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Abstract Adaptive filtering is essential for control systems, system identification, and noise cancellation, especially when 
using Least Mean Square (LMS) algorithms. Although LMS-based approaches are popular because they are straightforward 
and efficient, they frequently have sluggish convergence and numerical instability. This study offers a hybrid framework that 
integrates Particle Swarm Optimization (PSO) with LMS variations, such as ZA-LLMS, RZA-LLMS, ZA-VSS-LMS, and 
RZA-VSS-LMS, in order to overcome these issues. PSO outperforms conventional methods in terms of mean square error 
(MSE) performance and convergence speed by dynamically modifying weight coefficients. The proposed system was 
evaluated utilizing synthetic noise models, such as Additive White Gaussian Noise (AWGN) and Colored Gaussian Sequence 
(CGS), in addition to MRI scan restoration. The results show that the PSO-enhanced LMS versions reduce the number of 
required iterations by up to 67% while improving filtering accuracy. Under Gaussian noise, the PSO-RZA-VSS-LMS 
approach remarkably obtained a Peak Signal-to-Noise Ratio (PSNR) of 24.58 dB while its non-PSO equivalent only obtained 
20.51 dB. In a similar line, PSO-RZA-LLMS attained 17.12 dB for Salt & Pepper noise, at 15.32 dB, surpassing the baseline 
RZA-LLMS. These results show the flexibility of the PSO-driven approach toward different noise distributions. Apart from 
raising filtering accuracy, PSO integration significantly accelerates convergence without sacrificing signal integrity. The 
results show that the proposed method offers a practical and efficient replacement for real-time adaptive filtering systems 
including medical imaging, speech processing, and high-speed communication networks. 

Keywords: Adaptive filtering, Hybrid Optimization, LMS, Particle Swarm, Image Denoising.  

I. INTRODUCTION 
With a wide range of applications, adaptive filtering (AF) is a well-established and extensively researched topic [1]–[4]. The 
fundamental component of an adaptive filter is a linear filter with movable parameters that are updated dynamically through 
optimization. Because of its adaptability, AF can be set up in a variety of ways to meet the needs and demands of diverse 
applications. The Finite Impulse Response (FIR) filter is a popular setup in which a set of tunable coefficients determines the 
output by means of a weighted sum of the input samples [5]. The Infinite Impulse Response (IIR) filter is another method that 
combines feedback into its construction. With fewer coefficients than FIR filters, IIR filters can computationally be more 
efficient while nevertheless attaining comparable filtering characteristics [6]. This efficiency makes them especially valuable 
in real-time applications and situations with limited memory capacity. Apart from these basic setups, various other adaptive 
filtering methods provide special signal-processing capacity. One type of block adaptive filter divides the input signal into 
blocks and independently updates the filter coefficients for each block. This method allows more exact adaptation and tracking 
of changes, hence it is particularly useful for managing signals whose attributes change with time [7]. Another fascinating 
configuration, whereby a filter bank divides the input signal into many frequency subbands, is the subband adaptive filter. 
When different frequency components require distinct filtering techniques in applications like audio coding and noise 
cancellation, this approach is very helpful since an adaptive filter handles each subband individually [8]. Still another 
sometimes used model is the adaptive Radial Basis Function (RBF). Particularly effective for nonlinear and non-Gaussian 
signals, it bases the output on an array of RBFs. Common uses of this approach in systems identification, pattern recognition, 
and time-series forecasting [9]. Designed particularly to remove undesirable noise from a target signal, the Adaptive Noise 
Canceller (ANC) is a specific use of adaptive filtering [10]. The ANC uses two inputs: the main input has the intended signal 
mixed with noise, while the reference input has a noise component linked with the noise in the main input. An adaptive filter 
then continuously adjusts to lower the correlation between the projected noise and the primary input. By eliminating this 
estimated noise from the main input, the ANC can dynamically adapt to match changing noise levels, thereby enhancing signal 



Accelerating Convergence in LMS Adaptive Filters Using Particle Swarm Optimization… 

