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ABSTRACT

This work presents an advanced version of the Particle Swarm Optimization (PSO)
algorithm, a well-known optimization algorithm for the solution of the global optimization
problems, called PSO with Hypersphere Dynamics and Mutation (PSO-HDM)), to deal with the
optimization obstacles. The novel method employs a novel technique where the particles’
positions are updated using the rotation of the hyperspheres, providing for better exploration of
the search space. In addition, two new mutation techniques, Jitter and Gaussian, are used to keep
away from the local optima and enhance the solution variety. Dynamic modifications of the
classical PSO’s parameters, such as cognitive and social coefficients, also improve the
algorithm’s achievement. The PSO-HDM optimization algorithm is evaluated with utilizing
some benchmark functions and compared to classical PSO, getting better values in determining
the optimal solutions. Gear train design problems are selected as an engineering design problem
to show the effectiveness of the new suggested method. The obtained results present the
capability of the proposed method. This proposed optimization algorithm could be seen as an
alternative method to other optimization algorithms proposed in the literature.

Keywords:  Optimization, Metaheuristic algorithms, Particle swarm optimization,
Mutation, Hypersphere, Gear train design problem.

models, illustrating a significant area of various fields [1]. These engineering problems are also
considered difficult problems because of their nature as real-world challenges. They are

categorized as hard problems due to their combinatorial complexity. Non-Linear Programming

INTRODUCTION

Many engineering design problems are expressed with mathematical expressions and
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(NLP) is utilized to model these real-world problems, using both variables and constraints to
represent complex relationships precisely [2]. Metaheuristic algorithms are used to solve NLP
and are often chosen as an important alternative to the classical traditional methods because
they do not use derivative information. Traditional methods have difficulty finding solutions,
and even when they get successful solution, they typically only get local optimal solution, and
they also do not guarantee of reaching the global optimum solution [3]. The reason for the using
for metaheuristic algorithms is their capability to keep an effective balance between local search
(exploitation) and global search (exploration) [4]. However, it is not possible for all
metaheuristic algorithms to be achieved in all optimization problems. According to No Free
Lunch Theorem (NFL), no optimization algorithm is universally superior to other optimization
algorithms across all problems [5]. No free lunch theorem emphasizes that there is no "one-
size-fits-all" solution in optimization problem. It is important the selection of the optimal

algorithm should be based on the problem.

In the literature, there are several metaheuristic algorithms include Particle Swarm
Optimization (PSO) [6], Modified Grey Wolf Optimization Algorithm (MGWO) [7], Tunicate
Search Algorithm (TSA) [8], Salp Swarm Algorithm (SSA) [9], Multi-Verse Optimizer (MVO)
[10], Grey Wolf Optimizer (GWO) [11], Improved Gray Wolf Optimization (IGWO) [12],
Genetic-Particle Swarm Optimization (GPSO) [13], Ant Lion Optimizer (ALO) [14], Cuckoo
Search Algorithm (CS) [15], Mine Blast Algorithm (MBA) [16], Interior Search Algorithm
(ISA) [17], Genetic Algorithms (GA) [18], Artificial Bee Colony Algorithm (ABC) [19],
Genetic Adaptive Search (GA) [20], Augmented Lagrange Multiplier (ALM) [21], Moth-Flame
Optimization Algorithm (MFO) [22], Dingo Optimization Algorithm (DOA) [23], Flow
Direction Algorithm (FDA) [24] and Crow Search Algorithm (CSA) [25]. These metaheuristic
algorithm has own working principle. In this paper, we advanced PSO by using hypersphere
and mutation approaches the performance of the proposed algorithm is compared with that of

the given optimization algorithms for the solution of the gear train design problem.

Many metaheuristic optimization algorithms are not only being introduced as novel
algorithms, but variants of these algorithms are also being improved. For the classical PSO
algorithm, different approaches have been suggested in the literature to advance the algorithm.
Duan et al. [26] propose the Chaos Adaptive Particle Swarm Optimization (CAPSO),
employing the adaptive control over the inertia weight and the acceleration coefficients using
chaotic theory. By using a chaotic search factor, CAPSO is the capable of the enhancing
adaptability, supporting effective global and local search for the aim of the prevent the local
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optima. Zhao and Wang [27] introduces the Elite-Ordinary Synergistic PSO (EOPSO) to solve
the issue of the population diversity loss. EOPSO uses the particles as elite and ordinary groups,
where the elite particles are utilized for the global exploration, while the other particles focus
on local exploitation. Yang et al. [28] propose the Differential Elite Learning PSO (DELPSO),
utilizing elite and non-elite group division to develop the diversity and adaptability. Non-elite
particles learn from differential elite exemplars to improve search diversity, while dynamic
parameter adjustments optimize the capability the exploration and the exploitation. Kassoil et
al. [29] presents Exponential Particle Swarm Optimization (ExPSO), where the population
includes three subgroups based on exponential-based search strategy that capables considerable
jumps in the search space. The method ExPSO integrates the dynamic control over the particle
velocity and a cognitive parameter that modifies over time, favoring large exploration leaps
initially and focused improvements later. Solano-Rojas et al. [30] presents Micro Evolutionary
Particle Swarm Optimization (MEPSO), which advances PSO by using the evolutionary
mutations and crossovers instead of the classical velocity updates. In the MEPSO algorithm,
these mutations and crossovers values give the probabilistic nature of the algorithm. Wang et
al. [31] proposes Adam-LGQPSO, a method of the Quantum-Inspired Particle Swarm
Optimization (QPSO) variant designed to reduce the premature convergence. This new method
incorporates a Length of Potential Well (LPW) guiding strategy, a Gaussian random vector to
improve information sharing, a perturbation structure to stop stagnation, and a diversity
function to enhance adaptability. Zhu et al. [32] propose the Binary Restructuring Particle
Swarm Optimization (BRPSO) algorithm, an adaptation of the classical Restructuring Particle
Swarm Optimization (RPSO) for discrete optimization. Unlike other binary metaheuristics in
the literature, BRPSO removes the use of a transfer function and it uses a random number for
the particle updates. Moreover, it uses a novel perturbation term to advance the effectiveness of
position updates. Bhargavi et al. [33] present a new PSO algorithm called Enhanced Particle
Swarm Optimization (EPSO). In contrast to random deployments, the researches use EPSO to
strategically position nodes, removing clustering and reducing coverage gaps. The researches
also create individual swarms for each dimension, and the algorithm iteratively updates node
positions, significantly reducing computational complexity compared to classical N-
dimensional swarm methods in EPSO. Moreover, EPSO uses adaptive inertia weights and
acceleration factors to fine-tune node placement, ensuring comprehensive monitoring of each
target area. Gong et al. [34] propose a Quantum Particle Swarm Optimization (QPSO)
algorithm that uses a diversity approach mechanism to improve the search performance in high-

