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 ABSTRACT  

 

This work presents an advanced version of the Particle Swarm Optimization (PSO) 

algorithm, a well-known optimization algorithm for the solution of the global optimization 

problems, called PSO with Hypersphere Dynamics and Mutation (PSO-HDM), to deal with the 

optimization obstacles. The novel method employs a novel technique where the particles’ 

positions are updated using the rotation of the hyperspheres, providing for better exploration of 

the search space. In addition, two new mutation techniques, Jitter and Gaussian, are used to keep 

away from the local optima and enhance the solution variety. Dynamic modifications of the 

classical PSO’s parameters, such as cognitive and social coefficients, also improve the 

algorithm’s achievement. The PSO-HDM optimization algorithm is evaluated with utilizing 

some benchmark functions and compared to classical PSO, getting better values in determining 

the optimal solutions. Gear train design problems are selected as an engineering design problem 

to show the effectiveness of the new suggested method. The obtained results present the 

capability of the proposed method. This proposed optimization algorithm could be seen as an 

alternative method to other optimization algorithms proposed in the literature. 

 

 
Keywords: Optimization, Metaheuristic algorithms, Particle swarm optimization, 

Mutation, Hypersphere, Gear train design problem.  

 

1 INTRODUCTION 

Many engineering design problems are expressed with mathematical expressions and 

models, illustrating a significant area of various fields [1]. These engineering problems are also 

considered difficult problems because of their nature as real-world challenges. They are 

categorized as hard problems due to their combinatorial complexity. Non-Linear Programming 
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(NLP) is utilized to model these real-world problems, using both variables and constraints to 

represent complex relationships precisely [2]. Metaheuristic algorithms are used to solve NLP 

and are often chosen as an important alternative to the classical traditional methods because 

they do not use derivative information. Traditional methods have difficulty finding solutions, 

and even when they get successful solution, they typically only get local optimal solution, and 

they also do not guarantee of reaching the global optimum solution [3]. The reason for the using 

for metaheuristic algorithms is their capability to keep an effective balance between local search 

(exploitation) and global search (exploration) [4]. However, it is not possible for all 

metaheuristic algorithms to be achieved in all optimization problems. According to No Free 

Lunch Theorem (NFL), no optimization algorithm is universally superior to other optimization 

algorithms across all problems [5]. No free lunch theorem emphasizes that there is no "one-

size-fits-all" solution in optimization problem. It is important the selection of the optimal 

algorithm should be based on the problem. 

In the literature, there are several metaheuristic algorithms include Particle Swarm 

Optimization (PSO) [6], Modified Grey Wolf Optimization Algorithm (MGWO) [7], Tunicate 

Search Algorithm (TSA) [8], Salp Swarm Algorithm (SSA) [9], Multi-Verse Optimizer (MVO) 

[10], Grey Wolf Optimizer (GWO) [11], Improved Gray Wolf Optimization (IGWO) [12], 

Genetic-Particle Swarm Optimization (GPSO) [13], Ant Lion Optimizer (ALO) [14], Cuckoo 

Search Algorithm (CS) [15], Mine Blast Algorithm (MBA) [16], Interior Search Algorithm 

(ISA) [17], Genetic Algorithms (GA) [18], Artificial Bee Colony Algorithm (ABC) [19], 

Genetic Adaptive Search (GA) [20], Augmented Lagrange Multiplier (ALM) [21], Moth-Flame 

Optimization Algorithm (MFO) [22], Dingo Optimization Algorithm (DOA) [23], Flow 

Direction Algorithm (FDA) [24] and Crow Search Algorithm (CSA) [25]. These metaheuristic 

algorithm has own working principle. In this paper, we advanced PSO by using hypersphere 

and mutation approaches the performance of the proposed algorithm is compared with that of 

the given optimization algorithms for the solution of the gear train design problem. 

Many metaheuristic optimization algorithms are not only being introduced as novel 

algorithms, but variants of these algorithms are also being improved. For the classical PSO 

algorithm, different approaches have been suggested in the literature to advance the algorithm. 

Duan et al. [26] propose the Chaos Adaptive Particle Swarm Optimization (CAPSO), 

employing the adaptive control over the inertia weight and the acceleration coefficients using 

chaotic theory. By using a chaotic search factor, CAPSO is the capable of the enhancing 

adaptability, supporting effective global and local search for the aim of the prevent the local 
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optima. Zhao and Wang [27] introduces the Elite-Ordinary Synergistic PSO (EOPSO) to solve 

the issue of the population diversity loss. EOPSO uses the particles as elite and ordinary groups, 

where the elite particles are utilized for the global exploration, while the other particles focus 

on local exploitation. Yang et al. [28] propose the Differential Elite Learning PSO (DELPSO), 

utilizing elite and non-elite group division to develop the diversity and adaptability. Non-elite 

particles learn from differential elite exemplars to improve search diversity, while dynamic 

parameter adjustments optimize the capability the exploration and the exploitation. Kassoil et 

al. [29] presents Exponential Particle Swarm Optimization (ExPSO), where the population 

includes three subgroups based on exponential-based search strategy that capables considerable 

jumps in the search space. The method ExPSO integrates the dynamic control over the particle 

velocity and a cognitive parameter that modifies over time, favoring large exploration leaps 

initially and focused improvements later. Solano-Rojas et al. [30] presents Micro Evolutionary 

Particle Swarm Optimization (MEPSO), which advances PSO by using the evolutionary 

mutations and crossovers instead of the classical velocity updates. In the MEPSO algorithm, 

these mutations and crossovers values give the probabilistic nature of the algorithm. Wang et 

al. [31] proposes Adam-LGQPSO, a method of the Quantum-Inspired Particle Swarm 

Optimization (QPSO) variant designed to reduce the premature convergence. This new method 

incorporates a Length of Potential Well (LPW) guiding strategy, a Gaussian random vector to 

improve information sharing, a perturbation structure to stop stagnation, and a diversity 

function to enhance adaptability. Zhu et al. [32] propose the Binary Restructuring Particle 

Swarm Optimization (BRPSO) algorithm, an adaptation of the classical Restructuring Particle 

Swarm Optimization (RPSO) for discrete optimization. Unlike other binary metaheuristics in 

the literature, BRPSO removes the use of a transfer function and it uses a random number for 

the particle updates. Moreover, it uses a novel perturbation term to advance the effectiveness of 

position updates. Bhargavi et al. [33] present a new PSO algorithm called Enhanced Particle 

Swarm Optimization (EPSO). In contrast to random deployments, the researches use EPSO to 

strategically position nodes, removing clustering and reducing coverage gaps. The researches 

also create individual swarms for each dimension, and the algorithm iteratively updates node 

positions, significantly reducing computational complexity compared to classical N-

dimensional swarm methods in EPSO. Moreover, EPSO uses adaptive inertia weights and 

acceleration factors to fine-tune node placement, ensuring comprehensive monitoring of each 

target area. Gong et al. [34] propose a Quantum Particle Swarm Optimization (QPSO) 

algorithm that uses a diversity approach mechanism to improve the search performance in high-

dimensional optimization problems. QPSO chooses migrating particles based on fitness and 



İ. Gör / BEU Fen Bilimleri Dergisi 14 (2), 806-837, 2025 

 

 809 

population positions, replacing those that deviate from a central range, which in turn advances 

convergence and stability compared to classical optimization algorithms. Fusic and Sitharthan 