Volume 12, 2025.     312 

clarity and intelligibility. Usually, the convergence speed and the ability to obtain the lowest Mean Square Error (MSE) define 
the performance of an AF method. One of the fundamental strategies for optimizing AF performance is the Wiener filter, which 
assumes prior knowledge of the input signal [11]. Nonetheless, some adaptive filtering techniques, such as Least Mean Square 
(LMS), are often applied despite not requiring this prior knowledge because of their simplicity and ease of implementation 
[12]. The typical LMS technique has limits notwithstanding these benefits. When the input sequence lacks enough excitation, 
it can suffer from unbounded parameter estimations, which cause numerical instability and poor performance due to 
excessively high prediction errors [13]. Several variants of the LMS method have been proposed to handle these problems. 
The Leaky LMS (LLMS) model is one such development, since it reduces parameter drift, thereby stabilizing the system [14]. 
Proposed to improve sparsity control and reduce update complexity, the Zero-Attracting LLMS (ZA-LLMS) method is a 
further development [15]. Convergence speed and steady-state performance studies reveal that ZA-LLMS outperforms both 
conventional LLMS and ZA-LMS algorithms [16]. The Reweighted Zero-Attracting LLMS (RZA-LLMS) algorithm, 
introduced in [17], shows even greater performance in adaptive filtering applications, further enhancing the efficiency of ZA-
LLMS. 
In a different track, it is recognized that the Mean Square Error (MSE) is directly related to the adaptation step size in terms of 
performance, and that it determines the convergence rate to optimal weights. Usually, a small step size is recommended to 
attain a low final excess MSE, but this results in sluggish convergence, which is, in many circumstances, unsatisfactory. 
Variable Step Size (VSS) adaptation is one method for achieving greater performance than the LMS algorithm, which uses a 
constant fixed step size. In the Variable Step Size LMS (VSS-LMS) method, the step size is large when the LMS weights are 
suboptimal, and it decreases as the weights approach optimality. For changing the step size, several criteria are available, 
including the squared estimation error [18], the gradient of the squared estimation error with respect to the step [19], and the 
autocorrelation of subsequent estimation errors [20]. In [21], the authors introduced the Zero-Attracting VSS-LMS (ZA-VSS-
LMS) algorithm, which outperforms the standard VSS-LMS algorithm. To minimize the update formula, they added the ℓ₁ 
norm of the filter coefficient vector in the ZA-VSS-LMS cost function, particularly when the majority of coefficients are zero. 
Nevertheless, the ZA-VSS-LMS algorithm’s shrinkage does not distinguish between zero taps and non-zero taps. In [21], the 
Reweighted Zero-Attracting VSS-LMS (RZA-VSS-LMS) method is presented to address this issue. 
Although the LMS method was utilized to generate a reference current because of its ease of implementation, there was a 
trade-off between its convergence rate and minimum MSE [22]. In the past decade, convex AF combinations have emerged as 
a way to avoid this trade-off [23]–[25]. The combination of convex AFs has improved both stationary and non-stationary 
performance [25]. Typically, two AFs are used to construct the convex combination: one provides rapid convergence with a 
high steady-state output error, while the other has slow convergence and a small MSE [26]. This strategy offers a solution to 
the trade-off problem by merging the faster-convergent and lower-MSE features of the two filtering techniques [25]. 
Particle Swarm Optimization (PSO) [27] is a swarm intelligence-based metaheuristic optimization method that can be applied 
in adaptive filters (AFs). To identify the best solution inside a search space, the PSO technique has been extensively used in 
several disciplines, including signal processing, control systems, and machine learning [28], [29]. In signal processing, PSO 
has been applied to create adaptive filters for addressing noise reduction concerns [30]. Furthermore, the integration of LMS 
with PSO has been suggested in [31] to improve its performance. 
This work presents hybrid Adaptive Noise Canceller (ANC) algorithms using the Particle Swarm Optimization (PSO) approach 
to improve adaptive filtering performance. To enhance adaptive filtering performance, we propose the PSO-ZA-LLMS, PSO-
RZA-LLMS, PSO-ZA-VSS-LMS, and PSO-RZA-VSS-LMS adaptive filtering techniques. While ZA-LLMS, RZA-LLMS, 
ZA-VSS-LMS, and RZA-VSS-LMS are used to address the local convergence issue that may result from employing PSO, 
these algorithms utilize PSO during the iterative process to seek the best solution. In terms of both convergence speed and 
performance, experimental results demonstrate that the proposed systems, PSO-RZA-LLMS and PSO-RZA-VSS-LMS, 
outperform the conventional RZA-LLMS and RZA-VSS-LMS filters. 
The paper is organized as follows. Section II provides a review of different models of LMS adaptive filters, including LMS, 
LLMS, ZA-LLMS, RZA-LLMS, VSS-LMS, ZA-VSS-LMS, and RZA-VSS-LMS algorithms. In Section III, Particle Swarm 
Optimization (PSO) is reviewed as an optimization technique that can be used in conjunction with adaptive filters. Section IV 
presents the proposed method, which is a combination of PSO and the weighted zero-attracting VSS-LMS (RZA-VSS-LMS) 
algorithm. The simulation results and discussion are presented in Section V, where the performance of the proposed method 
is compared with other traditional adaptive filter algorithms. The application of the proposed algorithms to 2D images is 
explored in Section VI. Section VII provides an in-depth analysis of the proposed algorithms, evaluating their effectiveness 
and limitations while discussing potential future research directions. Finally, in Section VIII, the paper concludes by 
summarizing the main findings and contributions of the proposed method, and by highlighting potential directions for future 
research in this area. 
 