dimensional optimization problems. QPSO chooses migrating particles based on fitness and
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population positions, replacing those that deviate from a central range, which in turn advances
convergence and stability compared to classical optimization algorithms. Fusic and Sitharthan
[35] propose Advanced Self-Adaptive Learning Particle Swarm Optimization (ISALPSO),
modifing its parameters, like the inertia weight, the acceleration coefficients, the learning
coefficients, the mutation factor, and the swarm size, in response to the effectiveness of the
generated path. The ISALPSO algorithm has a self-adaptation strategy, differentiating it from
the traditional PSO. Yang et al. [36] present a Leader-Adaptive Particle Swarm Optimization
Algorithm with a Dimensionality Reduction Strategy (LAPSO-DR) that advances classical
PSO by using a hybrid initialization strategy for diverse populations, a leader-adaptive strategy
for advanced exploitation, and an inter-particle learning strategy, which provide different
dimensions to learn from various particles. Hu et al. [37] propose a multiple Adaptive Co-
Evolved Particle Swarm Optimization (ACEPSO) algorithm, incorporating a multiple adaptive
co-evolved strategy, improving exploration via population grouping, advancing diversity with
co-evolution, and using an adaptive mutation mechanism to prevent local optima. Liu et al. [38]
introduce an Adaptive Particle Swarm Optimization Method that uses an Information
Interaction (APSOIIM). APSOIIM advances the optimization capabilities of the traditional
PSO by utilizing a chaotic sequence to greater distribute particles during initialization process
and promoting diversity by interacting with the best solutions from neighboring particles during
the search. APSOIIM algorithm also uses both a chaotic sequence strategy and an interaction
information strategy. Ranganna et al. [39] propose a novel optimization algorithm, called
Fitness Sharing Chaotic Particle Swarm Optimization (FSCPSO). FSCPSO uses the
combination of chaos theory and fitness sharing mechanisms. Ambuj et al. [40] propose a new
reinforcement learning particle swarm optimization (RLPSO) algorithm presents an innovative
method that integrates the concepts of Particle Swarm Optimization (PSO) with reinforcement
learning techniques. Tian et al. [41] propose a diversity-guided PSO with a multi-level learning
strategy, combining a high-layer learning mechanism for global exploration and a low-layer
scheme for local fine-tuning. Long et al. [42] improve a modified particle swarm optimization
algorithm (RNP-PSO), utilizing various approaches such as particle encoding, initial population
construction, and fitness calculation. Tang and Meng [43] presents an advanced particle swarm
optimization algorithm (VASPSO), which includes the velocity pausing, a terminal replacement
mechanism, time-varying inertia coefficients, and symmetric cooperative swarm concepts.
Wang et al. [44] propose an improved Particle Swarm Optimization-Cubature Kalman Particle
Filter (PSO-CPF) by using a particle filter, a forgetting factor and a new fitness function. Tantu

and Biramo propose a novel variant of the classical PSO algorithm, called Adaptive PSO
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(APSO), integrating the adaptive strategies that automatically tune algorithm parameters [65].
Cui and Seng proposed a new algorithm, Guaranteed PSO (GPSO), ensures the stable and the

efficient convergence by dynamically adjusting particle velocities with a novel approach [66].

Research on developing the traditional PSO algorithm is studied rapidly in recent years
and is not limited to the works mentioned in the previous paragraph. Numerous algorithms
related to classical PSO can be found in the literature. In addition to the improvements to the
PSO algorithm, the literature includes different engineering problems that have been solved
using the PSO and its variants. The PSO algorithm is the capable of across various application
areas, including engineering design optimization, such as the optimal gearbox layout design
[45] and planetary gearbox optimization [46]. In addition to, various studies in the literature
focus on PSO in the different application areas. Recent research shows that PSO is a method
not only for improving its optimization capabilities but also for solving a wide range of
engineering problems. This underscores the importance of our study as well for the solution of
the engineering problems. In this study, a solution has been explored for the gear train design
problem [47]. We get better results for the solution of the gear train design problem.
Furthermore, as a future work, a new study could be conducted on solving other engineering
problem in the literature by using the proposed new PSO algorithm called PSO-HDM from our

research.

This work focuses on the high-dimensional optimization problems. The PSO-HDM
algorithm is a novel technique that enables for getting more effective exploration and solution
diversity in high-dimensional search spaces. Jones et al. have used hyperbox methods in their
work, as one of the suggested high dimensional search approaches in the literature, for solving

optimization problems [61].

