic. Since Σ is contained is a slab and |∇h| ∈ L1(Σ), we have that |∇F (h)| = f(h)1−n|∇h|
belongs to the 1-Lebesgue space too.

Applying Lemma 4.2, we deduce that ∆F (h) = 0 and thus ζc(h)Θ2 = 0 along Σ. Next, note
that

∆F (h)2 = 2F (h)∆F (h) + 2|∇F (h)|2 = 2f(h)2−2n|∇h|2 ≥ 0.
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Applying Lemma 4.2 again, we deduce that ∇h = 0 on Σ and from (2.4) we have Θ = 1. Thus,
ζc(h) vanishes on Σ, as we claimed.

□

From Theorem 4.2 we get the following rigidity result:

Corollary 4.7. The only complete n-dimensional self-shrinker of Rn+1 that lies in the closure of an
n-dimensional annulus with either inner radius rir ≥

√
n or outer radius ror ≤

√
n and such that

|∇h| ∈ L1
g(Σ) is Sn(

√
n).

Remark 4.4. Related to Corollary 4.7, it is worth to mention that Pigola and Rimoldi [31] studied
geometric properties of complete non-compact bounded self-shrinkers obtaining natural restrictions that
force these hypersurfaces to be compact. In particular, they proved that the only complete bounded
self-shrinker of R3 with |A| ≤ 1 is S2(

√
2). Afterwards, Cavalcante and Espinar [8] showed that the

only complete self-shrinker of Rn+1 properly immersed in a closed cylinder Bk+1(r) × Rn−k, for some
k ∈ {1, · · · , n} and radius r ≤

√
k, is the cylinder Sk(

√
k)× Rn−k.

Considering the setting of Example 2.2, from Theorem 3.1 we have:

Corollary 4.8. LetM
n+1

=
(
0, π2

)
×sin t Sn be the warped product model of RPn+1 \{π(P ) ∪ CutP}.

Let ψ : Σn → M
n+1

be a complete mean curvature flow soliton with respect to K = sin t∂t and
soliton constant c < 0, that lies in a slab [t1, t2] × Sn, and either cos−1(

√
4c2+n2−n

2|c| ) ≤ t1 <
π
2 or

0 < t2 ≤ cos−1(
√
4c2+n2−n

2|c| ). If |∇h| ∈ L1
g(Σ), then Σn is the slice {cos−1(

√
4c2+n2−n

2|c| )} × Sn.

When the ambient space is a pseudo-hyperbolic space, Theorem 4.2 reads as follows:

Corollary 4.9. Let M
n+1

= I ×et M
n be a pseudo-hyperbolic space whose fiber Mn is complete. Let

ψ : Σn → M
n+1

be a complete mean curvature flow soliton with respect to K = et∂t and soliton
constant c < 0, that lies in a slab [t1, t2] ×Mn, and t1 ≥ log

(
−n

c

)
. If |∇h| ∈ L1

g(Σ), then Σn is the
slice {log

(
−n

c

)
} ×Mn.

Taking into account again the context of Example 2.4 and Example 2.5, from Theorem 4.2 we
also obtain:

Corollary 4.10. Let M
n+1

= I ×f Sn be the Schwarzschild space and suppose that inequality (2.12)
is satisfied. Let ψ : Σn →M

n+1
be a complete mean curvature flow soliton with respect to K = f(t)∂t

and soliton constant c < 0, that lies in a slab [t1, t2] × Sn, and Vm(r(t)) ≤ c2

n2 r(t)
4 for all t ∈ [t1, t2].

If |∇h| ∈ L1
g(Σ), then Σn is a slice {t∗} × Sn, where t∗ = t(r∗) is such that r∗ > r0(m) solves

equation (2.11).

and

Corollary 4.11. Let M
n+1

= I ×f Sn be the Reissner-Nordström space and suppose that there is
r∗ > r0(m, q). Let ψ : Σn → M

n+1
be a complete mean curvature flow soliton with respect to

K = f(t)∂t and soliton constant c < 0, that lies in a slab [t1, t2]×Sn, and Vm,q(r(t)) ≤ c2

n2 r(t)
4 for all

t ∈ [t1, t2]. If |∇h| ∈ L1
g(Σ), then Σn is a slice {t∗} × Sn, where t∗ = t(r∗) is such that r∗ > r0(m, q)

solves equation (2.13).