[35] propose Advanced Self-Adaptive Learning Particle Swarm Optimization (ISALPSO), 

modifing its parameters, like the inertia weight, the acceleration coefficients, the learning 

coefficients, the mutation factor, and the swarm size, in response to the effectiveness of the 

generated path. The ISALPSO algorithm has a self-adaptation strategy, differentiating it from 

the traditional PSO. Yang et al. [36] present a Leader-Adaptive Particle Swarm Optimization 

Algorithm with a Dimensionality Reduction Strategy (LAPSO-DR) that advances classical 

PSO by using a hybrid initialization strategy for diverse populations, a leader-adaptive strategy 

for advanced exploitation, and an inter-particle learning strategy, which provide different 

dimensions to learn from various particles. Hu et al. [37] propose a multiple Adaptive Co-

Evolved Particle Swarm Optimization (ACEPSO) algorithm, incorporating a multiple adaptive 

co-evolved strategy, improving exploration via population grouping, advancing diversity with 

co-evolution, and using an adaptive mutation mechanism to prevent local optima. Liu et al. [38] 

introduce an Adaptive Particle Swarm Optimization Method that uses an Information 

Interaction (APSOIIM). APSOIIM advances the optimization capabilities of the traditional 

PSO by utilizing a chaotic sequence to greater distribute particles during initialization process 

and promoting diversity by interacting with the best solutions from neighboring particles during 

the search. APSOIIM algorithm also uses both a chaotic sequence strategy and an interaction 

information strategy. Ranganna et al. [39] propose a novel optimization algorithm, called 

Fitness Sharing Chaotic Particle Swarm Optimization (FSCPSO). FSCPSO uses the 

combination of chaos theory and fitness sharing mechanisms. Ambuj et al. [40] propose a new 

reinforcement learning particle swarm optimization (RLPSO) algorithm presents an innovative 

method that integrates the concepts of Particle Swarm Optimization (PSO) with reinforcement 

learning techniques. Tian et al. [41] propose a diversity-guided PSO with a multi-level learning 

strategy, combining a high-layer learning mechanism for global exploration and a low-layer 

scheme for local fine-tuning. Long et al. [42] improve a modified particle swarm optimization 

algorithm (RNP-PSO), utilizing various approaches such as particle encoding, initial population 

construction, and fitness calculation. Tang and Meng [43] presents an advanced particle swarm 

optimization algorithm (VASPSO), which includes the velocity pausing, a terminal replacement 

mechanism, time-varying inertia coefficients, and symmetric cooperative swarm concepts. 

Wang et al. [44] propose an improved Particle Swarm Optimization-Cubature Kalman Particle 

Filter (PSO-CPF) by using a particle filter, a forgetting factor and a new fitness function. Tantu 

and Biramo propose a novel variant of the classical PSO algorithm, called Adaptive PSO 
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(APSO), integrating the adaptive strategies that automatically tune algorithm parameters [65]. 

Cui and Seng proposed a new algorithm, Guaranteed PSO (GPSO), ensures the stable and the 

efficient convergence by dynamically adjusting particle velocities with a novel approach [66]. 

Research on developing the traditional PSO algorithm is studied rapidly in recent years 

and is not limited to the works mentioned in the previous paragraph. Numerous algorithms 

related to classical PSO can be found in the literature. In addition to the improvements to the 

PSO algorithm, the literature includes different engineering problems that have been solved 

using the PSO and its variants. The PSO algorithm is the capable of across various application 

areas, including engineering design optimization, such as the optimal gearbox layout design 

[45] and planetary gearbox optimization [46]. In addition to, various studies in the literature 

focus on PSO in the different application areas. Recent research shows that PSO is a method 

not only for improving its optimization capabilities but also for solving a wide range of 

engineering problems. This underscores the importance of our study as well for the solution of 

the engineering problems. In this study, a solution has been explored for the gear train design 

problem [47]. We get better results for the solution of the gear train design problem. 

Furthermore, as a future work, a new study could be conducted on solving other engineering 

problem in the literature by using the proposed new PSO algorithm called PSO-HDM from our 

research. 

This work focuses on the high-dimensional optimization problems. The PSO-HDM 

algorithm is a novel technique that enables for getting more effective exploration and solution 

diversity in high-dimensional search spaces. Jones et al. have used hyperbox methods in their 

work, as one of the suggested high dimensional search approaches in the literature, for solving 

optimization problems [61]. 

The proposed PSO-HDM algorithm also includes the dynamic adjustment of the 

coefficients. The concept of dynamically tuning coefficients has already been studied in the 

literature for different optimization problems. Duran and Caginalp have introduced a hybrid 

forecasting optimization algorithm for parameter optimization that dynamically adjusts 

coefficients using two sliding windows to optimize parameter selection [62]. Effective 

parameter selection has been shown to significantly influence optimization performance in 

mathematical models, as demonstrated by Tuncel and Duran [63]. Inspired by such studies, our 

PSO-HDM algorithm utilizes the dynamic parameter selection to the improvement of the 

exploration and the convergence behavior. 
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Another additional strategy used in the PSO-HDM algorithm is the usage of the 

hypersphere- based technique. In this manner, the optimization process in the Hyper-Spherical 

Search (HSS) algorithm proposed by Karami et al. focuses on the exploring the inner space 

defined between hypersphere centers and particles [64]. In our study, the novelty of the PSO-

HDM algorithm is found in its implementation of the hyperspheres with dynamic rotation, 

which allows a more exploration of the search space. This dynamic mechanism enhances the 

algorithm's ability to solve optimization problems. Briefly, unlike the HSS algorithm which 

explores the search within a defined subregion, PSO-HDM does not define local search regions. 

PSO-HDM ensures the convergence by rotating particles on a hypersphere without the need for 

the specifying any local search areas. 

The structure of this study is as follows: Section 2 mentions the suggested novel 

optimization algorithm, called PSO-HDM, including a detailed explanation of how it works. 

Section 3 introduce the experimental studies conducted in this work. The first subsection of 

Section 3, the different types of benchmark functions are solved and the next subsection of 

Section 3 introduces the gear train design problem and the solution of some optimization 

algorithms compared to the PSO-HDM. Finally, the conclusion of this study is summarized in 

the last section, also with a discussion of future work. 

2 MATERIAL AND METHOD 

Particle Swarm Optimization (PSO) is an optimization algorithm, inspired by the 

cooperative navigating of the birds and the social manners of the fishes [6]. This optimization 

algorithm is known as a swarm intelligence metaheuristic, where the particles, collaborate and 

learn from another particle’s experiences to find optimal solutions in the search spaces. To 

success this, it is important to have information on both the particles' velocity and position. For 

this aim, the velocity vector given by Equation 1 and the position vector given by Equation 2 

are used. 