The proposed PSO-HDM algorithm also includes the dynamic adjustment of the
coefficients. The concept of dynamically tuning coefficients has already been studied in the
literature for different optimization problems. Duran and Caginalp have introduced a hybrid
forecasting optimization algorithm for parameter optimization that dynamically adjusts
coefficients using two sliding windows to optimize parameter selection [62]. Effective
parameter selection has been shown to significantly influence optimization performance in
mathematical models, as demonstrated by Tuncel and Duran [63]. Inspired by such studies, our
PSO-HDM algorithm utilizes the dynamic parameter selection to the improvement of the

exploration and the convergence behavior.
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Another additional strategy used in the PSO-HDM algorithm is the usage of the
hypersphere- based technique. In this manner, the optimization process in the Hyper-Spherical
Search (HSS) algorithm proposed by Karami et al. focuses on the exploring the inner space
defined between hypersphere centers and particles [64]. In our study, the novelty of the PSO-
HDM algorithm is found in its implementation of the hyperspheres with dynamic rotation,
which allows a more exploration of the search space. This dynamic mechanism enhances the
algorithm's ability to solve optimization problems. Briefly, unlike the HSS algorithm which
explores the search within a defined subregion, PSO-HDM does not define local search regions.
PSO-HDM ensures the convergence by rotating particles on a hypersphere without the need for

the specifying any local search areas.

The structure of this study is as follows: Section 2 mentions the suggested novel
optimization algorithm, called PSO-HDM, including a detailed explanation of how it works.
Section 3 introduce the experimental studies conducted in this work. The first subsection of
Section 3, the different types of benchmark functions are solved and the next subsection of
Section 3 introduces the gear train design problem and the solution of some optimization
algorithms compared to the PSO-HDM. Finally, the conclusion of this study is summarized in

the last section, also with a discussion of future work.

2 MATERIAL AND METHOD

Particle Swarm Optimization (PSO) is an optimization algorithm, inspired by the
cooperative navigating of the birds and the social manners of the fishes [6]. This optimization
algorithm is known as a swarm intelligence metaheuristic, where the particles, collaborate and
learn from another particle’s experiences to find optimal solutions in the search spaces. To
success this, it 1s important to have information on both the particles' velocity and position. For
this aim, the velocity vector given by Equation 1 and the position vector given by Equation 2

are used.

B+ D) = wr Bt + 1)+ €4 573 (Brese, O = 70 + €+ 12 (Goese® —H@®) (1)

where U;(t + 1) denotes the velocity vector of particle i, w is the inertia weight, ¢; and c, are
the cognitive and social coefficients, ; and r, are random numbers (usually in the range [0,1]),

ﬁbesti is the personal best position of particle i, Gpes is the global best position among all

particles, and finally, X;(t) is the current position of particle i.
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X (t+1)=x0@)+v,(t+1) (2)

where X;(t + 1) is the new position of particle i, ¥;(t) is the current position of particle i and

7;(t + 1) is the updated velocity vector of particle i.

As given Equation 2, instead of a linear position change in the PSO algorithm, the
proposed new algorithm, called PSO-HDM, changes the position by constructing two different
hyperspheres. Rotation is then occurred on one of the hyperspheres constructed. In addition,
two different mutations, Jitter and Gaussian, have been applied. This approach allows
exploration of different points in the search space. In the next section, we explain the proposed

method in detail.

2.1 Particle Swarm Optimization with Hypersphere Dynamics and

Mutation (PSO-HDM)

In this paper, we create a new method inspired PSO algorithm, called Particle Swarm
Optimization with Hypersphere Dynamics and Mutation (PSO-HDM). At the beginning, when
the population is initialized, each particle's ﬁbesti values are the same as their positions, in other
words, the X;(t) vector and ﬁbesti have identical values. Hence, the particles update their
positions initially in the same way as in the traditional PSO algorithm. Afterwards, the
hypersphere construction procedure is carried out. We explain the movement of the particle
%;(t) in a 2D space to explain the working rule of the PSO-HDM algorithm. As seen in Figure
1, one of the hyperspheres has its center at the .o position, and its radius is the distance
between the g,.s; and the current position vector X;(t). The other hypersphere is centered at
the Ppese; position, and its radius is the distance between the Ppese, and X;(t). When the
hyperspheres are created, several different scenarios can develop. These scenarios will be
explained in detail. The case shown in Figure 1 illustrates a situation where the hyperspheres

intersect concentrically at the point X; (t).

812



I Gér /BEU Fen Bilimleri Dergisi 14 (2), 806-837, 2025

Y

Figure 1. The movement of the position vector X;(t) in the case of the overlap of the two
inner circles.

In Figure 1, if X;(t) performs a rotational motion on the green circle at a specific angle,
as can be seen, X;(t) will approach both the ﬁbesti value and the g, value. Initially, the vector
X;(t) is given in cartesian coordinates as (X1, Xi, X3, -, Xin), then it is transformed into
spherical coordinates by using the radial distance p and the angular coordinates
(04,0, 03, ..., 0y_q), after which a rotation is applied by selecting randomized angle, such as
o4, and finally, the updated angular coordinates are converted back to cartesian coordinates,

giving the new components (X;q1, Xi2, X3, -, Xin)-

In order to provide a detailed explanation of the process outlined above, the position
vector X;(t) is defined in cartesian coordinates as X;(t) = (Xjq1, Xi2, Xi3, -, Xin) € R™. In order
to determine the rotation angle, the system has been converted to angular coordinates as given

in Equation 3.