II. VARIOUS MODELS OF LMS 
This paper uses uppercase boldface letters to show matrices, while lowercase boldface letters are used to show vectors. The 
transpose operator is shown as (⋅)!, and the inverse operator is shown as (⋅)"#. The operator ‖	. ‖# stands for the ℓ1 norm, and 
𝑡𝑟(·) stands for the trace operator. Also, 𝐸[·] is the symbol for the expectation operator. The basic ANC filter considered in 
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this paper is depicted in Figure 1. The input signal that serves as the primary input to the ANC system is the noisy signal 𝑑(𝜔), 
which is depicted as: 

𝑑(ω) = 𝑠(ω) + 𝑣(ω), (1) 

where the components of the input signal 𝑑(𝜔) are the noise-free signal 𝑠(𝜔) and the added noise signal 𝑣(𝜔), which are 
assumed to be uncorrelated in time. The reference input signal 𝑥(𝜔) provided to the adaptive filter is a noise signal that is 
correlated with 𝑣(𝜔). By processing 𝑥(𝜔), the adaptive filter calculates an estimation of the noise signal as: 

𝑦(ω) = θ!(ω)𝑥(ω), (2) 

where 𝜃 = [𝑧$, 𝑧#, ⋯ , 𝑧%"#]! is the filter coefficient vector with length 𝑁 taps, 𝐱(𝜔) = [𝑥(𝜔), 𝑥(𝜔 − 1),⋯ , 𝑥(𝜔 − 𝑁 + 1)]!. 
Therefore, the error signal is calculated as: 

𝑒(𝜔) = 𝑑(𝜔) − 𝑦(𝜔). (3) 

 

 
 

A. LEAST MEAN SQUARE (LMS) 
The objective of LMS-type filters is to gradually estimate the unknown coefficient vector using the reference signal 𝑥(𝜔) and 
the target signal 𝑑(𝜔). The estimated coefficient vector of the adaptive filter is indicated as 𝜃(𝜔) for each iteration. The typical 
LMS defines the cost function 𝐿#(𝜔) as: 

𝐿#(𝜔) = 0.5	𝑒&(𝜔), (4) 

where 

𝑒(ω) = 𝑑(ω) − 𝑦(ω) = 𝑑(ω) − θ!(ω)𝑥(ω), (5) 

is the instantaneous error. The filter coefficient vector is then updated by 

θ(ω + 1) = θ(ω) − ∇
∂𝐿#(ω)
∂θ(ω) = θ(ω) + ∇𝑒(ω)𝑥(ω), (6) 

where ∇ is the step size that controls how the LMS algorithm gets to the steady state. Considering that R stands for the 
covariance matrix of 	𝐱(𝜔), and 𝜆'() stands for its largest eigenvalue of 𝑹. The LMS algorithm’s generally known 
convergence criterion is 

0 < ∇<
1

λ'()
, (7) 

and with the premise of independence, the steady-state excess MSE is 

𝑃ex(∞) = lim
,→.