𝑣⃗𝑖(𝑡 + 1) = 𝑤 ∗ 𝑣⃗𝑖(𝑡 + 1) + 𝑐1 ∗ 𝑟1 (𝑝⃗𝑏𝑒𝑠𝑡𝑖𝑖
(𝑡) − 𝑥⃗𝑖(𝑡)) + 𝑐2 ∗ 𝑟2(𝑔⃗𝑏𝑒𝑠𝑡(𝑡) − 𝑥⃗𝑖(𝑡)) (1) 

where 𝑣⃗𝑖(𝑡 + 1) denotes the velocity vector of particle 𝑖, 𝑤 is the inertia weight, 𝑐1 and 𝑐2 are 

the cognitive and social coefficients, 𝑟1 and 𝑟2 are random numbers (usually in the range [0,1]), 

𝑝⃗𝑏𝑒𝑠𝑡𝑖 is the personal best position of particle 𝑖, 𝑔⃗𝑏𝑒𝑠𝑡 is the global best position among all 

particles, and finally, 𝑥⃗𝑖(𝑡)  is the current position of particle 𝑖. 
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𝑥⃗𝑖(𝑡 + 1) = 𝑥⃗𝑖(𝑡) + 𝑣⃗𝑖(𝑡 + 1) (2) 

where 𝑥⃗𝑖(𝑡 + 1) is the new position of particle 𝑖, 𝑥⃗𝑖(𝑡) is the current position of particle 𝑖 and 

𝑣⃗𝑖(𝑡 + 1) is the updated velocity vector of particle 𝑖. 

As given Equation 2, instead of a linear position change in the PSO algorithm, the 

proposed new algorithm, called PSO-HDM, changes the position by constructing two different 

hyperspheres. Rotation is then occurred on one of the hyperspheres constructed. In addition, 

two different mutations, Jitter and Gaussian, have been applied. This approach allows 

exploration of different points in the search space. In the next section, we explain the proposed 

method in detail. 

2.1 Particle Swarm Optimization with Hypersphere Dynamics and 

Mutation (PSO-HDM) 

In this paper, we create a new method inspired PSO algorithm, called Particle Swarm 

Optimization with Hypersphere Dynamics and Mutation (PSO-HDM). At the beginning, when 

the population is initialized, each particle's 𝑝⃗𝑏𝑒𝑠𝑡𝑖 values are the same as their positions, in other 

words, the 𝑥⃗𝑖(𝑡) vector and 𝑝⃗𝑏𝑒𝑠𝑡𝑖 have identical values. Hence, the particles update their 

positions initially in the same way as in the traditional PSO algorithm. Afterwards, the 

hypersphere construction procedure is carried out. We explain the movement of the particle 

𝑥⃗𝑖(𝑡) in a 2D space to explain the working rule of the PSO-HDM algorithm. As seen in Figure 

1, one of the hyperspheres has its center at the 𝑔⃗𝑏𝑒𝑠𝑡 position, and its radius is the distance 

between the 𝑔⃗𝑏𝑒𝑠𝑡 and the current position vector 𝑥⃗𝑖(𝑡). The other hypersphere is centered at 

the 𝑝⃗𝑏𝑒𝑠𝑡𝑖 position, and its radius is the distance between the 𝑝⃗𝑏𝑒𝑠𝑡𝑖 and 𝑥⃗𝑖(𝑡). When the 

hyperspheres are created, several different scenarios can develop. These scenarios will be 

explained in detail. The case shown in Figure 1 illustrates a situation where the hyperspheres 

intersect concentrically at the point 𝑥⃗𝑖(𝑡). 
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Figure 1. The movement of the position vector 𝒙⃗⃗⃗𝒊(𝒕) in the case of the overlap of the two 

inner circles. 

In Figure 1, if 𝑥⃗𝑖(𝑡) performs a rotational motion on the green circle at a specific angle, 

as can be seen, 𝑥⃗𝑖(𝑡) will approach both the 𝑝⃗𝑏𝑒𝑠𝑡𝑖 value and the 𝑔⃗𝑏𝑒𝑠𝑡 value. Initially, the vector 

𝑥⃗𝑖(𝑡) is given in cartesian coordinates as (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝑛), then it is transformed into 

spherical coordinates by using the radial distance  and the angular coordinates 

(1,2,3, … ,𝑛−1), after which a rotation is applied by selecting randomized angle, such as 

1, and finally, the updated angular coordinates are converted back to cartesian coordinates, 

giving the new components (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝑛). 

In order to provide a detailed explanation of the process outlined above, the position 

vector 𝑥⃗𝑖(𝑡) is defined in cartesian coordinates as 𝑥⃗𝑖(𝑡) = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝑛) ∈ ℝ
𝑛. In order 

to determine the rotation angle, the system has been converted to angular coordinates as given 

in Equation 3. 

𝑥𝑖1 =  cos(1) 

𝑥𝑖2 =  sin1 cos(2) 

⋯ 

𝑥𝑖𝑛−1 =  sin1 sin2…sin(𝑛−2) cos(𝑛−1) 

and 

𝑥𝑖𝑛 =  sin1 sin2…sin(𝑛−2) sin(𝑛−1) 

(3) 
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Hence, in angular coordinates  𝑥⃗𝑖(𝑡) can be expressed as 𝑥⃗𝑖(𝑡) = (,1,2, … ,𝑛−1) ∈

ℝ𝑛. The axis of the rotation is selected randomly. In each iteration, a different axis is selected. 

The rotation occurs around the randomly chosen 𝑘 axis. Thus, for 𝑘 ∈ {1,2, … , 𝑛}, 𝑥⃗𝑖(𝑡) =

(, ̂1, ̂2, … , ̂𝑘−1,𝑘 + , ̂𝑘+1, … , ̂𝑛) is obtained where  ∈ (0,
𝜋

2
]. Then, the position 

vector 𝑥⃗𝑖(𝑡) = (𝑥̂𝑖1, 𝑥̂𝑖2, 𝑥̂𝑖3, … , 𝑥̂𝑖𝑛) ∈ ℝ
𝑛 is calculated in cartesian coordinates. After applying 

the inverse transformations, the angular coordinates of 𝑥⃗𝑖(𝑡) are given in Equation 4. 

1 = cot
−1

(

 
𝑥𝑖1

√∑ 𝑥𝑗
2𝑛

𝑗=𝑖+1 )

  

2 = cot
−1

(

 
𝑥𝑖2

√∑ 𝑥𝑗
2𝑛

𝑗=𝑖+1 )

  

⋯ 

𝑛−2 = cot
−1

(

 
𝑥𝑖𝑛−2

√∑ 𝑥𝑗
2𝑛

𝑗=𝑖+1 )

  

and 

𝑛−1 = 2 cot
−1 (

√𝑥𝑛−1
2 +𝑥𝑛

2 + 𝑥𝑛−1
𝑥𝑛

) 

(4) 

Then, the cartesian coordinates of the position vector 𝑥⃗𝑖(𝑡) is recomputed using 

Equation 3. During the rotation, the selection of  is not crucial. Since the method is heuristic 

and a different  is selected in each iteration, the key point is that after the rotation, the current 

position vector converges to both the global best (gbest) and personal best (pbest) values. The 

order of the selection of  is also not crucial. While the choice of  may affect the convergence 

speed, it may not be possible to theoretically state this. This issue could be considered as a topic 

for further research. 

To illustrate this randomization, we could present the situations where the 𝑦𝑧, 𝑥𝑦, and 

𝑥𝑧 planes are randomly selected in three-dimensional space. If the situation shown in Figure 2 

is randomly determined to be parallel to the 𝑦𝑧-axis, we could say that when the 𝑥⃗𝑖(𝑡) position 

vector is rotated in both directions, it approaches both 𝑝⃗𝑏𝑒𝑠𝑡𝑖 and 𝑔⃗𝑏𝑒𝑠𝑡. Similarly, when the 𝑥𝑦 

is randomly selected, as seen in Figure 3. Finally, 𝑥𝑧 is randomly selected, it can be observed 

that after the rotation of the 𝑥⃗𝑖(𝑡) position vector on the hypersphere, it goes both the 𝑝⃗𝑏𝑒𝑠𝑡𝑖 and 

𝑔⃗𝑏𝑒𝑠𝑡 values. 
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Figure 2. Rotation operation occurring when the 𝒚𝒛-axis is randomly determined. 