Xi1 = p cos(oy)
Xi» = psin a4 cos(ay)
L : : 3)
Xin—1 = psinay sina, ...sin(a, _,) cos(ot,_1)
and

Xin = psinoy sina, ...sin(o, ) sin(a,_,)
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Hence, in angular coordinates X;(t) can be expressed as X;(t) = (p, 0Ly, 0z, oor, Opp—q) €
R™. The axis of the rotation is selected randomly. In each iteration, a different axis is selected.
The rotation occurs around the randomly chosen oy axis. Thus, for k € {1,2, ...,n}, X;(t) =
(p, 84,0y, ..., Og_q, 0 + A, 041, ..., 0y,) 1s Obtained where Ao € (0, g] Then, the position

vector X;(t) = (Ri1, Xiz) Xiz, - » Xin) € R™ is calculated in cartesian coordinates. After applying

the inverse transformations, the angular coordinates of X;(t) are given in Equation 4.

o, = cot™! i
F=ir1 X}
a, = cot™! tiz
;‘1=i+1x'2
“4)
Op_p = cot™! Xin—2
;‘1=i+1 x?
and
e ()
n

Then, the cartesian coordinates of the position vector X;(t) is recomputed using
Equation 3. During the rotation, the selection of Aa is not crucial. Since the method is heuristic
and a different a is selected in each iteration, the key point is that after the rotation, the current
position vector converges to both the global best (gbest) and personal best (pbest) values. The
order of the selection of a is also not crucial. While the choice of a may affect the convergence
speed, it may not be possible to theoretically state this. This issue could be considered as a topic

for further research.

To illustrate this randomization, we could present the situations where the yz, xy, and
xz planes are randomly selected in three-dimensional space. If the situation shown in Figure 2
is randomly determined to be parallel to the yz-axis, we could say that when the X;(t) position
vector is rotated in both directions, it approaches both ﬁbesti and gp ;. Similarly, when the xy
is randomly selected, as seen in Figure 3. Finally, xz is randomly selected, it can be observed

that after the rotation of the X;(t) position vector on the hypersphere, it goes both the ﬁbesti and

.
Ipest Values.
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Phest; M

Figure 2. Rotation operation occurring when the yz-axis is randomly determined.

In the higher dimension, a similar situation occurs. After the random selection of the ¢,
if the vector X;(t) is rotated by Ao radians around the ¢ -axis, it is moved to a new point such

as X;(t + 1), where t is the iteration number in the angular coordinates.

_61)(25'. Gbest
. .

T

Pree \ /’e“i - \
; y :
X % y

Figure 3. Rotation operation occurring when the xy-axis is randomly determined.

One of the another situation is confirming whether the X;(t), Ppest;, and gpese Values
are linear. If they are linear, the situations of being respectively internally and externally tangent
in a d-dimensional space, as shown in Figure 4 and Figure 5, need to be evaluated. For this aim,
the distance between gp,es. and ppes:,, as well as the distance between g, and x;(t), need to
be compared. When the condition given by Equation 5 is occurred, it is seen that the circles are
internally tangent as shown in Figure 3. If the points are linear and internally tangent, the X; (t)

point is the point of intersection, and the rotation angle and direction is not important. Even
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with a very small rotation of the ¥;(t) position vector, it will approach both the p.s,, and

Gpest- This situation suggests that the particle x;(t) is being moved to both the personal best

position and global best positions during its rotation.

”g)best» ﬁbesti” < ||§best: )_C)l(t)” (5)
Y

Figure 4. The movement of the position vector X;(t) in the case of the X;(t), pbest;, and
gbest values are linear the circles are internally tangent.

Alternatively, in the case where the internally condition given by Equation 5 is not
occurred, as shown in Figure 4, the circles are externally tangent. In this case, the situation

described by Equation 6 occurs.

||§best: ﬁbesti” > ||gbest' fl(t)” (6)
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Y

Figure 5. The movement of the position vector X;(t) in the case of the X;(t), Ppest,, and

G best values are linear the circles are externally tangent. In this case, classical PSO is used
without the rotation operation.

As seen in Figure 5, when the X;(t) position vector rotates in any direction on the circle,
it goes away from the G, To tackle this, the traditional PSO algorithm has been used in the

case where the circles are externally tangent as seen in Figure 5.

A modification added to the PSO in the PSO-HDM algorithm is the dynamic of
coefficients. For this aim, the coefficients ¢; and c, are determined as iteration-dependent
variables in the algorithm. In the literature, the coefficients ¢; = 2 and ¢, = 2 are commonly
selected and are known to provide valid results [37]. However, some other values have also
been used. For instance, some researchers use the lower coefficients, such as c;=1.05 and
c,=1.05, or slightly higher values, like ¢;=2.05 and ¢,=2.05, to advance the performance of the
algorithm [38]. In this work, the values of ¢; and c, are dynamically adjusted. The c; value is
initially determined as 1.5 and reduces to 1.2, while the c, value starts at 2.0 and decreases to
1.5. The values of c¢; and c, are selected based on the current iteration t and the maximum
iteration T, using Equations 7 and 8, respectively. These equations help adjust the coefficients

gradually in the optimization.
t
c1 =12+ 0.3? (7)

t
¢, =15+052 (8)
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In the mutation stage, the noise is added to decide the positions for the algorithm at
distinct points in the search space [48-51]. The mutation operators, also known as noise,

presented as by Jitter, given by Equation 9, and Gaussian, given by Equation 10, respectively.

p= (- 0.5)u, ©)

where x, = 0.05 + 0.45 (1 — %) is a Jitter factor and 7 is in in the range [0,1]¢ such

that d is the dimension of the problem.

=017 (10)
where g is in in the range [0,1]% such that d is the dimension of the problem.

When the Jitter mutation is implemented, the noise  given by Equation 8 is inserted to
the position vector. Similarly, when Gaussian noise is implemented, the noise value A given by
Equation 9 is added to the position vector. The equations for Jitter and Gaussian noise are given
with Equation 11 and Equation 12, respectively.

X=%O+u (11)
X=2%()+2 (12)

In Equation 11 and in Equation 12, X represents the new position of the X;(t) after

inserting noise.

The mutation equations given by Equation 9 and Equation 10 are implemented the
position vector to obtain a new position. If the solution at this new possible position is greater,
it is selected as the new solution. Thus, the solutions are explored at different points in the
search space. The probability of mutation is set to 50%. For instance, if the number of iterations
is 1000, the mutation is applied in around 500 iterations. With a 50% probability, the mutation
process generates 1000 new candidate solutions for each particle. The best solution within these
candidate solutions, if it advances possible upon the current one, is selected and updated as the

new solution.