4.2. Rigidity results via a parabolicity criterion. We recall that a Riemannian manifold is said
to be parabolic if the only subharmonic functions on it that are bounded from above are the
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constants. On the other hand, given two Riemannian manifolds (Σ, g) and (Σ
′
, g

′
), a diffeo-

morphism ϕ from Σ onto Σ
′

is called a quasi-isometry if there exists a constant κ ≥ 1 such that

κ−1|v|g ≤ |dϕ(v)|g′ ≤ κ|v|g

for all v ∈ TpΣ, p ∈ Σ. From [25, Theorem 1] (see also [22, Corollary 5.3]) we have the following:

Lemma 4.3. Let (Σ, g) and (Σ
′
, g

′
) be two complete Riemannian manifolds. If Σ and Σ

′
are quasi-

isometric, then Σ and Σ
′

are both parabolic or neither is parabolic.

We can use the previous lemma to get the following parabolicity criterion:

Lemma 4.4. Let ψ : Σn →M
n+1

be a complete hypersurface immersed in a warped product M
n+1

=
I ×f M

n, whose fiber (Mn, gM ) is complete with parabolic universal covering. If Θ is bounded away
from zero, then (Σn, ĝ), endowed with the conformal metric ĝ = 1

f(h)2 g, is parabolic.

Proof. Given p ∈ Σn and v ∈ TpΣ
n, from (2.1) and (2.4) we have

(4.24) g(v, v) = g(v,∇h)2 + f(h)2gM (dπ(v), dπ(v)).

Thus, from (4.24) we get

(4.25) ĝ(v, v) =
1

f(h)2
g(v, v) ≥ gM (dπ(v), dπ(v)).

On the other hand, using (2.4) and the Cauchy-Schwarz inequality in (4.24), we also have

(4.26) Θ2g(v, v) ≤ f(h)2gM (dπ(v), dπ(v)).

Since Θ is bounded away from zero, there exists a positive constant β such that Θ2 ≥ β2.
Consequently, from (4.26) we get

(4.27) β2g(v, v) ≤ Θ2g(v, v) ≤ f(h)2gM (dπ(v), dπ(v)).

Thus, from (4.27) we have

ĝ(v, v) ≤ 1

β2
gM (dπ(v), dπ(v)).(4.28)

Hence, using inequalities (4.25) and (4.28), we get

(4.29) gM (dπ(v), dπ(v)) ≤ ĝ(v, v) ≤ 1

β2
gM (dπ(v), dπ(v)).

So, taking the constant κ = 1
β2 ≥ 1, from (4.29) we obtain

(4.30) κ−1gM (dπ(v), dπ(v)) ≤ ĝ(v, v) ≤ κgM (dπ(v), dπ(v)),

which means that π is a quasi-isometry between Σ and M .
Let Σ

′
be the universal Riemannian covering of Σ with projection πΣ : Σ

′ → Σ. Then, the
map π0 = π ◦πΣ : Σ

′ →M is a covering map. If M
′

is the universal Riemannian covering of M
with projection π

′
:M

′ →M , then there exists a diffeomorphism ϕ : Σ
′ →M

′
such that π

′◦ ϕ =
π0. Moreover, from (4.30) it is not difficult to verify that ϕ is also a quasi-isometry. Therefore,
since the universal Riemannian covering of M is parabolic, it follows from Lemma 4.3 that the
universal Riemannian covering of Σ is parabolic and, hence, Σ must be also parabolic with
respect to the metric ĝ. □
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For the next result, let us establish one notation. Define the modified soliton function as being
the function

(4.31) ζ̄c(t) := f ′(t)ζc(t).

Using Lemma 4.4, we obtain the following result:

Theorem 4.3. Let M
n+1

= I ×f M
n be a warped product whose fiber Mn is complete with parabolic

universal covering and such that its warping function f satisfies

(4.32) (log f)′′ ≤ γ[(log f)′]2

for some constant γ > −1, holding the equality only at isolated points of I . Let ψ : Σn → M
n+1

be
a complete mean curvature flow soliton with respect to K = f(t)∂t and soliton constant c ̸= 0, such
that Θ is bounded away from zero and infΣ f(h) > 0. If ζ̄c(h) ≤ 0, then Σn is a slice Mt∗ for some
t∗ ∈ [t1, t2] which is implicitly given by the condition ζc(t∗) = 0.