In the higher dimension, a similar situation occurs. After the random selection of the 1, 

if the vector 𝑥⃗𝑖(𝑡) is rotated by  radians around the 1-axis, it is moved to a new point such 

as 𝑥⃗𝑖(𝑡 + 1), where 𝑡 is the iteration number in the angular coordinates. 

 
 

Figure 3. Rotation operation occurring when the 𝒙𝒚-axis is randomly determined. 

 

One of the another situation is confirming whether the 𝑥⃗𝑖(𝑡), 𝑝⃗𝑏𝑒𝑠𝑡𝑖, and 𝑔⃗𝑏𝑒𝑠𝑡 values 

are linear. If they are linear, the situations of being respectively internally and externally tangent 

in a d-dimensional space, as shown in Figure 4 and Figure 5, need to be evaluated. For this aim, 

the distance between 𝑔⃗𝑏𝑒𝑠𝑡 and 𝑝⃗𝑏𝑒𝑠𝑡𝑖, as well as the distance between 𝑔⃗𝑏𝑒𝑠𝑡 and 𝑥⃗𝑖(𝑡), need to 

be compared. When the condition given by Equation 5 is occurred, it is seen that the circles are 

internally tangent as shown in Figure 3. If the points are linear and internally tangent, the 𝑥⃗𝑖(𝑡) 

point is the point of intersection, and the rotation angle and direction is not important. Even 
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with a very small rotation of the 𝑥⃗𝑖(𝑡) position vector, it will approach both the 𝑝⃗𝑏𝑒𝑠𝑡𝑖, and 

𝑔⃗𝑏𝑒𝑠𝑡. This situation suggests that the particle 𝑥⃗𝑖(𝑡) is being moved to both the personal best 

position and global best positions during its rotation. 

‖𝑔⃗𝑏𝑒𝑠𝑡, 𝑝⃗𝑏𝑒𝑠𝑡𝑖‖ < ‖𝑔⃗𝑏𝑒𝑠𝑡, 𝑥⃗𝑖(𝑡)‖ (5) 

 

Figure 4. The movement of the position vector 𝒙⃗⃗⃗𝒊(𝒕) in the case of the 𝒙⃗⃗⃗𝒊(𝒕), 𝒑𝒃𝒆𝒔𝒕𝒊, and 

𝒈𝒃𝒆𝒔𝒕 values are linear the circles are internally tangent. 

Alternatively, in the case where the internally condition given by Equation 5 is not 

occurred, as shown in Figure 4, the circles are externally tangent. In this case, the situation 

described by Equation 6 occurs. 

‖𝑔⃗𝑏𝑒𝑠𝑡, 𝑝⃗𝑏𝑒𝑠𝑡𝑖‖ > ‖𝑔⃗𝑏𝑒𝑠𝑡, 𝑥⃗𝑖(𝑡)‖ (6) 
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Figure 5. The movement of the position vector 𝒙⃗⃗⃗𝒊(𝒕) in the case of the 𝒙⃗⃗⃗𝒊(𝒕), 𝒑⃗⃗⃗𝒃𝒆𝒔𝒕𝒊, and 

𝒈⃗⃗⃗𝒃𝒆𝒔𝒕 values are linear the circles are externally tangent. In this case, classical PSO is used 

without the rotation operation. 

As seen in Figure 5, when the 𝑥⃗𝑖(𝑡) position vector rotates in any direction on the circle, 

it goes away from the 𝑔⃗𝑏𝑒𝑠𝑡. To tackle this, the traditional PSO algorithm has been used in the 

case where the circles are externally tangent as seen in Figure 5. 

A modification added to the PSO in the PSO-HDM algorithm is the dynamic of 

coefficients. For this aim, the coefficients 𝑐1 and 𝑐2 are determined as iteration-dependent 

variables in the algorithm. In the literature, the coefficients 𝑐1 = 2 and 𝑐2 = 2 are commonly 

selected and are known to provide valid results [37]. However, some other values have also 

been used. For instance, some researchers use the lower coefficients, such as 𝑐1=1.05 and 

𝑐2=1.05, or slightly higher values, like 𝑐1=2.05 and 𝑐2=2.05, to advance the performance of the 

algorithm [38]. In this work, the values of 𝑐1 and 𝑐2 are dynamically adjusted. The 𝑐1 value is 

initially determined as 1.5 and reduces to 1.2, while the 𝑐2 value starts at 2.0 and decreases to 

1.5. The values of 𝑐1 and 𝑐2 are selected based on the current iteration 𝑡 and the maximum 

iteration 𝑇, using Equations 7 and 8, respectively. These equations help adjust the coefficients 

gradually in the optimization. 

𝑐1 = 1.2 + 0.3
𝑡

𝑇
 (7) 

𝑐2 = 1.5 + 0.5
𝑡

𝑇
 (8) 
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In the mutation stage, the noise is added to decide the positions for the algorithm at 

distinct points in the search space [48-51]. The mutation operators, also known as noise, 

presented as by Jitter, given by Equation 9, and Gaussian, given by Equation 10, respectively. 

 = (𝑟 − 0.5)
𝐹

 (9) 

where 
𝐹
= 0.05 + 0.45 (1 −

𝑡

𝑇
) is a Jitter factor and 𝑟 is in in the range [0,1]𝑑 such 

that 𝑑 is the dimension of the problem. 

 = 0.1𝑔⃗ (10) 

where 𝑔⃗ is in in the range [0,1]𝑑 such that 𝑑 is the dimension of the problem. 

When the Jitter mutation is implemented, the noise  given by Equation 8 is inserted to 

the position vector. Similarly, when Gaussian noise is implemented, the noise value  given by 

Equation 9 is added to the position vector. The equations for Jitter and Gaussian noise are given 

with Equation 11 and Equation 12, respectively. 

𝑋⃗ = 𝑥⃗𝑖(𝑡) +  (11) 

𝑋⃗ = 𝑥⃗𝑖(𝑡) +  (12) 

In Equation 11 and in Equation 12, 𝑋⃗ represents the new position of the 𝑥⃗𝑖(𝑡) after 

inserting noise. 

The mutation equations given by Equation 9 and Equation 10 are implemented the 

position vector to obtain a new position. If the solution at this new possible position is greater, 

it is selected as the new solution. Thus, the solutions are explored at different points in the 

search space. The probability of mutation is set to 50%. For instance, if the number of iterations 

is 1000, the mutation is applied in around 500 iterations. With a 50% probability, the mutation 

process generates 1000 new candidate solutions for each particle. The best solution within these 

candidate solutions, if it advances possible upon the current one, is selected and updated as the 

new solution. 

The pseudocode of the PSO-HDM (Particle Swarm Optimization with Hypersphere 

Dynamics and Mutation) algorithm is provided in Algorithm 1. 
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Algorithm 1. The pseudocode of the PSO-HDM. 

1. Initialize the arbitrary parameters of PSO as the population 

size, the lower and the upper of the decision variables, the 

maximum iteration, the population szie, the particel positions. 

