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Abstract: Unproctored Computerized Adaptive Testing (CAT) is gaining traction 

due to its convenience, flexibility, and scalability, particularly in high-stakes 

assessments. However, the lack of proctor can give rise to aberrant testing behavior. 

These behaviors can impair the validity of test scores. This paper explores the use 

of a verification test to detect aberrant testing behavior in unproctored CAT 

environments. This study aims to use multiple measures to detect aberrant response 

patterns in CAT via a paper-and-pencil (P&P) test as well as to compare the 

sensitivity and specificity performances of the 𝑙𝑧 person-fit statistic (PFS) using 

no-stage and two-stage (𝑙𝑧 is used after the Kullback–Leibler divergence (KLD) 

measure) methods in different conditions. Three factors were manipulated – the 

aberrance percentage, the aberrance scenario, and the aberrant examinee’s ability 

range. The study found that in all scenarios, the specificity performance of 𝑙𝑧 in 

classifying examinees was higher than its sensitivity performance in no-stage and 

two-stage analyses. However, the sensitivity performance of 𝑙𝑧 was higher in two-

stage analysis. 

1. INTRODUCTION 

With globalization, technology has significantly transformed educational environments. Unlike 

traditional paper-and-pencil (P&P) testing applications, computerized adaptive testing (CAT) 

provides higher measurement precision, lower test time, and flexible applications by using the 

invariance feature of item response theory (IRT) compared to traditional applications. CAT, 

which centres on examinee differences in the field of psychometrics, allows the examinees to 

receive tests optimised for themselves (Eggen, 2004). The CAT algorithm primarily involves 

ability estimation and item selection, largely based on the examinee’s item response. Thus, a 

large item pool consisting of items that are grouped according to subject areas and difficulty 

levels (whose item information functions have been previously determined) and that provide 

information in all ranges of the examinee’s ability level (θ) is created, and the test starts by 

selecting the item that will give the best information about the examinee. Large-scale, item-

level adaptive test applications such as the Educational Record Bureau (ERB), the Graduate 

Management Admission Test (GMAT), the Graduate Record Examination (GRE), the National 
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Assessment of Educational Progress (NAEP), the Law School Admissions Test (LSAT), the 

Test of English as a Foreign Language (TOEFL), the National Council Licensure Examination 

(NCLEX), the Smarter Balanced Assessment System (SBAC), and the United States Medical 

Licensing Examination (USMLE) are conducted via computers over the internet (Armstrong et 

al., 2010; Cui, 2022; Wise, 2023; Yan, 2020). The fact that these exams are administered on a 

large scale and without proctors makes them vulnerable to test fraud. For example, the 

Educational Testing Service (ETS) stated that examinees taking the GRE in Asian countries 

had a high rate of anormal response patterns and that it suspended the administration of the 

exam because of damage to test security (Sarı, 2019). Thus, test security in CAT applications 

cannot be ensured at a high level because the items are selected from an item pool and some 

items in this pool are reused and shared among examinees in future test applications (Guo et 

al., 2009; Segall, 2004). It seems necessary to constantly add new items to the item pool by 

creating a large item pool considering the item exposure rate to prevent situations that could 

compromise test security (Glas & van der Linden, 2003; Magis & Raîche, 2012; Veldkamp & 

van der Linden, 2010). However, despite these precautions during the test progress, if aberrant 

test behaviour occurs, inappropriate items may be administered to examinees, resulting in 

inaccurate ability estimates.  

Aberrant testing behaviours can impair the validity of test scores in CAT. Therefore, aberrant 

response patterns should be identified (Liu, 2019). Various aberrant testing behaviours need to 

be detected, including answer-copying, pre-knowledge cheating, careless answering, creative 

thinking, lucky guessing, plodding, random responding, and sleeping behaviour (Cizek & 

Wollack, 2017; Haberman & Lee, 2017; Kingston & Clark, 2014; Lee & Chen, 2011; Lee & 

Haberman, 2016; Sinharay, 2017b, 2020; van der Linden & Guo, 2008; Wang et al., 2018). The 

literature mentions several methods such as similarity analysis and person-fit statistics (PFSs) 

for fixed tests to detect aberrant response patterns at the examinee and group levels (e.g. Cizek 

& Wollack, 2017; Karabatsos, 2003; van Krimpen-Stoop & Meijer, 2001; Maynes, 2005; 

Meijer & Sijtsma, 2001; Meijer & Tenderio, 2014; Thissen, 2008; van der Linden & Sotaridona, 

2006). A common strategy is to flag the examinees or items with aberrant patterns (e.g. Belov 

& Armstrong, 2011; Belov et al., 2007; Choe et al., 2018; Drasgow et al., 1985; Liu et al., 