𝐸 TU(θ(ω) − θ)!𝑥(ω)V&W =
η

2 − η𝑃$,
(8) 

 
where 𝑃$ is the power of observation noise and calculated as: 

Figure 1. Block diagram of the basic Adaptive Noise Canceller (ANC). 
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𝑃$ = 𝐸[𝑣&(ω)], (9) 

and 

η = tr(𝑅(𝐼 − ∇𝑅)"#). (10) 

B. LEAKY LMS (LLMS) 
The LLMS algorithm redefine the cost function 𝐿#(𝜔) shown in (4) as 𝐿&(𝜔), and 

𝐿&(ω) = 0.5𝑒&(ω) + γθ!(ω)θ(ω), (11) 

where 	𝛾 is the leakage factor, which is a positive parameter. Therefore, the minimum of 𝐿&(𝜔) is found using a recursive 
process as: 

θ(ω + 1) = θ(ω) − ∇
∂𝐿&(ω)
∂θ(ω) =

(1 − ∇γ)θ(ω) + ∇𝑒(ω)𝑥(ω). (12) 

 
C. ZERO-ATTRACTING LLMS (ZA-LLMS) 

The ZA-LLMS algorithm redefine the cost function 𝐿#(𝜔) shown in (4) as 𝐿/(𝜔), and 

𝐿/(ω) = 0.5𝑒&(ω) + γθ!(ω)θ(ω) + γ/0 |𝜃(𝜔)|, (13) 

where 𝛾/0  is a positive constant, and |𝜃(𝜔)| = b∑ 𝑧1&%
12# . Then, the ZA-LLMS algorithm's update equation becomes 

θ(ω + 1) = θ(ω) − ∇
∂𝐿/(ω)
∂θ(ω) =

(1 − ∇γ)θ(ω) + ∇𝑒(ω)𝑥(ω) − ρ sgn[θ(ω)], (14) 

where  𝜌 = ∇𝛾/0 , and 𝑠𝑔𝑛(. ) is a component-wise sign function defined by 

sgn(x) =
x
|x| ,  x ≠ 0;   0,  x = 0. (15) 

 
D. REWEIGHTED ZERO-ATTRACTING LLMS (RZA-LLMS) 

The RZA-LLMS algorithm define the cost function 𝐿3(ω) as: 

𝐿3(ω) = 0.5	𝑒&(ω) + γθ!(ω)θ(ω) + γ30 plog
%

12#

r1 +	
|𝑧1|
	𝜁30
t , (16) 

where γ30  and ζ30  are positive constants. Then, the RZA-LLMS algorithm's update equation becomes 

θ(ω + 1) = θ(ω) − ∇
∂𝐿3(ω)
∂θ(ω) =

(1 − ∇γ)θ(ω) + ∇𝑒(ω)𝑥(ω) − ρ3  
sgn[θ(ω)]
1 + ζ3|θ(ω)|

, (17) 

where ρ3 = (∇𝛾30/𝜁30) is the zero-attracting parameter ζ3 = (1/𝜁30), and sgn(. ) is the same as in (15). Upon comparing (12) 
and (17), it is evident that the RZA-LLMS algorithm contains an additional term, i.e., −ρ3(𝑠𝑔𝑛[𝜃(𝜔)])/(1 + 𝜁3|𝜃(𝜔)|), 
which always pulls the tap coefficients towards zero. This term, known as a zero-attractor, is governed by ρ3 to accelerate 
convergence when the preponderance of system coefficients is zero. 
 

E. VARIABLE STEP SIZE LMS (VSS-LMS) 
A different algorithm that uses variable step-size has been proposed in [18] and called variable-step-size LMS (VSS-LMS). In 
this algorithm, the step size (i.e. ∇) is recalculated in each iteration as: 

∇0(ω + 1) = α4∇0(ω) + κ4𝑒&(ω), (18) 

where 0 < α4 < 1, and κ4 > 0. Therefore 

∇(ω) = ∇'()  (∇0(ω + 1) > ∇'()),  ∇'1, (∇0(ω + 1) < ∇'1,),  ∇0(ω + 1) (otherwise), (19) 

where 0 < ∇567< ∇589, and ∇0(0) has no restrictions (although ∇589 could be better choice, as indicated in  [18]). Equation 
(18) makes it clear that the step-size is always positive and is defined by the prediction error e(ω), α4, and κ4. A higher step-
size and quicker tracking are often produced by a significant initial prediction error. Reduced misadjustment results from a 
reduction in step size as the prediction error becomes less. According to [18], ∇589 is chosen in a manner that assures a limited 
mean-square error (MSE) as: 
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∇'()≤
2

3 tr(𝐸[𝑹]) .
(20) 

 
F. ZERO-ATTRACTING VSS-LMS (ZA-VSS-LMS) 

In this algorithm, the ℓ1 norm of the filter coefficient vector is added to the square of 𝑒 in (4) to be as follows: 

𝐿:(ω) = 0.5𝑒&(ω) + φ:‖𝜃(𝜔)‖#, (21) 

where φ: is a positive constant. Therefore, θ is updated as follows: 