2. Update the velocity of the particle using Eqution 1. 

3. Update the position of the particle using Eqution 2. 

4. Evaluate the fitness values of particle 𝑥⃗𝑖(𝑡) 

5. For each particle: Update the personal best (𝑝⃗𝑏𝑒𝑠𝑡𝑖) and the global 

best (𝑔⃗𝑏𝑒𝑠𝑡). 

1. Repeat the stopping criteria has been reached 

2. Update the acceleration coefficients (c1, c2) dynamically. 

3. For each particle: 

4. If the position unchanged: update v⃗⃗i apply limits. 

5. Else: determine the center and radius of the hyperspheres 

and construct two hyperspheres which overlapped at the 

point 𝑥⃗𝑖(𝑡). 

6. Determine the angular of the rotation as ⃗⃗⃗ 

7. If the positions of the particle 𝑥⃗𝑖(𝑡), the personal best 

(𝑝𝑏𝑒𝑠𝑡𝑖) and the global best (𝑔⃗𝑏𝑒𝑠𝑡) are collinear: update the 

velocity of the particle using Equation 1. 

8. Else: adjust position with angular derivatives, apply 

limits. 

9. Evaluate f(x⃗⃗i), update pbesti, gbest. 

10. Apply Gaussian or Jitter mutation if enabled. 

11. Update the value of inertia coefficients via a 

predetermined damping ratio 

12. Until the stopping criteria has been reached. 

6. Return the position of the global (𝑔⃗𝑏𝑒𝑠𝑡) and the fitness value 

at the global best position. 
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In the following section, the effectiveness of the novel proposed algorithm has been 

executed by comparing its solutions for two distinct types of benchmark functions, including 

unimodal and multimodal functions, with those of the classical PSO. In the following 

subsection, the solutions for a gear train design problem, a well known engineering design 

problem in the literature, is analyzed and compared some other optimization algorithms and the 

proposed PSO-HDM. 

3 EXPERIMENTAL RESULTS AND COMPARISONS 

As shown in the previous works in the literature, in order to get the performance of the 

proposed novel algorithm, both benchmark functions and engineering design problem solutions 

are generally used. The arbitrary parameter values is selected 100 for the number of population 

and also 100 maximum the number of iterations for the solution of all benchmark functions. 

The codes are executed 25 times. 

3.1 Benchmark Functions 

In this section, benchmark function solutions is initially used to compare the 

performance of the algorithms. Solutions have been obtained for two categories of classic 

benchmark functions, includes unimodal and multimodal functions as seen in Table 1 and Table 

2 [52]. 

Table 1. Unimodal benchmark functions. 

Function Dim Limits 𝒇𝒎𝒊𝒏 

𝑓1(𝑥) =∑𝑥𝑖
2

𝑛

𝑖=1

 30 [-100,100] 0 

𝑓2(𝑥) =∑|𝑥𝑖|

𝑛

𝑖=1

+∏|𝑥𝑖|

𝑛

𝑖=1

 30 [-10,10] 0 

𝑓3(𝑥) =∑(∑𝑥𝑗

𝑖

𝑗−1

)

2
𝑛

𝑖=1

 30 [-100,100] 0 

𝑓4(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} 30 [-100,100] 0 

𝑓5(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖−1)

2]

𝑛−1

𝑖=1

 30 [-30,30] 0 

𝑓6(𝑥) =∑([𝑥𝑖 + 0.5])
2

𝑛

𝑖=1

 30 [-100,100] 0 

𝑓7(𝑥) =∑𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0,1)

𝑛

𝑖=1

 30 [-1,28,1.28] 0 
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Table 2. Multimodal benchmark functions. 

Function Dim Limits 𝒇𝒎𝒊𝒏 

𝑓8(𝑥) =∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1

 30 [-5.12, 5.12] 0 

𝑓9(𝑥)

= −20 exp(√
1

𝑛
∑𝑥𝑖2
𝑛

𝑖=1

)

− exp(
1

𝑛
√∑cos(2𝜋𝑥𝑖)

𝑛

𝑖=1

)+ 20 + 𝑒 

30 [-32,32] 0 

𝑓10(𝑥) =
1

4000
∑𝑥𝑖

2

𝑛

𝑖=1

−∏(cos (
𝑥𝑖

√𝑖
))

𝑛

𝑖=1

+ 1 

30 [-600,600] 0 

𝑓11(𝑥) =
𝜋

𝑛
{10 sin(𝜋𝑦1)

+∑(𝑦𝑖 − 1)
2

𝑛−1

𝑖=1

[1

+ 10 sin 2(𝜋𝑦𝑖+1)

+ (𝑦𝑛 − 1)
2]} 

30 [-50,50] 0 

𝑦𝑖 = 1 +
𝑥𝑖+1

4
,𝑢(𝑥𝑖, 𝑎, 𝑘,𝑚) =

{

𝑘(𝑥𝑖 − 𝑎)
𝑚                    𝑥𝑖 > 𝑎

0                          − 𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚             𝑥𝑖 < −𝑎

 
   

𝑓12(𝑥) = 0.1 {sin2(3𝜋𝑥1)

+∑(𝑥𝑖 − 1)
2[1

𝑛

𝑖=1

+ sin2(3𝜋𝑥1 + 1)]
+ (𝑥𝑛 − 1)

2[1

+ sin2(2𝜋𝑥𝑛)]}

+∑𝑢(𝑥𝑖 , 5,100,4)

𝑛

𝑖=1

 

30 [-50,50] 0 
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The benchmark functions is solved using both PSO and PSO-HDM. The results are 

shown in Table 3, including the best scores, worst scores, mean scores, and their standard 

deviations obtained over 20 runs. Instead of relying on results obtained from a single run, 

evaluations were performed based on the outcomes of 20 runs. This approach ensures the 

reliability of the method can be assessed. As seen in Table 3, the PSO-HDM algorithm gets 

better solutions compared to the traditional PSO in solving benchmark functions. It has been 

observed that the PSO-HDM algorithm shows better results in terms of the best cost, the worst 

cost, and the average best cost values. 

Table 3. The results of benchmark function solutions. 

Function  PSO PSO-HDM 

 Best cost 1.9260 1.0680𝑒 − 02 

F1 Worst cost 1.1273𝑒 + 01 7.5747𝑒 − 02 

 Mean of best costs 5.8350  3.5353𝑒 − 02  

 Standart deviation 2.2990 1.9729𝑒 − 02 

 Best cost 4.5419𝑒 − 01 5.4673𝑒 − 02 

F2 Worst cost 1.261758 1.1622𝑒 − 01 

 Mean of best costs 8.0060𝑒 − 01  8.2368𝑒 − 02  

 Standart deviation 2.2200𝑒 − 01 2.1008𝑒 − 02 

 Best cost 5.3871𝑒 + 02 5.7507𝑒 + 01 

F3 Worst cost 1.9077𝑒 + 03 1.3852𝑒 + 03 

 Mean of best costs 1.0171𝑒 + 03  3.8099e+02  

 Standart deviation 3.6656𝑒 + 02 2.8227e+02 

 Best cost 3.5317 1.5223 

F4 Worst cost 6.3676 5.6225 

 Mean of best costs 4.9234 3.3375 

 Standart deviation 8.4048𝑒 − 01 1.1845 

 Best cost 7.0853𝑒 + 01 2.4930𝑒 + 01 

F5 Worst cost 8.0734𝑒 + 02 1.8769𝑒 + 02 

 Mean of best costs 2.4703𝑒 + 02  6.2656𝑒 + 01  

 Standart deviation 1.7541𝑒 + 02 4.7316𝑒 + 01 

 Best cost 1.9806 1.4106𝑒 − 02 

F6 Worst cost 1.5122𝑒 + 01 1.0168𝑒 − 01 

 Mean of best costs 5.1202 4.4010𝑒 − 02 

 Standart deviation 2.7843 2.4874𝑒 − 02 
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Table 3. (continued). The results of benchmark function solutions. 