2019; McLeod et al., 2003; Shu et al., 2013; Sinharay, 2017a, 2017b; Zhang, 2014; Zhang & 

Li, 2016). Based on IRT, a number of PFSs have been proposed to identify aberrant response 

patterns (Drasgow et al., 1985; Molenaar & Hoijtink, 1990). Many PFSs have been improved 

for dichotomous items developed based on IRT, such as U (Wright & Stone, 1979), 𝑙0 (Levine 

& Rubin, 1979), W (Wright & Masters, 1982), D(θ) (Trabin & Weiss, 1983), ECI (Tatsuoka, 

1984), UB and UW (Smith, 1985), 𝑙𝑧 (Drasgow et al., 1985), JK, O/E (Drasgow et al., 1987), c 

(Levine & Drasgow, 1988), 𝑙𝑧𝑚 (Drasgow et al., 1991), M (Molenaar & Hoijtink, 1990), 𝜒𝑆𝐶
2 

(Klauer & Retting, 1990), T(X) (Klauer, 1991), and 𝑙𝑧
∗
 (Snijders, 2001). Some PFSs are based 

on division into two sets of items in the test, such as the Kullback‒Leibler divergence (KLD) 

measure (Belov, 2007; Belov & Armstrong, 2010), the Z statistic (Guo & Drasgow, 2010; 

Maynes, 2014b), matched percentile (MPI; Kolen & Brennan, 2008), and the Irregularity Index 

(Li et al., 2014). 

Several studies (e.g. Armstrong & Shi, 2009; Belov, 2014, 2016; Chang & Zhang, 2002, 2003; 

Chao et al., 2011; Choe et al., 2018; Davey & Nering, 2002; Egberink et al., 2010; Goren et 

al., 2022; Guo et al., 2009; Liu, 2019; Liu et al., 2019; McLeod et al., 2003; Pan et al., 2022; 

Rizavi, 2001; Shu, 2010; Tendeiro & Meijer, 2012; van der Linden & Guo, 2008; van der 

Linden & van Krimpen-Stoop, 2003; van Krimpen-Stoop & Meijer, 2002; Yi et al., 2006; 

Zhang, 2014; Zhang & Li, 2016; Zhong, 2022) discuss statistical methods to detect aberrant 

testing behaviours in CAT applications. When the studies are examined, CAT applications to 

detect pre-knowledge cheating have been suggested, such as the final log-odds ratio (FLOR) 

index (McLeod et al., 2003), response time (RT) modelling (such as the Bayesian lognormal 

RT model) (van der Linden, 2006), the hierarchical latent variable model (van der Linden, 2007; 
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van der Linden & Guo, 2008), the mixture model (Lee & Wollack, 2017; von Davier & Rost, 

2007; Wang & Xu, 2015; Wang et al., 2018; Zhan et al., 2018), machine-learning approaches 

(such as supervised, unsupervised, and reinforcement learning) (Bishop, 2006; Murphy, 2012), 

cluster analysis (Wollack & Maynes, 2011), factor analysis (Zhang et al., 2011), the cumulative 

sum (CUSUM) method (Armstrong & Shi, 2009; Egberink et al., 2010; van Krimpen-Stoop & 

Meijer, 2002), PFSs (𝑍𝑐 (McLeod & Lewis,1999), K (Bradlow et al., 1998), T (van Krimpen-

Stoop & Meijer,2000), lz (Karabatsos, 2003; Shu et al., 2013), and KLD (Belov, 2011, 2013; 

Chao et al., 2011)). In many studies (Armstrong et al., 2007; Drasgow et al., 1991; Li & 

Olejnik, 1997; Meijer & Sijtsma, 2001; Nering, 1995, 1997; Nering & Meijer, 1998; Reise, 

1995; Reise & Due, 1991; Shu et al., 2013; St-Onge et al., 2011; Zopluoglu & Davenport, 

2012), 𝑙𝑧 has been determined to be the most powerful PFS for fixed tests in detecting aberrant 

response patterns. Considering this, in related studies (Balta & Dogan, 2024; Belov, 2013, 

2014; Belov et al., 2007; Belov & Armstrong, 2010; Chao et al., 2011; Man et al., 2018; 

Marianti et al., 2014; Ucar, 2021; Ucar & Dogan, 2021), one can observe that divergence 

measure approaches such as KLD exhibit high performance to determine aberrant response and 

response time patterns in both fixed tests and CAT applications. In addition, pre-knowledge 

cheating is largely investigated, with lesser focus on other aberrant test behaviours, hence a 

greater need to investigate several aberrant testing behaviours in CAT applications.  