The pseudocode of the PSO-HDM (Particle Swarm Optimization with Hypersphere
Dynamics and Mutation) algorithm is provided in Algorithm 1.
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Algorithm 1. The pseudocode of the PSO-HDM.

1. Initialize the arbitrary parameters of PSO as the population
size, the lower and the upper of the decision variables, the

maximum iteration, the population szie, the particel positions.
2. Update the velocity of the particle using Eqution 1.
3. Update the position of the particle using Eqution 2.
4. Evaluate the fitness values of particle X;(t)

5. For each particle: Update the personal best (pp.s;) and the global
best (gbest) .

1. Repeat the stopping criteria has been reached

2. Update the acceleration coefficients (c;, c,) dynamically.
3. For each particle:

4. If the position unchanged: update v; apply limits.

5. Else: determine the center and radius of the hyperspheres
and construct two hyperspheres which overlapped at the

point Xx;(t).
6. Determine the angular of the rotation as «

7. If the positions of the particle X;(t), the personal best
(Ppest;) and the global best (gpes:) are collinear: update the

velocity of the particle using Equation 1.

8. Else: adjust position with angular derivatives, apply

limits.
9. Evaluate f(X;), update pbest;, gbest.
10. Apply Gaussian or Jitter mutation if enabled.

11. Update the value of 1inertia coefficients via a

predetermined damping ratio
12. Until the stopping criteria has been reached.

6. Return the position of the global (§pes:) and the fitness value
at the global best position.
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In the following section, the effectiveness of the novel proposed algorithm has been
executed by comparing its solutions for two distinct types of benchmark functions, including
unimodal and multimodal functions, with those of the classical PSO. In the following
subsection, the solutions for a gear train design problem, a well known engineering design
problem in the literature, is analyzed and compared some other optimization algorithms and the

proposed PSO-HDM.

3 EXPERIMENTAL RESULTS AND COMPARISONS

As shown in the previous works in the literature, in order to get the performance of the
proposed novel algorithm, both benchmark functions and engineering design problem solutions
are generally used. The arbitrary parameter values is selected 100 for the number of population
and also 100 maximum the number of iterations for the solution of all benchmark functions.

The codes are executed 25 times.

3.1 Benchmark Functions

In this section, benchmark function solutions is initially used to compare the
performance of the algorithms. Solutions have been obtained for two categories of classic
benchmark functions, includes unimodal and multimodal functions as seen in Table 1 and Table

2 [52].

Table 1. Unimodal benchmark functions.

Function Dim Limits f min
n
fi(x) = Z x? 30 [-100,100] 0
i=1
n n
fo0) = ) lul + | [l 30 [-10,10] 0
i=1 i=1
n i 2
fa(x) = Z Z X 30 [-100,100] 0
i=1 \j-1
fa(x) = max{|x;,1 <i<n} 30 [-100,100] 0
n—1
f5) = D 1100k = x8)% + ()?] 30 [30,30] 0
i=1
n
fe(x) = Z([xi +0.5])? 30 [-100,100] 0
i=1
n
fr(x) = 2 ix} + random[0,1) 30 [-1,28,1.28] 0

=1
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Table 2. Multimodal benchmark functions

Function
n

fe(x) = EW — 10 cos(2mx;) + 10] 30 [-5.12, 5.12]
RO

Dim Limits

f min
N

0

30 [-32,32] 0

30 [-600,600] 0

fi1(x) = %{10 sin(my;)

n—1

+ Z@ D0 30 [-50,50] 0
i=1
+ 10 sin 2(my;41)

+(yn_1)2]
yl—1+
k(xl_a)m X >a
0 —a<x;<a
xi<—a

fiz(x) =0.1 {sinz(anl)

+Z(x —1)?[

+ 51n2 (Bmx; + 1)]
+ (xa — D21 %

+ sin, (2nxn)]]

u(xl,a k,m) =

k(—xi - a)m

[-50,50]

n
+ Z u(x;,5,100,4)
=1
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The benchmark functions is solved using both PSO and PSO-HDM. The results are
shown in Table 3, including the best scores, worst scores, mean scores, and their standard
deviations obtained over 20 runs. Instead of relying on results obtained from a single run,
evaluations were performed based on the outcomes of 20 runs. This approach ensures the
reliability of the method can be assessed. As seen in Table 3, the PSO-HDM algorithm gets
better solutions compared to the traditional PSO in solving benchmark functions. It has been
observed that the PSO-HDM algorithm shows better results in terms of the best cost, the worst

cost, and the average best cost values.

Table 3. The results of benchmark function solutions.

Function PSO PSO-HDM
Best cost 1.9260 1.0680e — 02
F1 Worst cost 1.1273e + 01 7.5747e — 02
Mean of best costs 5.8350 3.5353e — 02
Standart deviation 2.2990 1.9729e — 02
Best cost 4.5419e — 01 5.4673e — 02
F2 Worst cost 1.261758 1.1622e — 01
Mean of best costs 8.0060e — 01 8.2368e — 02
Standart deviation 2.2200e — 01 2.1008e — 02
Best cost 5.3871e + 02 5.7507e + 01
F3 Worst cost 1.9077e + 03 1.3852e + 03
Mean of best costs 1.0171e + 03 3.8099e+02
Standart deviation 3.6656e + 02 2.8227e+02
Best cost 3.5317 1.5223
F4 Worst cost 6.3676 5.6225
Mean of best costs 49234 3.3375
Standart deviation 8.4048e — 01 1.1845
Best cost 7.0853e + 01 2.4930e + 01
F5 Worst cost 8.0734e + 02 1.8769¢ + 02
Mean of best costs 2.4703e + 02 6.2656e + 01
Standart deviation 1.7541e + 02 4.7316e + 01
Best cost 1.9806 1.4106e — 02
F6 Worst cost 1.5122e¢ + 01 1.0168e — 01
Mean of best costs 5.1202 4.4010e — 02
Standart deviation 2.7843 2.4874e — 02
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Table 3. (continued). The results of benchmark function solutions.