Function  PSO PSO-HDM 

 Best cost 1.2079𝑒 − 02 3.7678𝑒 − 03 

F7 Worst cost 6.2254𝑒 − 02 1.9575𝑒 − 02 

 Mean of best costs 2.8147𝑒 − 02 1.2222𝑒 − 02  

 Standart deviation 1.2069 3.6393𝑒 − 03 

 Best cost 2.8477𝑒 + 01 2.5785𝑒 + 01 

F8 Worst cost 7.5196𝑒 + 01 6.0864𝑒 + 01 

 Mean of best costs 5.3386𝑒 + 01  3.9440𝑒 + 01  

 Standart deviation 1.3798𝑒 + 01 1.0622𝑒 + 01 

 Best cost 9.4141𝑒 − 01 6.2463𝑒 − 02 

F9 Worst cost 2.3180 2.3288 

 Mean of best costs 1.5880 1.4219 

 Standart deviation 4.0456𝑒 − 01 6.9459𝑒 − 01 

 Best cost 8.0581𝑒 − 01 1.5818𝑒 − 01 

F10 Worst cost 1.0859 5.575824𝑒 − 01 

 Mean of best costs 1.0354  2.8687𝑒 − 01  

 Standart deviation 5.8554𝑒 − 02 1.1308𝑒 − 01 

 Best cost 3.9844𝑒 − 03 1.4814𝑒 − 04 

F11 Worst cost 4.5164𝑒 − 01 1.3024 

 Mean of best costs 1.5542𝑒 − 01  1.3819𝑒 − 01  

 Standart deviation 1.4207𝑒 − 01 2.9692𝑒 − 01 

 Best cost 3.1564𝑒 − 01 2.5100𝑒 − 03 

F12 Worst cost 3.1483 2.535093𝑒 − 02 

 Mean of best costs 9.0645𝑒 − 01  9.8414𝑒 − 03  

 Standart deviation 6.3325𝑒 − 01 6.4765𝑒 − 03 

 Best cost 3.0917𝑒 − 04 3.0768𝑒 − 04 

F13 Worst cost 1.4002𝑒 − 03 1.2231𝑒 − 03 

 Mean of best costs 5.2679𝑒 − 04  3.9998𝑒 − 04  

 Standart deviation 3.0932𝑒 − 04 2.8152𝑒 − 04 

 

Additionally, Figure 6 shows the benchmark functions with their best cost values and 

showing a comparison of the solutions PSO and PSO-HDM. 
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Figure 6. The comparison of the best cost values of benchmark function solutions. 
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Figure 6. (continued). The comparison of the best cost values of benchmark function 

solutions. 
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Figure 6. (continued). The comparison of the best cost values of benchmark function 

solutions. 
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Figure 6. (continued). The comparison of the best cost values of benchmark function 

solutions. 

 

Furthermore, Table 4 shows the execution time of the optimization algorithm. In Table 

4, 𝑇0 shows the base execution time, 𝑇1 is the mean execution time across all trials and 𝑇2 =

(𝑇1−min(𝑇))

𝑇0 
 quantifies the normalized time variation. In Table 4, it is showed that the PSO-HDM 

algorithm runs slightly slower due to the inclusion of mutation stage and hypersphere 

generation steps. On the other hand, the results show an improvement over the PSO algorithm. 

Additionally, while the PSO-HDM algorithm might be slower, if it is success for the notable 

improvements in solving significant engineering problems, as mentioned in the introduction 

section, the additional execution time could be considered negligible. This makes the algorithm 

particularly valuable for tackling complex challenges in engineering optimization. 
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Table 4. The execution time of the methods for solving benchmark functions. 

Function Values PSO PSO-HDM 

 𝑇0 3.5087𝑒 − 02 3.5087𝑒 − 02 

F1 𝑇1 5.4613𝑒 − 01 2.2520𝑒 + 01 

 𝑇2 2.0067 2.9340𝑒 + 01 

 𝑇0 3.2064𝑒 − 02 3.2064𝑒 − 02 

F2 𝑇1 5.3660𝑒 − 01 2.5033𝑒 + 01 

 𝑇2 1.5110 5.0999𝑒 + 01 

 𝑇0 1.5580𝑒 − 02 1.5580𝑒 − 02 

F3 𝑇1 6.8455𝑒 − 01 5.7121𝑒 + 01 

 𝑇2 9.1162 1.9326𝑒 + 02 

 𝑇0 1.5326𝑒 − 02 1.5326𝑒 − 02 

F4 𝑇1 1.0827 2.7865𝑒 + 01 

 𝑇2 4.7140𝑒 + 01 1.3748𝑒 + 02 

 𝑇0 1.333480𝑒 − 02 1.3334𝑒 − 02 

F5 𝑇1 5.5662𝑒 − 01 2.6942𝑒 + 01 

 𝑇2 6.8747 1.6054𝑒 + 02 

 𝑇0 1.5346𝑒 − 02 1.5346𝑒 − 02 

F6 𝑇1 4.2772𝑒 − 01 2.3320𝑒 + 01 

 𝑇2 4.9084 9.8602𝑒 + 01 

 𝑇0 1.7332𝑒 − 02 1.7332𝑒 − 02 

F7 𝑇1 5.6147𝑒 − 01 5.1075𝑒 + 01 

 𝑇2 7.0861 1.0932𝑒 + 02 

 𝑇0 4.7453𝑒 − 02 4.7453𝑒 − 02 

F8 𝑇1 1.5013 4.0612𝑒 + 01 

 𝑇2 1.8680𝑒 + 01 1.2081𝑒 + 02 

 𝑇0 2.5330𝑒 − 02 2.5330𝑒 − 02 

F9 𝑇1 8.2700𝑒 − 01 2.7007𝑒 + 01 

 𝑇2 1.2866𝑒 + 01 4.0047𝑒 + 01 

 𝑇0 1.3467𝑒 − 02 1.3467𝑒 − 02 

F10 𝑇1 9.7158𝑒 − 01 2.8222𝑒 + 01 

 𝑇2 3.7505𝑒 + 01 9.7938𝑒 + 01 

 𝑇0 3.5087𝑒 − 02 3.5087𝑒 − 02 

 𝑇0 1.6090𝑒 − 02 1.6090𝑒 − 02 

F11 𝑇1 9.9783𝑒 − 01 5.3426𝑒 + 01 

 𝑇2 1.7967𝑒 + 01 3.2028𝑒 + 02 

 𝑇0 3.1564𝑒 − 01 2.5100𝑒 − 03 

F12 𝑇1 3.1483 2.5350𝑒 − 02 

 𝑇2 4.5949 1.0017𝑒 + 02 

 𝑇0 1.5223𝑒 − 02 1.5223𝑒 − 02 

F13 𝑇1 4.0601𝑒 − 01 1.1586𝑒 + 01 

 𝑇2 3.1791 3.7192𝑒 + 01 
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In the following section, the gear train design problem will be analyzed in detail. The 

next section also contains the solution of this problem with and the original PSO and the proped 

new method PSO-HDM. 