The use of unproctored computer-based testing (CBT) and CAT applications is becoming more 

widespread. Several researchers (e.g. Chapman & Webster, 2003; Lievens & Burke, 2011; 

Naglieri et al., 2004; Nye et al., 2008; Pearlman, 2009; Tippins et al., 2006; Wunder et al., 

2010; Wright et al., 2014) have cited the benefits of unproctored testing in terms of lower cost. 

However, in these applications, situations that facilitate security violations such as test theft and 

cheating caused by uncontrolled exam management  may arise. Unproctored CAT, on the other 

hand, allows examinees to take the test without proctor, potentially introducing risks related to 

the validity of the data collected (Ryan et al., 2015; Tippins et al., 2006). Therefore, in 

unproctored CBT and CAT applications, psychometric identification such as a two-stage exam 

administration mode has been proposed by making the examinees undergo proctored 

verification tests (Nye et al., 2008; Lievens & Burke, 2011; Coyne & International Test 

Commission, 2006). The use of verification tests allows for continuous monitoring of test-taker 

behavior, providing an additional layer of security in unproctored testing environments. The 

aim of this paper is to address this issue. There are few studies (Aguado et al., 2018; Guo & 

Drasgow, 2010; Sanz et al., 2020; Segall, 2001) on how psychometric identification should be 

performed. Segall (2001) proposed a Bayesian approach to detect the consistency of test 

performance across the CBT as well as verification testing approaches such as score-based and 

Bayesian methods. Guo and Drasgow (2010) detected aberrant response behaviour in CAT via 

a proctored verification test with a Z-test and a likelihood ratio (LR) test. Aguado et al. (2018) 

conducted psychometric identification by applying a Z-test and using RTs. Sanz et al. (2020) 

compared five statistics used to detect cheating in CATs Z-test, the Adaptive Measure of 

Change (AMC), LR, Score Test, and Modified Signed Likelihood Ratio Test (MSLRT). There 

is no general acceptance regarding which of the indices and statistics used to determine aberrant 

response patterns has high performance due to the many variables that impair test security. The 

performance of the methods is investigated by simulating various scenarios considering the 

common response patterns and testing conditions in real life. In addition, in several studies, it 

is seen that two-stage analyses are performed in which the PFSs and answer copying indices 

together with the divergence measure approaches are used together in order to increase the 

available evidence in determining aberrant response patterns. Belov (2013) proposed a two-

stage method was made using PFSs and KLD to detecting test collusion in CAT and P&P test 

Similarly, Belov and Armstrong (2010) and Ucar and Dogan (2021) stated that the two-stage 

approach performed better in detecting answer copying in P&P test. So far, there is no study in 

which 𝑙𝑧 and KLD are considered together in the detection of aberrant response patterns in CAT 
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via a P&P test. However, the purpose of this study is to use multiple measures to detect potential 

aberrant examinees involved in aberrant testing behaviour in CAT via a P&P test.  

A study was conducted to determine the performance of the 𝑙𝑧 and KLD measures in identifying 

simulated aberrant testing behaviour under various conditions. In CAT applications and fixed 

tests, methods to identify aberrant response and RT patterns may mistakenly flag a non-aberrant 

as a suspected cheater. In the literature, several studies that investigate aberrant testing 

behaviour use power and Type I error rates as measures of the performance of these methods. 

The Type I error rate is when the method considers examinees who do not actually cheat. The 

benefit of this method is that it can accurately identify examinees who cheat. In this study, two 

indices – sensitivity and specificity – are used to evaluated the performance of these methods. 

Sensitivity is the rate of examinees who are correctly flagged as aberrant, and specificity is the 

rate of examinees who are correctly flagged as non-aberrant (Shu, 2010; Yormaz, 2019). Test 

validation is the process of verifying, based on evidence, whether the test development stages 

(e.g. overall plan, test blueprint, item development, test design and assembly, test 

administration, scoring test responses, standard setting, item bank management) have been 

fulfilled (Haladyna, 2011; Messick, 1994). The aberrant test behaviour of examinees in 

responding to items, those acting on behalf of the examinees (the proctor or test administrator), 

or aberrant behaviour such as cheating are among the factors that cause aberrant response and 

test scores (Karabatsos, 2003; Thiessen, 2008). In CAT applications, providing test 

management and controlling aberrant testing behaviour greatly increases the validity of test 

scores (Foster, 2013). Thus, it is important to recommend several methods and approaches to 

provide more evidence to increase the validity of test scores in unproctored CAT applications. 

In this study, to increase the available evidence in identifying aberrant examinees, a two-stage 

method was made using 𝑙𝑧 and KLD. We calculated the sensitivity and specificity values using 

both no-stage and two-stage analyses. 

We aim to compare the performances of the PFS and divergence measures (𝑙𝑧 and KLD) using 

no-stage and two-stage methods in different conditions. The research questions are as follows: 

1) What are the sensitivity and specificity performances of various factors of 𝑙𝑧 used in the no-

stage method? 