Proof. Let us consider on Σn the metric ĝ = 1
f(h)2 g, which is conformal to its induced metric g.

If we denote by ∆̂ the Laplacian with respect to the metric ĝ, from (2.4) and (2.6) we get

∆̂h = f(h)2∆h− (n− 2)f(h)f ′(h)|∇h|2

= nf(h)f ′(h)Θ2 + f(h)f ′(h)|∇h|2 +Hf(h)2Θ.(4.33)

With a straightforward computation, from (4.33) we obtain

∆̂f(h) = f ′′(h)ĝ(∇̂h, ∇̂h) + f ′(h)∆̂h

= f ′′(h)f(h)2|∇h|2 + f ′(h)
(
nf(h)f ′(h)Θ2 + f(h)f ′(h)|∇h|2 +Hf(h)Θ

)
(4.34)

= nf(h)f ′(h)2 +Hf ′(h)f(h)2Θ+ f(h)3
(
(log f)′′(h)− (n− 2)

f ′(h)2

f(h)2

)
|∇h|2.

Given a positive real number α, we have that

∆̂f(h)−α = α(α+ 1)f(h)−α−2ĝ(∇̂f(h), ∇̂f(h))− αf(h)−α−1∆̂f(h).(4.35)

Using (4.34) in (4.35), we get

∆̂f(h)−α = −αnf(h)−αf ′(h)2 − αHf ′(h)f(h)−α+1Θ+ α(α+ 1)f(h)−αf ′(h)2|∇h|2

− αf(h)−α+2

(
(log f)′′(h)− (n− 2)

f ′(h)2

f(h)2

)
|∇h|2.(4.36)

But, from (2.4) we have

(4.37) −αnf(h)−αf ′(h)2 = −αnf(h)−αf ′(h)2|∇h|2 − αnf(h)−αf ′(h)2Θ2.

Thus, from (4.36), (4.37), (2.7) and (4.31) we obtain

∆̂f(h)−α = −αf(h)−αζ̄c(h)Θ
2

− αf(h)−α+2
{
(log f)′′(h)− (α− 1)[(log f)′(h)]2

}
|∇h|2.(4.38)

First, we note that Lemma 4.4 guarantees that (Σn, ĝ) is parabolic. Moreover, it follows from (4.38)
that f(h)−α (where α = 1 + γ) is subharmonic on Σn. Thus, since the hypothesis infΣ f(h) > 0
implies that f(h)−α is bounded from above, it follows from the parabolicity of (Σn, ĝ) that f(h)
is constant on Σn. Consequently, since we are assuming that the equality holds in (4.32) only
at isolated points of I , returning to (4.38) we conclude that |∇h| = 0 on Σn, which means that
Σn is a slice. □
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In the following we present several half-space results. More precisely, in the context of self-
shrinkers, Theorem 4.3 reads as follows:

Corollary 4.12. The only complete n-dimensional self-shrinker of Rn+1 that lies in the closure of the
unbounded domain determined by Sn(

√
n) ⊂ Rn+1 and such that Θ is bounded away from zero, is

Sn(
√
n).

Taking into account once more Example 2.2, from Theorem 4.3 we get:

Corollary 4.13. LetM
n+1

=
(
0, π2

)
×sin tSn be the warped product model of RPn+1\{π(P ) ∪ CutP}.

Let ψ : Σn →M
n+1

be a complete mean curvature flow soliton with respect to K = sin t∂t and soliton
constant c < 0, such that Θ is bounded away from zero. If cos−1(

√
4c2+n2−n

2|c| ) ≤ h < π
2 , then Σn is the

slice {cos−1(
√
4c2+n2−n

2|c| )} × Sn.

From Theorem 4.3 we obtain the following result:

Corollary 4.14. Let M
n+1

= I ×et M
n be a pseudo-hyperbolic space whose fiber Mn is complete

with parabolic universal covering. Let ψ : Σn → M
n+1

be a complete mean curvature flow soliton
with respect to K = et∂t and soliton constant c < 0, such that Θ is bounded away from zero. If
h ≥ log(−n

c ), then Σn is the slice {log
(
−n

c

)
} ×Mn.