3.2 Gear Train Design Problem 

The gear train optimization design problem, a well-known problem in mechanical 

engineering introduced by Sandgren [47] incorporates designing a gear train to decrease the 

input angular speed to a lower output speed, with the objective of minimizing the gear ratio, 

defined as the angular velocity ratio of the output shaft to the input shaft. The variables of the 

problem for this task involve the number of teeth on the gears A, B, C, and D, as demonstrated 

in Figure 10. The angular velocity ratio is shown seen in Equation 13, 𝑛 is also known as two-

gear transfer ratio.  

𝑛 =
𝑤0
𝑤𝑖
=
𝑡𝑖
𝑡0

 (13) 

In Equation 12, 𝑤0 denotes the angular velocity of the output gear, while 𝑤𝑖 is the 

angular velocity of the input gear. In the same way, 𝑡0 and 𝑡𝑖 correspond to the number of teeth 

on the output and input gears. Consequently, the transmission ratio is inversely related to the 

number of teeth on the gears. In Figure 7, the problem analyzed in this study, including two 

pairs of gears (a total of four gears) and seeks to achieve a transmission ratio as close as possible 

to 1/6.931. As a results, for this specific problem, the transmission Equation 13 can be 

reformulated as following Equation 14.  

𝑛 =
1

6.931
=
𝑡𝐶𝑡𝐵
𝑡𝐴𝑡𝐷

=
𝑥1𝑥2
𝑥3𝑥4

 (14) 

Sandgren [47] present that no gear in the system should have fewer than 12 teeth or 

more than 60 teeth. As a consequence, the gear train design problem includes choosing a set of 

gears (𝑥1, 𝑥2, 𝑥3 and 𝑥4) such that the double reduction gear ratio is as close as possible to 
1

6.931
 

while satisfying the feasibility constraints. In particular, each design variable 𝑥𝑖 must be an 

integer within the range [12, 60]. The gear train design problem can be expressed as following 

Equation 15: 

min𝑓(𝑥) = [
1

6.931
−
𝑥1𝑥2
𝑥3𝑥4

]
2

 

12 ≤ 𝑥𝑖 ≤ 60  𝑖 = 1,2,3,4 

(15) 
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The arbitrary parameters utilized in the experimental studies are presented in Table 5. This 

work uses two different iterations, such as 200 and 1000. Because the worst, the average, 

the best, and the standard deviation values obtained with 200 iterations are provided by 

Karami et al [24]. Additionally, the results of the 𝑓(𝑥) values obtained using 𝑥1, 𝑥2, 𝑥3, and 

𝑥4 can be compared with those in Gopi [7], Duan et al. [13], and Mirjalili [14]. In these 

researches, the maximum number of iterations is set to 1000. Consequently, the problem was 

also solved with 1000 iterations to enable a fair comparison. The comparisons are 

demonstrated accordingly in Table 6 and Table 7, considering different maximum numbers 

of iterations. On the other hand, the other arbitrary parameters remain the same for both 

iterations. 

Table 5. The arbitrary parameters values for the gear train design problem. 

Parameters Values 

Number of Population 100 

Number of Decision Variables 4 

Lower Bound of Variables 12 

Upper Bound of Variables 60 

Maximum Number of Iterations 200, 1000 

 

 

 

Figure 7. The Gear train design problem [14]. 

Figure 7 depicts, the number of teeth on gear A is represented by 𝑥1, the number of teeth 

on gear B is represented by 𝑥2, the number of teeth on gear C is represented by 𝑥3, and the 

number of teeth on gear D is represented by 𝑥4. 
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Table 6. The comparison results of the gear train problem with 1000 iteration. 

Algorithms 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒇(𝒙⃗⃗⃗) 

MGWO [7] 43.23451442  19.48161573  16.80898646  52.49664159  9.444𝑒 − 15  

TSA [8] 41.38908813  14.89380456  22.81969856  56.91350992  1.153𝑒 − 11  

SSA [9] 50.80890822  14.00937474  29.37997485  42.34395302  0.0022119  

MVO [10] 30.42669549  15.51261593  12  42.40446052  1.896𝑒 − 12  

GWO [11] 60  30.57637562  15.04813329  53.1507917  1.386𝑒 − 12  

IGWO [12] 59.38921756  13.10291292  12.58277378  19.24141193  2.135𝑒 − 12  

ALO [14] 49 19 16 43 2.7009e − 12 

CS [15] 43 16 19 49 2.7009e − 12 

MBA [16] 43 16 19 49 2.7009e − 12 

ISA [17] N/A N/A N/A N/A 2.7009e − 12 

GA [18] N/A N/A N/A N/A 2.33e − 17 

ABC [19] 19 16 44 49 2.78e − 11 

GA [20] 33 14 17 50 1.362e − 09 

ALM [21] 33 15 13 41 2.1469e − 08 

APSO [65] 12 43.28379750 60 60 6.7251𝑒 − 20 

GCPSO [66] 15.37424096 24.26328913 59.24068481 43.64345879 6.4739𝑒 − 17 

CAPSO [26] 28.49091524 16.01777144 53.13400652 50.34126059 6.9342𝑒 − 04 

ExPSO [29] 16.75900322 14.97024322 43.58594282 41.73902679 4.0598𝑒 − 05 

PSO-HDM  12.75505496 34.87566866 56.02420707 55.03323691 1.6366𝑒 − 21 

 

Table 7. The comparison results of the gear train problem with 200 iteration. 