2) What are the specificity and sensitivity performances of various factors of 𝑙𝑧 (used after the 

KLD measure) in the two-stage method? 

2. METHOD 

2.1. Research Design 

In this study, a Monte Carlo simulation was conducted using simulation data to detect aberrant 

testing behaviour in CAT via a P&P test. Simulation data were used because all the conditions 

discussed in the study could not be met with real data. When deciding on simulation design 

conditions and levels, studies investigating aberrant response patterns in fixed tests and 

unproctored CAT applications were considered. 

In several studies (Balta & Dogan, 2024; Li, 2019; Shu et al., 2013; Steinkamp, 2017; Ucar, 

2021, Ucar & Dogan, 2021), the aberrant examinee’s percentage is manipulated as 5%, 10%, 

15%, 20%, 35%, and 70%. Belov (2014), in his study which investigated aberrant response 

patterns at the group level in CAT applications, changed the percentage of aberrant examinees 

to 10% and 20% in each test centre. Karabatsos (2003) stated that when the number of copiers 

increases, the performance of PFSc to identify suspected copiers decreases. For this reason, the 

aberrant examinee’s percentage in the cheating scenario was fixed at 5%, which was considered 

the minimum percentage in previous studies. 

In the CAT literature, the aberrance percentage and the aberrant examinee’s ability range are 

seen as important factors in determining aberrant response patterns; the latter, for instance, 

might affect the power of the methods to detect aberrant response patterns (Sotaridona & 
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Meijer, 2002; Steinkamp, 2017; Sunbul & Yormaz, 2018; Ucar, 2021; Ucar & Dogan, 2021; 

van der Linden & Sotaridona, 2006; Yormaz & Sunbul, 2017). Sunbul and Yormaz (2018) 

determined the ability range of the aberrant examinees as (−3, −1.5), (−1.51, 0), (0.01, 1.5), and 

(1.51, 3); Ucar (2021) changed this to (−3, −1.5) and (−1.51, 0) in his study. Aguado et al. 

(2018), in the cheating scenario, simulated 1,000 examinees for each of the 15 (θu: the ability 

levels for the unproctored test conditions; θv: the ability level in the verification test conditions) 

pairs: (−2, −2), (−1, −2) … (2, 2). In Belov’s (2014) study, aberrant examinees were simulated 

with abilities drawn from U (−3, −2), U(−2, −1), and U(−1, 0). In this study, to evaluate the 

ability level effects, the ability range of the aberrant examinees was divided into two categories: 

(−3 to −1.5) (low ability level) and (−1.5 to 1.5) (medium ability level). In several studies 

(Belov, 2014, 2016; Liu, 2019; Pan et al., 2022; Rizavi & Swaminathan, 2001; Shu et al., 2013), 

in the CAT applications, the percentage of aberrance varied – 5%, 10%, 20%, 25%, 30%, 50%, 

70%, 75%, and 90%. This study assumes a large percentage aberrance, such as the lower bounds 

of 60% and 70% considering the unproctored CAT applications.  

In studies which determining aberrant response and response time patterns in CBT, CAT and 

P&P test applications (Belov, 2013, 2014, 2016; Fox & Marianti, 2017; Marianti et al., 2014; 

Lee, 2018; Liu, 2019; Liu et al., 2019; McLeod et al., 2003; Pan et al., 2022; Rizavi, 2001;Shu, 

2010; Sotaridona & Meijer, 2002; van der Linden & Guo, 2008; van der Linden & Krimpen-

Stoop, 2003; Wollack, 2006; Yi et al., 2008; Zopluoğlu, 2016), it is seen that the sample size 

varies as 100, 500, 1,000, 2,000, 2,500, 10,000 and 50,000. In addition, in studies examining 

cheating behavior in unproctored CAT applications through a verification test (Aguado et.al., 

2018; Guo & Drasgow, 2010), 3,486 canditates participated in the unproctored CAT application 

and, 1,000 test takers were simulated in the CAT application. The sample size factor was not 

changed in this study. Considering the requirement of test takers participating in the 

unproctored CAT application to also take the P&P verification test, the current capacity of the 

exam halls, and the item parameter estimation, the sample size was determined as 1,000. In this 

study, 1,000 examinees were simulated with abilities drawn from N(0,1).  

The test length was changed to 30, 40, 50, and 75, in studies which detected aberrant response 

patterns in CAT (Aguado et al., 2018; Belov, 2013, 2014, 2016; Guo & Drasgow, 2010; Liu, 

2019; Liu et al., 2019; McLeod et al., 2003; Pan et al., 2022; Rizavi, 2001; Yi et al., 2008). 