In the setting of Example 2.4 and Example 2.5, we also have the following consequence of
Theorem 4.3:

Corollary 4.15. Let M
n+1

= I ×f Sn be the Schwarzschild space and suppose that inequality (2.12)
is satisfied. Let ψ : Σn →M

n+1
be a complete mean curvature flow soliton with respect to K = f(t)∂t

and soliton constant c < 0, such that Θ is bounded away from zero. If Vm(r(h)) ≤ c2

n2 r(h)
4 on Σn,

then Σn is a slice {t∗} × Sn, where t∗ = t(r∗) is such that r∗ > r0(m) solves equation (2.11).

and

Corollary 4.16. Let M
n+1

= I ×f Sn be the Reissner-Nordström space and suppose that there is r∗ >
r0(m, q). Let ψ : Σn → M

n+1
be a complete mean curvature flow soliton with respect to K = f(t)∂t

and soliton constant c < 0, such that Θ is bounded away from zero. If Vm,q(r(h)) ≤ c2

n2 r(h)
4 on Σn,

then Σn is a slice {t∗} × Sn, where t∗ = t(r∗) is such that r∗ > r0(m, q) solves equation (2.13).

5. ENTIRE MEAN CURVATURE FLOW GRAPHS

Ecker and Huisken [20] proved that if an entire graph with polynomial volume growth is a
self-shrinker, then it is necessarily a hyperplane. Later on, Wang [33] removed the condition
of polynomial volume growth in Ecker-Huisken’s Theorem. More recently, Colombo, Mari
and Rigoli [16] extended this study to the context of entire mean curvature flow graphs in
warped products. Motivated by these works, the last section of this paper is devoted to estab-
lish new Moser-Bernstein type results concerning entire graphs constructed over the fiber Mn

of a warped product M
n+1

= I ×f M
n, which are mean curvature flow solitons with respect

to K = f(t)∂t with soliton constant c ̸= 0.

5.1. A key nonlinear differential equation. Let Ω ⊆ Mn be a domain. A function u ∈ C∞(Ω)

such that u(Ω) ⊆ I defines a vertical graph in the warped product M
n+1

= I ×f M
n. In such a

case, Σ(u) will denote the graph over Ω determined by u, that is,

Σ(u) = {(u(p), p) : p ∈ Ω} ⊂M
n+1

.
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The graph is said to be entire if Ω =Mn. Observe that h(u(p), p) = u(p), p ∈ Ω. Hence, h and u
can be identified in a natural way. The metric induced on Ω from the Riemannian metric of the
ambient space via Σ(u) is

gu = du2 + f(u)2gM .

If Mn is complete and infM f(u) > 0, then Σ(u) furnished with the metric gu is also complete.
The unit vector field

(5.39) N(p) = − f(u(p))√
f(u(p))2 + |Du(p)|2M

(
∂t|(u(p),p) −

Du(p)

f(u(p))2

)
, p ∈ Ω,

where Du stands for the gradient of u in M and |Du|M = gM (Du,Du)1/2, gives an orientation
of Σ(u) with respect to which we have Θ = g(N, ∂t) < 0. The corresponding shape operator is
given by

(5.40)

AX =− 1

f(u)
√
f(u)2 + |Du|2M

DXDu+
f ′(u)√

f(u)2 + |Du|2M
X

−

(
−gM (DXDu,Du)

f(u) (f(u)2 + |Du|2M )
3/2

− f ′(u)gM (Du,X)

(f(u)2 + |Du|2M )
3/2

)
Du

for any vector field X tangent to Ω, where D is the Levi-Civita connection in Mn.
Consequently, being Σ(u) a vertical graph over a domain Ω ⊆Mn and denoting by divM the

divergence operator computed in the metric gM , it is not difficult to verify from (5.40) that the
mean curvature function H(u) of Σ(u) is given by:

(5.41) H(u) = −divM

(
Du

f(u)
√
f(u)2 + |Du|2M

)
+

f ′(u)√
f(u)2 + |Du|2M

(
n− |Du|2M

f(u)2

)
.