Function PSO PSO-HDM
Best cost 1.2079e — 02 3.7678e — 03
F Worst cost 6.2254e — 02 1.9575e — 02
Mean of best costs 2.8147e — 02 1.2222e — 02
Standart deviation 1.2069 3.6393e — 03
Best cost 2.8477e + 01 2.5785e + 01
F8 Worst cost 7.5196¢ + 01 6.0864e + 01
Mean of best costs 5.3386e + 01 3.9440e + 01
Standart deviation 1.3798e + 01 1.0622e + 01
Best cost 9.4141e — 01 6.2463e — 02
F9 Worst cost 2.3180 2.3288
Mean of best costs 1.5880 1.4219
Standart deviation 4.0456e — 01 6.9459%¢ — 01
Best cost 8.0581e — 01 1.5818e — 01
F10 Worst cost 1.0859 5.575824e — 01
Mean of best costs 1.0354 2.8687¢ — 01
Standart deviation 5.8554e — 02 1.1308e — 01
Best cost 3.9844¢e — 03 1.4814e — 04
F11 Worst cost 45164e — 01 1.3024
Mean of best costs 1.5542e — 01 1.3819¢ — 01
Standart deviation 1.4207e — 01 2.9692e — 01
Best cost 3.1564e — 01 2.5100e — 03
F12 Worst cost 3.1483 2.535093e — 02
Mean of best costs 9.0645e — 01 9.8414e — 03
Standart deviation 6.3325e — 01 6.4765e — 03
Best cost 3.0917e — 04 3.0768¢e — 04
F13 Worst cost 1.4002e — 03 1.2231e — 03
Mean of best costs 5.2679e — 04 3.9998e — 04
3.0932¢ — 04 2.8152e — 04

Standart deviation

Additionally, Figure 6 shows the benchmark functions with their best cost values and

showing a comparison of the solutions PSO and PSO-HDM.
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Figure 6. The comparison of the best cost values of benchmark function solutions.
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Figure 6. (continued). The comparison of the best cost values of benchmark function
solutions.

825



1. Gor / BEU Fen Bilimleri Dergisi 14 (2), 806-837, 2025

Fi1

120

F11(,y)

Best Cost

Best Cost of Algorithms
Fa

a0 50 60 70 80 20 100

0 £
Trial
Best Cost of Algorithms
F10
350 T T T
— P80
———PSO-HDM
300
250 [
g 200 [
@ 450 |-
100 -
50
a . . n
a 10 20 30 40 50 &0 70 80 a0 100
Trial
Best Cost of Algorithms
x F11
12 (22 T T I
——P50
———— PSO-HOM
10
8
S
m
At
A
o L . . . . . . . . .
0 10 20 20 40 50 80 0 80 20 100
Trial

Figure 6. (continued). The comparison of the best cost values of benchmark function
solutions.

826



I Gér /BEU Fen Bilimleri Dergisi 14 (2), 806-837, 2025

Best Cost of Algorithms
108 F12
T T T T T

Fi2

35 T T
— PSO
= PSO-HDM

Best Cost
a
m in w

in

™
=]
th

L L . L L L L .
Q 10 20 30 40 50 &0 70 80 20 100
Trial
Best Cost of Algorithms
F13

)
@ ——— PSO-HOM

004

F13(x, y)
N
8
»
&
Bast Cost
e
=
@

100
002

F13
05l

100 ' ' '
100
50 100 001 |
0 50 %
0
50 i .

Y -100 -100 x 0 10 20 30 40 50 &0 70 80 a0 100
Trial

Figure 6. (continued). The comparison of the best cost values of benchmark function
solutions.

Furthermore, Table 4 shows the execution time of the optimization algorithm. In Table
4, T, shows the base execution time, T; is the mean execution time across all trials and T, =

(Ti—min() quantifies the normalized time variation. In Table 4, it is showed that the PSO-HDM

0

algorithm runs slightly slower due to the inclusion of mutation stage and hypersphere
generation steps. On the other hand, the results show an improvement over the PSO algorithm.
Additionally, while the PSO-HDM algorithm might be slower, if it is success for the notable
improvements in solving significant engineering problems, as mentioned in the introduction
section, the additional execution time could be considered negligible. This makes the algorithm

particularly valuable for tackling complex challenges in engineering optimization.
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Table 4. The execution time of the methods for solving benchmark functions.