Balta and Ucar (2022) concluded that in CAT applications, when the starting rule was zero 

(θ=0) and, the test was terminated with the most 40 items and the highest fidelity value was 

obtained under this condition. Therefore, in this study, the test length was fixed at 50 items 

provide more accurate ability estimation considering the unproctored CAT application 

conditions.  

Fifty aberrant examinees were selected at random from low– and medium–ability level 

examinees, obtained using the ability estimations in CAT application; 60% and 70% of the 

response patterns of these 50 aberrant examinees in the P&P test were manipulated. For these 

response patterns, if the difficulty level of the item is greater than the level of ability of the 

examinee (θ > b), the correct responses (1) have been converted to the wrong response (0). In 

another condition, the response patterns were determined randomly, and the correct answers 

were changed to be incorrect. After these changes were made to both conditions, the abilities 

of the examinees were re-estimated using the modified P&P test data.  

To analyze the sensitivity and specificity performances of the methods, there were eight 

conditions (aberrance percentage (2) × aberrance scenario (2) × aberrant examinee’s ability 

range (2) = 8). In Table 1, the simulation design conditions and levels are presented. 
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Table 1. Simulation design conditions and levels. 

Condition Level values Number of levels 

Aberrance percentage 60%–70% 2 

Aberrance scenario θ > b-random 2 

Aberrant examinee’s ability range (−3.00 to −1.50)- (−1.50 to 1.50) 2 

Sample size* 1,000 1 

Test length* 50 1 

Aberrant examinee’s percentage* 5% 1 

*fixed variable 

2.2. Data Simulation 

Data generation had been performed using the ‘irtoys’ package (Partchev, 2017) for the P&P 

test and the ‘catR’ package (Magis & Barrada, 2017) for CAT in the R software. A CAT 

simulation was carried out using the disclosed logical reasoning (LR) items of the LSAT 

(information about the items was obtained from www.LSAC.org). Thus, the three-parameter 

logistic (3PL) IRT model is used to describe the response probability for items. The means of 

the (a) discrimination, (b) difficulty, and (c) guessing parameters were 0.75, 0.49, and 0.17, 

with variances of 0.24, 1.13, and 0.25, respectively.  

CAT applications consisting of large numbers of items with difficulty levels appropriate to each 

ability level and high levels of discrimination give better results (Embretson & Reise, 2000; 

Magis & Raîche, 2012; Veldkamp & van der Linden, 2010; Weiss, 2004). However, it has been 

stated that to create an effective ability estimation in CAT applications, the item pool size 

should be at least 100 items and contain at least 6 to 12 times more items than the test length 

(Stocking, 1992). The CAT item pool contained 500 items, 10 times the test length (50), similar 

to Belov (2014) and Belov (2016).  

IRT based cut-off score based methods such as Maximum Fisher Information (MFI), Kullback 

Leibler Information, and log-odds ratio select the items that provide the highest information at 

the cut-point (Thompson, 2007b). MFI uses the measure of information (local information) 

around a certain ability level and the level of information it provides increases as the item 

discrimination level increases (Han, 2009; Ho, 2010). Thus, the MFI method was chosen as the 

item selection method in the CAT algorithm because the MFI item selection method selects 

items with high discrimination levels to provide maximum test information for the examinees. 
The disadvantage of the MFI is that leads to biased use of the item pool and the re-selection of 

the same items leads to the item exposure problem (van der Linden & Pashley, 2010; Wang, 

2017). Thus, when MFI method is used, the item exposure should be controlled to ensure test 

security because the probability of selecting items with high discrimination levels is high 

(Barrada et al., 2006). Barrada et al. (2009) stated that the restricted method is the best method 

to control maximum exposure rates in CAT applications. In this study, the item exposure rate 

was fixed at 0.25, as in the studies of Barrada et al. (2009) and Erdem-Kara and Dogan (2022). 

In CAT applications, variables such as item selection methods, content balance in item 

selection, and item exposure rate play an important role in deciding which of the ability 

estimation methods is better (Embretson & Reise, 2000; Ho, 2010). After the selection of the 

first item, Maximum Likelihood Estimation (MLE), Weighted Likelihood Estimation (WLE), 

Marginal Maximum Likelihood Estimation (MMLE), and Bayesian based ability estimation 

methods such as Expected a Posteriori (EAP) and Maximum a Posteriori (MAP) are frequently 

used to estimate the ability (Baker & Kim, 2004; Embretson & Reise, 2000). van der Linden 

(2008) and van der Linden and Pashley (2010) suggested the EAP estimation method, which 

makes a finite estimate for ability levels when MFI is used as the item selection method and 

thus performs an ability estimation even when all of the examinee's responses are correct or 

incorrect. Thus, in this study, EAP method with a uniform prior over [−4, 4], which does not 

involve an iterative process while making a finite estimate for all ability levels, was used.  