Algorithms Worst Average Best Standart deviation 

GPSO [53] 2.7009𝑒 − 12 5.5781𝑒 − 10 2.7009𝑒 − 12 8.7412𝑒 − 10 

GPSO [54] 2.7009𝑒 − 12 9.0259𝑒 − 10 1.1661𝑒 − 10 1.9240𝑒 − 09 

GPSO [55] 2.7009𝑒 − 12 1.9522𝑒 − 10 8.8876𝑒 − 10 4.1787𝑒 − 10 

GPSO-PG [56] 2.7009𝑒 − 12 9.3414𝑒 − 09 3.3667𝑒 − 08 1.6663𝑒 − 08 

OPSO [57] 2.3078𝑒 − 11 9.5187𝑒 − 07 2.7265𝑒 − 08 1.5744𝑒 − 06 

GPSO [58] 2.7009𝑒 − 12 5.4215𝑒 − 10 2.7009𝑒 − 12 9.1924𝑒 − 10 

DOA [23] 2.7009𝑒 − 12 3.6887𝑒 − 10 1.1661𝑒 − 10 7.2821𝑒 − 10 

WOA [59] 2.7009𝑒 − 12 4.1501𝑒 − 10 2.3078𝑒 − 11 7.5615𝑒 − 10 

GWO [11] 2.7009𝑒 − 12 4.5905𝑒 − 10 2.3078𝑒 − 11 1.2605𝑒 − 09 

GPSO [60] 2.3078𝑒 − 11 1.8633𝑒 − 07 2.3576𝑒 − 09 3.5199𝑒 − 07 

GPSO [13] 2.7009𝑒 − 12 5.1431𝑒 − 11 2.7009𝑒 − 12 8.8063𝑒 − 11 

ABC [19] N/A 3.64𝑒 − 10 2.70𝑒 − 12 5.52𝑒 − 10 

MBA [16] 2.06𝑒 − 08  2.47𝑒 − 09 2.70𝑒 − 12 3.94𝑒 − 09 

CSA [25] 3.18𝑒 − 08 2.06𝑒 − 09 2.70𝑒 − 12 5.06𝑒 − 09 

FDA [24] 3.2999𝑒 − 09 7. 5614𝑒 − 10 2.700857𝑒 − 12 8.0465𝑒 − 10 

APSO [65] 7.910450𝑒 − 12 6.791322𝑒 − 13 3.631801𝑒 − 18 1.923245𝑒 − 12 

GCPSO [66]  1.695473𝑒 − 12 1.608118𝑒 − 13 1.519431𝑒 − 21 4.430094𝑒 − 13 

CAPSO [26] 1.471239𝑒 − 01 7.657031𝑒 − 03 2.859642𝑒 − 06 2.913283𝑒 − 02 

ExPSO [29] 1.111886𝑒 − 02 9.114819𝑒 − 04 6.626667 𝑒 − 08 2.279462𝑒 − 03 

PSO-HDM 3.5723𝑒 − 17 5.0208𝑒 − 18 6.7296𝑒 − 23 8.4829𝑒 − 18 
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In Table 6, it can be seen that the best function values obtained based on 𝑥1, 𝑥2, 𝑥3, and 

𝑥4 values are achieved using the proposed PSO-HDM algorithm. Additionally, it is theoretically 

challenging to determine the impact of the random rotation on the performance of the PSO-

HDM algorithm. However, since the method's approach toward the global best is nonlinear, the 

random rotation operation has helped the algorithm in preventing it from becoming restricted 

at the local minima. When the position vector and the fitness value, 𝑓(𝑥), at the point it 

represents in Table 6 are analyzed, it can be observed that 𝑥1, 𝑥2, 𝑥3, and 𝑥4 are close to distinct 

locations that can be considered local minimizers. Therefore, it can be observed that the 

algorithms, except for PSO-HDM, are restricted at the local minima. The performance 

improvement provided by PSO-HDM can be clearly seen in Table 6. The solution vector of the 

PSO-HDM algorithm is 𝑥⃗𝑖(𝑡) = (12.7551,34.8757,56.024255.0332). When the solution 

vectors of the other algorithms are examined, it could be observed that the nearest result is 

obtained by the ABC algorithm in terms of Euclidean distance. Given that the solution vector 

of the ABC algorithm is 𝑥⃗𝑖(𝑡) = (19,16,44,49), it could be interpreted that the other algorithms 

are restricted at the local minima. Among all optimization algorithms in Table 6, ABC is 

observed to be the algorithm that reaches the point closest to the solution found by PSO-HDM. 

In addition, in Table 7, the worst, average, best, and standard deviation values, as well as the 

best results, are get with the PSO-HDM algorithm. 

For the purpose of the enhancing the exploitation capability of the algorithm and prevent 

it from getting stuck in local minima, the population diversity should be increased. For this 

reason, mutation operators are introduced in our paper. In addition to the methods used in our 

study, other mutation operators could also be used for this aim. In our study, Jitter and Gaussian 

mutations were selected for the mutation operation. 

As an example, we solve Gear Train Design Problem with PSO-HDM algorithm without 

mutation operator. The results are presented in Table 8. Table 8 demonstrates that the mutation 

operator has a positive efect on the performance of the PSO-HDM algorithm. Therefore, for the 

future work, the mutation operator could be utilize in other optimization algorithms for solving 

other engineering problem. 

 



İ. Gör / BEU Fen Bilimleri Dergisi 14 (2), 806-837, 2025 

 

 833 

Table 8. The comparison results of the gear train problem with 200 iteration and 1000 

iteration with PSO-HDM and PSO-HDM without mutation operator 

Algorithms Mutation Iteration Worst Average Best 
Standart 

deviation 

PSO-HDM Yes 200 2.3903
− 10 

2.6529𝑒
− 11 

3.9580𝑒
− 19 

5.8411𝑒
− 11 

PSO-HDM No 200 
2.1147𝑒
− 10 

1.2295𝑒
− 11 

1.9444𝑒
− 16 

4.2140𝑒
− 11 

PSO-HDM Yes 1000 
9.8659𝑒
− 19 

1.6866𝑒
− 19 

2.9006𝑒
− 22 

2.5088𝑒
− 19 

PSO-HDM No 1000 
3.4730𝑒
− 09 

1.4682𝑒
− 10 

1.1524𝑒
− 18 

6.9364𝑒
− 10 

 

4 CONCLUSION AND SUGGESTIONS 

Particle Swarm Optimization (PSO) is an optimization algorithm for the solution of 

global optimization problems. In this work, we explore a different method for PSO called PSO-

HDM, particle swarm optimization with Hypersphere Dynamics and Mutation. The position 

update is normally linear in original PSO, in this new PSO-HDM algorithm, it is succeeded by 

constructing two different hyperspheres and rotating them instead of using a linear velocity 

vector. Also, two different mutations, Jitter and Gaussian, is defined. This leads to advance 

compared to the classical PSO. For the purpose of the indicating the superiority of our novel 

proposed method, Gear Train Design problem are solved. Different categories of benchmark 

functions are also solved. In this study, the benchmark functions and the function to be 

minimized in the Gear Train Design problem are defined as the cost functions. For the future 

work, the proposed method could be applied to other well-known and important engineering 

design problems in the literature to further evaluate its effectiveness. Furthermore, the PSO-

HDM could be combined into the other optimization algorithms in the literature to explore its 

potential. 

Acknowledgements 

We would like to thank Assoc. Prof. Dr. Korhan Günel for his valuable contributions. 

Statement of Research and Publication Ethics 

The study is complied with research and publication ethics. 



İ. Gör / BEU Fen Bilimleri Dergisi 14 (2), 806-837, 2025 

 

 834 

Artificial Intelligence (AI) Contribution Statement 

In this research, all aspects of the study, including its design, data analysis, and scientific 

contributions, were carried out solely by the authors. Only, ChatGPT® was used to improve the 

grammar and clarity of a few selected sentences. 

Code Availability 

The codes used in this study can be accessed at: https://github.com/iclalgor/PSO-HDM. 

REFERENCES 

[1] M.-H. Lin, J.-F. Tsai, N.-Z. Hu, and S.-C. Chang, “Design optimization of a speed reducer using 

deterministic techniques,” Mathematical Problems in Engineering, vol. 2013, pp. 1–7, 2013. doi: 

10.1155/2013/419043. 

[2] L. Costa and P. Oliveira, “Evolutionary algorithms approach to the solution of mixed integer non-linear 

programming problems,” Computers and Chemical Engineering, vol. 25, no. 2–3, pp. 257–266, 2001. 

doi: 10.1016/S0098-1354(00)00653-0. 

[3] M. Braik, A. Sheta, and H. Al-Hiary, “A novel meta-heuristic search algorithm for solving optimization 

problems: capuchin search algorithm,” Neural Computing and Applications., vol. 33, no. 7, pp. 2515–

2547, 2021, doi: 10.1007/s00521-020-05145-6.  
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