Function Values PSO PSO-HDM
T, 3.5087e — 02 3.5087e — 02

F1 T, 5.4613e — 01 2.2520e + 01
T, 2.0067 2.9340e + 01

T, 3.2064e — 02 3.2064e — 02

F2 T, 5.3660e — 01 2.5033e + 01
T, 1.5110 5.0999¢ + 01

T, 1.5580e — 02 1.5580e — 02

F3 T, 6.8455e — 01 5.7121e + 01
T, 9.1162 1.9326e + 02

T, 1.5326e — 02 1.5326e — 02

F4 T, 1.0827 2.7865e + 01
T, 4.7140e + 01 1.3748e + 02

T, 1.333480e — 02 1.3334e — 02

F5 T, 5.5662e — 01 2.6942e + 01
T, 6.8747 1.6054e + 02

T, 1.5346e — 02 1.5346e — 02

F6 T, 4.2772e — 01 2.3320e + 01
T, 4.9084 9.8602e + 01

T, 1.7332e — 02 1.7332e — 02

F7 T, 5.6147e — 01 5.1075e + 01
T, 7.0861 1.0932e + 02

T, 4.7453e — 02 4.7453e — 02

F8 T, 1.5013 4.0612e + 01
T, 1.8680e + 01 1.2081e + 02

T, 2.5330e — 02 2.5330e — 02

F9 T, 8.2700e — 01 2.7007e + 01
T, 1.2866e + 01 4.0047e + 01

T, 1.3467e — 02 1.3467e — 02

F10 T, 9.7158e — 01 2.8222e + 01
T, 3.7505e + 01 9.7938e + 01

T, 3.5087e — 02 3.5087e — 02

T, 1.6090e — 02 1.6090e — 02

F11 T, 9.9783e — 01 5.3426e + 01
T, 1.7967e + 01 3.2028e + 02

T, 3.1564e — 01 2.5100e — 03

F12 T, 3.1483 2.5350e — 02
T, 4.5949 1.0017e + 02

T, 1.5223e — 02 1.5223e — 02

F13 T, 4.0601e — 01 1.1586e + 01
T, 3.1791 3.7192e + 01
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In the following section, the gear train design problem will be analyzed in detail. The
next section also contains the solution of this problem with and the original PSO and the proped
new method PSO-HDM.

3.2  Gear Train Design Problem

The gear train optimization design problem, a well-known problem in mechanical
engineering introduced by Sandgren [47] incorporates designing a gear train to decrease the
input angular speed to a lower output speed, with the objective of minimizing the gear ratio,
defined as the angular velocity ratio of the output shaft to the input shaft. The variables of the
problem for this task involve the number of teeth on the gears A, B, C, and D, as demonstrated
in Figure 10. The angular velocity ratio is shown seen in Equation 13, n is also known as two-

gear transfer ratio.

Wyt
n_Wi_tO (13)

In Equation 12, wy denotes the angular velocity of the output gear, while w; is the
angular velocity of the input gear. In the same way, t, and t; correspond to the number of teeth
on the output and input gears. Consequently, the transmission ratio is inversely related to the
number of teeth on the gears. In Figure 7, the problem analyzed in this study, including two
pairs of gears (a total of four gears) and seeks to achieve a transmission ratio as close as possible
to 1/6.931. As a results, for this specific problem, the transmission Equation 13 can be
reformulated as following Equation 14.

T 6931 tutp  x3x,

n (14)

Sandgren [47] present that no gear in the system should have fewer than 12 teeth or

more than 60 teeth. As a consequence, the gear train design problem includes choosing a set of

. . . 1
gears (x4, X5, X3 and x,) such that the double reduction gear ratio is as close as possible to 931

while satisfying the feasibility constraints. In particular, each design variable x; must be an
integer within the range [12, 60]. The gear train design problem can be expressed as following

Equation 15:

. ()_[ 1 xlxzr
min f(X) = 2931 ™ oor,

12<x; <60 i =1,234

(15)
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The arbitrary parameters utilized in the experimental studies are presented in Table 5. This
work uses two different iterations, such as 200 and 1000. Because the worst, the average,
the best, and the standard deviation values obtained with 200 iterations are provided by
Karami et al [24]. Additionally, the results of the f(x) values obtained using x, x,, x5, and
x, can be compared with those in Gopi [7], Duan et al. [13], and Mirjalili [14]. In these
researches, the maximum number of iterations is set to 1000. Consequently, the problem was
also solved with 1000 iterations to enable a fair comparison. The comparisons are
demonstrated accordingly in Table 6 and Table 7, considering different maximum numbers
of iterations. On the other hand, the other arbitrary parameters remain the same for both

iterations.

Table 5. The arbitrary parameters values for the gear train design problem.

Parameters Values
Number of Population 100
Number of Decision Variables 4
Lower Bound of Variables 12
Upper Bound of Variables 60
Maximum Number of Iterations 200,1000

Figure 7. The Gear train design problem [14].

Figure 7 depicts, the number of teeth on gear A is represented by x;, the number of teeth
on gear B is represented by x,, the number of teeth on gear C is represented by x3, and the

number of teeth on gear D is represented by x,.
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Table 6. The comparison results of the gear train problem with 1000 iteration.

Algorithms x4 X2 X3 X4 (X
MGWO [7] 43.23451442 19.48161573 16.80898646 52.49664159 9.444e — 15
TSA [8] 41.38908813 14.89380456 22.81969856 56.91350992 1.153e—11
SSA [9] 50.80890822 14.00937474 29.37997485 42.34395302 0.0022119
MVO [10] 30.42669549 15.51261593 12 42.40446052 1.896e — 12
GWO [11] 60 30.57637562 15.04813329 53.1507917 1.386e — 12
IGWO [12] 59.38921756 13.10291292 12.58277378 19.24141193 2.135e —12
ALO [14] 49 19 16 43 2.7009e — 12
CS[15] 43 16 19 49 2.7009e — 12
MBA [16] 43 16 19 49 2.7009e — 12
ISA[17] N/A N/A N/A N/A 2.7009e — 12
GA [18] N/A N/A N/A N/A 2.33e—17
ABC [19] 19 16 44 49 2.78e — 11
GA [20] 33 14 17 50 1.362e — 09
ALM [21] 33 15 13 41 2.1469e — 08
APSO [65] 12 43.28379750 60 60 6.7251e — 20
GCPSO [66] 15.37424096  24.26328913  59.24068481 43.64345879 6.4739e — 17
CAPSO [26] 28.49091524 16.01777144  53.13400652  50.34126059 6.9342¢ — 04
ExPSO [29] 16.75900322 14.97024322  43.58594282  41.73902679 4.0598e — 05
PSO-HDM  12.75505496 34.87566866 56.02420707 55.03323691 1.6366e — 21

Table 7. The comparison results of the gear train problem with 200 iteration.