http://www.lsac.org/
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At the beginning of the test, the aim is to determine the most appropriate item for the examinee's 

true ability level. For this reason, CAT applications usually start with an item suitable for 

examinees with 0 ability level (Magis et al., 2017). However, initiating the test in CAT 

applications, depending on the prior knowledge about the examinee’s ability, can be achieved 

with different approaches, such as starting with easy items or medium-difficulty items 

(Hambleton & Xing, 2006; Thompson & Weiss, 2011). Thus,in this study, the ability estimate 

was initialised at θ = 0 to start with medium-difficulty items. The P&P test data (50 items) had 

been simulated based on the ability estimates and item parameters obtained from CAT 

simulations.  

2.3. Analysis 

In this study, to increase the available evidence in identifying aberrant examinees, no-stage and 

two-stage methods were employed using 𝑙𝑧 and KLD. The 𝑙𝑧 measure is the standardised log 

likelihood of 𝑙0 and is given by the following: 

𝑙𝑧 =
𝑙0 − 𝐸(𝑙0)

√𝑉𝑎𝑟(𝑙0)
                                                                                                                 (1) 

Since the standard normal distribution is observed, high negative values of 𝑙𝑧 (less than −2) are 

interpreted as indicating that the examinee’s response patterns are not appropriate, while high 

positive values (greater than +2) can be interpreted as indicating that the responses fit well with 

the model (Dimitrov & Smith, 2006; Karabatsos, 2003). The KLD measure is a measure 

divergence between two posterior distributions for examinees based on responses and is given 

by the following: 

𝐾𝐿 = 𝐷(𝑅ǁ𝑆) = ∫ 𝑅(𝛳𝑗) log
𝑅(𝛳𝑗)

𝑆(𝛳𝑗)

+∞

−∞

𝑑𝛳𝑗                                                                    (2) 

where 𝑅(𝛳𝑗) and 𝑆(𝛳𝑗) are the posterior distributions of ability for examinee j based on 

responses to two parts of test items. Large values for the KLD measure indicate a significant 

difference in the examinee’s performance between the two parts (Kullback & Leibler, 1951). 

This difference may point to aberrant testing behaviours. We calculated the sensitivity and 

specificity values using both no-stage and two-stage analyses. The calculation of these values 

can be easily done with the help of the table prepared below: 

Table 2. Quota table. 

 Real 

  Aberrant Non-aberrant 

D
ec

is
io

n
 

Aberrant A B 

Non-aberrant C D 

According to Table 2, the number of examinees who were aberrant and were found to have 

cheated according to the analysis result is A, and this value is called ‘true positive’. The value 

B is the ‘false positive’ value, which is the number of examinees who were not actually aberrant 

but were predicted to cheat as a result of the analysis. The number of examinees who were 

actually aberrant but were found not to be aberrant as a result of the analysis, C, is the ‘false 

negative’ value. D is the number of examinees who were correctly identified as not aberrant, 

and this value is called ‘true false’.  

Sensitivity is the method’s power to distinguish true aberrant examinees. 

Sensitivity = A / (A+C) 

Specificity is the method’s power to identify true non-aberrant examinees. 
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Specificity = D / (B + D) 

In the no-stage analysis, only 𝑙𝑧 was used, and we calculated the probability value of 𝑙𝑧 using 

the ‘PerFit’ package (Tenderio et al., 2016) to obtain sensitivity and specificity values. We 

compared the probability values of the PFS using the P&P test data with 𝛼 = 0.05. In the two-

stage analysis, we calculated 𝑙𝑧 and the KLD measure with the ‘PerFit’ package (Tenderio et 

al., 2016) and the ‘LaplaceDemon’ package (Statisticat, 2016) included in the R program. We 

have chosen to use KLD because it is the expected value of an LR. The examinee’s ability levels 

in both tests (P&P (posterior)–CAT (prior)) had been compared via the KLD measure. The 

receiver operating characteristic (ROC) curve analysis method was used to obtain the cutoff 

scores for the KLD measure function values. To determine cutoff scores at 𝛼 = 0.05 using the 

Youden Index, we used the ‘OptimalCutpoints’ package (Raton-Lopez et al., 2014). Then to 

detect previously marked aberrant examinees, 𝑙𝑧 had been used, and the sensitivity and 

specificity values of 𝑙𝑧 in identifying the aberrant examinees had been calculated. The KLD 

measure and 𝑙𝑧 used to determine the aberrant examinees were repeated 100 times, and the 

results were reported as the average of 100 replications. 

3. RESULTS 

In the no-stage method, the sensitivity and specificity performances of 𝑙𝑧 under various 

conditions were determined. Table 3 shows the results for no-stage analysis for different 

conditions. 