Hence, from (2.7) and (5.41) we have that Σ(u) is a mean curvature flow soliton with respect
to K = f(t)∂t with soliton constant c if, and only if, u is a solution of the following nonlinear
differential equation:

(5.42) divM

(
Du

f(u)
√
f(u)2 + |Du|2M

)
=

1√
f(u)2 + |Du|2M

{
cf(u)2 + f ′(u)

(
n− |Du|2M

f(u)2

)}
.

5.2. Moser-Bernstein type results. We say that u ∈ C∞(M) has finite C2 norm when

||u||C2(M) := sup
|γ|≤2

|Dγu|L∞(M) < +∞.

In this context, we establish our first Moser-Bernstein type result:

Theorem 5.4. Let M
n+1

= I ×f M
n be a warped product whose fiber Mn is complete with sectional

curvature obeying the convergence condition (3.14). Suppose in addition that c ̸= 0 and ζc(t) ≥ 0 .
If u ∈ C∞(M) is an entire solution of equation (5.42), with finite C2 norm and such that |Du|M ≤
C infM |ζc(u)| for some positive constant C, then u ≡ t∗ for some t∗ ∈ I which is implicitly given by the
condition ζc(t∗) = 0.

Proof. Let u ∈ C∞(M) be such a solution of equation (5.42). It follows from (5.40) that the
shape operator A of Σ(u) is bounded, provided that u has finite C2 norm. We note also that
the finiteness of the C2 norm of u implies, in particular, that u is bounded, which, in turn,
guarantees that infM f(u) > 0. Hence, since we are assuming that Mn is complete, we get that
(Σ(u), gu) must be also complete.
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Therefore, we can reason as in the proof of Theorem 3.1 obtaining that infM |ζc(u)| = 0 and,
hence, the result follows from our constraint on |Du|M . □

From the proof of Theorem 5.4 we also get the following nonexistence result:

Corollary 5.17. Let M
n+1

= I ×f M
n be a warped product whose fiber Mn is complete with sectional

curvature obeying the convergence condition (3.14). Suppose in addition that c ̸= 0 and infI ζc(t) > 0.
There exists no entire solution with finite C2 norm of the equation (5.42).

Proceeding, Theorem 4.2 allows us to obtain our next result.

Theorem 5.5. Let M
n+1

= I ×f M
n be a warped product whose fiber Mn is complete. Suppose in

addition that c ̸= 0 and ζc(t) does not change the sign. If u ∈ C∞(M) is a bounded entire solution of
equation (5.42) such that |Du|M ∈ L1

gM (M), then u ≡ t∗ for some t∗ ∈ I which is implicitly given by
the condition ζc(t∗) = 0.

Proof. Let u ∈ C∞(M) be such a bounded entire solution of equation (5.42). Denoting by dM
and dΣ the Riemannian volume elements of (Mn, gM ) and (Σ(u), gu), respectively, from [1,
Equation (3.7)] we have that

|∇h|dΣ = f(u)n−1|Du|MdM.(5.43)

Hence, since we are assuming that u is bounded with |Du|M ∈ L1
gM (M), from relation (5.43)

we conclude that |∇h| ∈ L1
g(Σ(u)). Therefore, the result follows by applying Theorem 4.2. □

From (5.39) we see that the assumption Θ bounded away from zero is equivalent to |Du|M ≤
Cf(u) for some positive constant C. So, Theorem 4.3 allows us to obtain our last Moser-
Bernstein type result:

Theorem 5.6. Let M
n+1

= I ×f M
n be a warped product whose fiber Mn is complete with parabolic

universal covering and such that its warping function f satisfies (4.32), holding the equality only at
isolated points of I . Suppose in addition that c ̸= 0 and ζ̄c(t) ≤ 0. If u ∈ C∞(M) is a bounded entire
solution of equation (5.42) such that |Du|M ≤ Cf(u) for some positive constant C, then u ≡ t∗ for some
t∗ ∈ I which is implicitly given by the condition ζc(t∗) = 0.

Remark 5.5. Regarding all the nonexistence, rigidity and Moser-Bernstein type results which
were established along our manuscript, it remains an interesting open problem to infer what is
the geometric behavior of the mean curvature flow solitons in the unbounded case, that is, when
it is not contained in a slab of the ambient space. Furthermore, it is worth noting that a natural
future prospect related to our work is to extend it to the context of multiply warped product spaces
(for details on these spaces, see [9, Section 3.6]).
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