Algorithms Worst Average Best Standart deviation
GPSO [53] 2.7009e — 12 5.5781e — 10 2.7009e — 12 8.7412e — 10
GPSO [54] 2.7009e — 12 9.0259¢ — 10 1.1661e — 10 1.9240e — 09
GPSO [55] 2.7009e — 12 1.9522e — 10 8.8876e — 10 4.1787e — 10
GPSO-PG [56] 2.7009e — 12 9.3414e — 09 3.3667e — 08 1.6663e — 08
OPSO [57] 2.3078e — 11 9.5187¢ — 07 2.7265e — 08 1.5744e — 06
GPSO [58] 2.7009e — 12 5.4215e — 10 2.7009e — 12 9.1924¢e — 10
DOA [23] 2.7009e — 12 3.6887e — 10 1.1661e — 10 7.2821e — 10
WOA [59] 2.7009e — 12 4.1501e — 10 2.3078e — 11 7.5615e — 10
GWO [11] 2.7009e — 12 4.5905e¢ — 10 2.3078e — 11 1.2605e — 09
GPSO [60] 2.3078e — 11 1.8633e — 07 2.3576e — 09 3.5199e — 07
GPSO [13] 2.7009e — 12 5.1431e — 11 2.7009e — 12 8.8063e — 11
ABC [19] N/A 3.64¢e — 10 2.70e — 12 5.52e — 10
MBA [16] 2.06e — 08 2.47¢ — 09 2.70e — 12 3.94e — 09
CSA [25] 3.18¢ — 08 2.06e — 09 2.70e — 12 5.06e — 09
FDA [24] 3.2999¢ — 09 7.5614e — 10 2.700857e — 12 8.0465e — 10
APSO [65] 7.910450e — 12 6.791322e — 13 3.631801e — 18 1.923245e — 12
GCPSO [66] 1.695473e — 12 1.608118¢ — 13 1.519431e — 21 4.430094e — 13
CAPSO [26] 1.471239%9e — 01 7.657031e — 03 2.859642e¢ — 06 2.913283e — 02
ExPSO[29] 1.111886e — 02 9.114819e — 04 6.626667 e — 08 2.279462e — 03
PSO-HDM 3.5723e — 17 5.0208e — 18 6.7296¢e — 23 8.4829e¢ — 18
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In Table 6, it can be seen that the best function values obtained based on x4, x,, x5, and
x4 values are achieved using the proposed PSO-HDM algorithm. Additionally, it is theoretically
challenging to determine the impact of the random rotation on the performance of the PSO-
HDM algorithm. However, since the method's approach toward the global best is nonlinear, the
random rotation operation has helped the algorithm in preventing it from becoming restricted
at the local minima. When the position vector and the fitness value, f(x), at the point it
represents in Table 6 are analyzed, it can be observed that x;, x,, x3, and x, are close to distinct
locations that can be considered local minimizers. Therefore, it can be observed that the
algorithms, except for PSO-HDM, are restricted at the local minima. The performance
improvement provided by PSO-HDM can be clearly seen in Table 6. The solution vector of the
PSO-HDM algorithm is ¥;(t) = (12.7551,34.8757,56.024255.0332). When the solution
vectors of the other algorithms are examined, it could be observed that the nearest result is
obtained by the ABC algorithm in terms of Euclidean distance. Given that the solution vector
of the ABC algorithm is X; (t) = (19,16,44,49), it could be interpreted that the other algorithms
are restricted at the local minima. Among all optimization algorithms in Table 6, ABC is
observed to be the algorithm that reaches the point closest to the solution found by PSO-HDM.
In addition, in Table 7, the worst, average, best, and standard deviation values, as well as the

best results, are get with the PSO-HDM algorithm.

For the purpose of the enhancing the exploitation capability of the algorithm and prevent
it from getting stuck in local minima, the population diversity should be increased. For this
reason, mutation operators are introduced in our paper. In addition to the methods used in our
study, other mutation operators could also be used for this aim. In our study, Jitter and Gaussian

mutations were selected for the mutation operation.

As an example, we solve Gear Train Design Problem with PSO-HDM algorithm without
mutation operator. The results are presented in Table 8. Table 8 demonstrates that the mutation
operator has a positive efect on the performance of the PSO-HDM algorithm. Therefore, for the
future work, the mutation operator could be utilize in other optimization algorithms for solving

other engineering problem.
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Table 8. The comparison results of the gear train problem with 200 iteration and 1000
iteration with PSO-HDM and PSO-HDM without mutation operator

Algorithms  Mutation Iteration Worst Average Best 323?3?5;
PSO-HDM Yes 200 3-31%03 2_.615129e ?:915;809 5'8112118
R T el e i
PSO-HDM Yes 1000 ‘i.éi6959e 361%66e 2_.9202068 2_.51(()3888
PSO-HDM No 1000 ?:4(‘)79308 iﬁ6()826 5115;3249 3.913;)649

4 CONCLUSION AND SUGGESTIONS

Particle Swarm Optimization (PSO) is an optimization algorithm for the solution of
global optimization problems. In this work, we explore a different method for PSO called PSO-
HDM, particle swarm optimization with Hypersphere Dynamics and Mutation. The position
update is normally linear in original PSO, in this new PSO-HDM algorithm, it is succeeded by
constructing two different hyperspheres and rotating them instead of using a linear velocity
vector. Also, two different mutations, Jitter and Gaussian, is defined. This leads to advance
compared to the classical PSO. For the purpose of the indicating the superiority of our novel
proposed method, Gear Train Design problem are solved. Different categories of benchmark
functions are also solved. In this study, the benchmark functions and the function to be
minimized in the Gear Train Design problem are defined as the cost functions. For the future
work, the proposed method could be applied to other well-known and important engineering
design problems in the literature to further evaluate its effectiveness. Furthermore, the PSO-
HDM could be combined into the other optimization algorithms in the literature to explore its

potential.
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