Table 3. Results for no-stage analysis. 

Aberrance 

percentage 

Aberrant 

examinee’s 

ability range 

Aberrance 

scenario 

Real 

aberrance 

decision 

Simulated aberrance decision 

Yes No 

60% 

Low ability level 

θ > b 
Yes 2 14 

No 48 936 

Random 
Yes 1 16 

No 49 934 

Medium ability 

level 

θ > b 
Yes 2 19 

No 48 931 

Random 
Yes 1 21 

No 49 929 

70% 

Low ability level 

θ > b 
Yes 1 18 

No 49 932 

Random 
Yes 2 19 

No 48 931 

Medium ability 

level 

θ > b 
Yes 4 17 

No 46 933 

Random 
Yes 2 17 

No 48 933 

Table 3 shows that in scenarios where the aberrance percentage is 60%, the sensitivity 

performance of 𝑙𝑧 in classifying examinees is higher in the θ > b aberrance condition. The 

sensitivity performance in the scenarios where the aberrance percentage was 70% showed the 

highest classification performance in the aberrance condition involving the aberrant examinees 

with a medium ability level and θ > b aberrance condition. When the sensitivity performance 

of 𝑙𝑧 is examined, it shows low performance in identifying aberrant examinees. However, in 

scenarios where the aberrance percentage is high, the examinee cannot distinguish between the 

normal response pattern and the anormal response pattern and cannot identify the examinee as 

an aberrant examinee. The specificity performance of 𝑙𝑧 was found to be higher in the scenarios 

where the aberrance percentage was 60% among the aberrant examinees with a medium ability 

level and θ > b aberrance condition as well as higher in the scenarios where the aberrance 
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percentage was 70% among the aberrant examinees with a medium ability level. In addition, 

the rate of identifying aberrant examinees is higher in scenarios where the aberrance percentage 

is low (60%) and given the θ > b aberrance condition compared to other conditions. As a general 

result, it was observed that in all scenarios, the specificity performance of 𝑙𝑧 in classifying 

examinees was higher than its sensitivity performance. 

In the two-stage method, the sensitivity and specificity performances of various factors of 𝑙𝑧 

and the KLD measure were determined. Table 4 shows the results for two-stage analysis for 

different conditions. 

Table 4. Results for two-stage analysis. 

Aberrance  

percentage 

Aberrant  

examinee’s 

ability range 

Aberrance 

scenario 

Real  

aberrance 

decision 

Simulated aberrance decision 

Yes No 

60% 

Low ability level 

θ > b 
Yes 14 4 

No 36 946 

Random 
Yes 8 5 

No 42 945 

Medium ability 

level 

θ > b 
Yes 12 8 

No 38 942 

Random 
Yes 8 6 

No 42 944 

70% 

Low ability level 

θ > b 
Yes 12 7 

No 38 943 

Random 
Yes 6 4 

No 44 946 

Medium ability 

level 

θ > b 
Yes 10 5 

No 40 945 

Random 
Yes 7 6 

No 43 944 

According to Table 4, as a result of the two-stage analysis, in scenarios where the aberrance 

percentage is 60%, the sensitivity performance of 𝑙𝑧 in classifying examinees was found to be 

higher in the θ > b aberrance condition. In scenarios where the aberrance percentage is 70%, 

the sensitivity measure showed the highest classification performance in aberrant examinees 

with a medium ability level and the θ > b aberrance condition. One can see that the rate of 

identifying aberrant examinees is higher in conditions where the aberrance percentage is low 

(60%) and given the θ > b aberrance condition compared to other conditions. The specificity 

performance of 𝑙𝑧 is higher in scenarios where the aberrance percentage is 60%, for the aberrant 

examinees with a low ability level, and in the θ > b aberrance condition as well as higher in 

scenarios where the aberrance percentage is 70% for the aberrant examinees with a medium 

ability level. This will reduce the risk of an examinee who does not have an aberrant response 

pattern being mistakenly identified/marked as having an aberrant response. 

4. DISCUSSION and CONCLUSION 

As the world increasingly adopts digital platforms for assessment, unproctored CAT systems 

provide a flexible and efficient method of delivering high-stakes tests to a large population. 

Unproctored CAT applications are being carried out by institutions and organisations, 

especially some universities performing large-scale assessment. However, aberrant testing 

behaviour is still a primary concern in unproctered internet testing (Tippins et al., 2006; Wright 

et al., 2014). Therefore, in such applications, two-stage exam administration by testing the 

examinees with proctored verification tests is important. The challenge here is the detection of 
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aberrant testing behaviour based on the data of these two tests, along with the proctored 

verification test parallel to the CAT taken online. In this study, scenarios were produced by 

considering the unproctored CAT and proctored P&P test application processes and considering 

frequently encountered response patterns or situations. Based on these scenarios, the 

performance of 𝑙𝑧 in identifying possible aberrant examinees in CAT applications was 

examined via a P&P verification test. 

Aguado et al. (2018), Lievens and Burke (2011), Nye et al. (2008), and Tippins et al. (2006) 

have proposed a two-stage exam administration procedure in unproctored CBT and CAT 

applications, where candidates undergo proctored verification tests. In light of the findings 

obtained from the study as a general result, it is seen that the use of a verification test in 

unproctored CAT environments provides a robust solution for detecting aberrant testing 

behavior. Thus, these findings of the study are consistent with the relevant literature.  

In the no-stage analysis, the sensitivity performance of 𝑙𝑧 was higher in the simulation 

conditions where the aberrance percentage was 60%, for the aberrant examinees with a low 

ability level, and given the θ > b aberrance condition than in the simulation conditions where 

the aberrance percentage was 70%. This finding is parallel to that in the study of Zopluoglu and 

Davenport (2012), who reported that the performance of 𝑙𝑧 in identifying aberrant examinees 

decreased as the aberrance percentage increased. However, in the θ > b aberrance conditions, 

the sensitivity performance of  𝑙𝑧 was generally higher than that of the random aberrance 

conditions. In two-stage analyses where  𝑙𝑧 was used together with the KLD measure, the 

sensitivity performance of  𝑙𝑧 in classifying examinees was higher in simulation cases where 

the aberrance percentage was 60%. Additionally, the findings regarding the two-stage use of 𝑙𝑧 

show that the rate of identifying a suspicious aberrant examinee increases with the aberrance 

rate. However, the sensitivity performance of  𝑙𝑧 in classifying examinees in no-stage analyses 

was lower than the sensitivity performance of the two-stage analysis. This is because KLD is a 

sensitive measurement against the differences between the distributions of ability (Pardo, 

2006). Therefore, the sensitivity of  𝑙𝑧 increased using two-stage analysis. In the no-stage and 

two-stage analyses, the specificity performances of  𝑙𝑧 were high in all scenarios except for the 

condition where the aberrance percentage was 70%, for the aberrant examinees with a medium 

ability level, and given the θ > b aberrance condition. In the two-stage analyses where  𝑙𝑧 was 

used together with the KLD measure, the specificity performance in classifying examinees was 

high under the condition where the aberrance percentage was 60%, for the aberrant examinees 

with a low ability level, and given the θ > b aberrance condition. Zhong (2022) stated that 

aberrant examinees can be identified by PFSs, but aberrant response behaviour types cannot be 

identified using these PFSs. In this study, both in two-stage and no-stage analyses,  𝑙𝑧 had high 

specificity performance regardless of the aberrance scenario among the aberrant examinees 

with a medium ability level. In other words, whether the aberrance scenario was θ > b or random 

did not affect the specificity performance of  𝑙𝑧.  

When the specificity and sensitivity performances of  𝑙𝑧 were compared, the former was 

considerably higher than the latter. However, the sensitivity performance of  𝑙𝑧 was higher in 

two-stage analysis. This finding is similar to the studies of Belov (2013), Belov and Armstrong 

(2010) and Ucar and Dogan (2021). In addition to the results of the study,the two-stage Type I 

error, power rates, or sensitivity and specificity performances of  𝑙𝑧 for identifying examinees 

with aberrant response patterns in CAT applications can be examined under different conditions 

(sample size, test length, aberrant examinee’s percentage, aberrant response types, aberrance 

percentage (percentages lower than 60%)) via a verification test. In addition, simulation studies 

can be conducted to compare the performance of  𝑙𝑧 with other divergence measures via two-

stage analysis. Thus, the conditions under which  𝑙𝑧 performs better in determining aberrant 

examinees can be investigated, and contributions can be made regarding its use in real-life 

applications. In addition, studies on the specificity and sensitivity performances or Type I error 
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and power rates of several divergence measures used in simulation studies to be conducted on 

several PFSs’ performance can be conducted via two-stage analyses. Similar studies can be 

conducted using real data.  

Future research studies should focus on optimizing the design of verification tests and exploring 

machine learning techniques to improve the accuracy and efficiency of aberrant behavior 

detection in CAT applications. Additionally, similar studies could be conducted by including a 

verification set of items that partially overlaps with the CAT to help cross-check responses. 

Thus, the cheating detection performances of methods such as Z-test, the Adaptive Measure of 

Change (AMC), Likelihood Ratio Test (LRT), Score Test, and Modified Signed Likelihood 

Ratio Test (MSLRT) in CAT applications can be tested under several conditions. Moreover, 

aberrant testing behaviours in unproctored CAT administrations can be explored using response 

times via a proctored CBT verification test. 
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