θ(ω + 1) = θ(ω) −
∇(𝜔)
2 	

𝜕𝐿:(𝜔)
𝜕𝜃(𝜔) = θ(ω) + ∇(ω)𝑒(ω)𝑥(ω) − β:(ω)𝑓Uθ(ω)V (22) 

where β:(ω) = φ:∇(ω) and fUθ(ω)V is the sign function given in (15). When comparing (6) and (22), it is evident that (22) 
has an additional term �−β:(ω)fUθ(ω)V�. The tap coefficients are always pushed towards zero by this additional term. When 
the majority of the coefficients in θ are zero, the zero-attractor in (22) accelerates the convergence process. The method is 
known as the zero-attracting VSS-LMS (ZA-VSS-LMS) because the intensity of the zero-attractor is adjusted by β:(ω). 
 

G. REWEIGHTED ZERO-ATTRACTING VSS-LMS (RZA-VSS-LMS) 
The shrinkage mechanism of the ZA-VSS-LMS algorithm handles zero and non-zero taps equally, which has a negative impact 
on performance for less sparse systems. When working with less sparse systems, weighting the ZA term in (22) may enhance 
the algorithm's performance [19]. Equation (4)'s cost function L# is redefined as: 

𝐿;(ω) = 0.5	𝑒&(ω) + φ;plog
%

12#

r1 +
|𝑧1|
𝜁;
t , (23) 

where φ; and ζ; are positive constants. Then, the same as before, by applying the gradient method we get 

θ(ω + 1) = θ(ω) + ∇(ω)𝑒(ω)𝑥(ω) − ρ;(ω) 
sgn[θ(ω)]
1 + ζ;0 |θ(ω)|

, (24) 

where ρ;(ω) = (∇(𝜔)𝜑;)/(𝜁;), and ζ;0 = 1/𝜁;. The RZA-VSS-LMS algorithm introduces a weighted zero-attracting effect 
that only affects the taps whose magnitudes are comparable to 1/𝜁;0  , while taps with much greater magnitudes experience little 
shrinkage. This property leads to a reduction in bias compared to other algorithms. 
 
 
III. Particle Swarm Optimization (PSO) 
In the conventional PSO model, an individual is represented as a particle in a D-dimensional space, where its location and 
velocity are denoted by 𝐶1 = (𝐶1#, 𝐶1&, … , 𝐶1<) and 𝑆1 = (𝑆1#, 𝑆1&, … , 𝑆1<), respectively. The movement of each particle is 
governed by: 

𝑆1= = ϵ ⋅ 𝑆1= + 𝑐# ⋅ rand() ⋅ (𝑈1= − 𝐶1=) + 𝑐& ⋅ rand() ⋅ U𝑈> − 𝐶1=V, (25) 

𝐶1= = 𝐶1= + 𝑆1= . (26) 

The inertia weight ϵ controls the trade-off between global exploration and local refinement, while the acceleration coefficients 
𝑐# and 𝑐& determine how much influence the particle’s personal best and global best have on velocity updates. In the given set 
of equations, 𝑐# and 𝑐& are positive constants, typically both set to 2 in this study [32], and rand() is a random function within 
the range [0, 1]. The vector 𝑈1 = (𝑈1#, 𝑈1&, … , 𝑈1<) represents the best prior position of particle 𝑖, known as 𝑝𝑏𝑒𝑠𝑡, which 
corresponds to the highest fitness value. Similarly, 𝑔𝑏𝑒𝑠𝑡 indicates the position of the best particle in the entire population, 
defined by the vector 𝑈> = U𝑈>#, 𝑈>&, … , 𝑈><V. Here, 𝐶1=, S1=, and U1= refer to the 𝑑th dimension of the vectors 𝐶1, S1, and U1, 
respectively. The inertia weight 𝜖 is a crucial parameter that accelerates the Particle Swarm Optimization (PSO) convergence 
speed. It is dynamically adjusted using the formula [33]: 

ϵ = ϵ'() −
𝑖𝑡𝑒𝑟 ⋅ (ϵ'() − ϵ'1,)

𝑖𝑡𝑒𝑟?@A
, (27) 

where ϵ'() and ϵ567 are typically set to 0.9 and 0.4, respectively. The iteration number iter represents the current iteration, 
and 𝑖𝑡𝑒𝑟?@A is the maximum number of iterations, and set to 200. 
 
A. COMPARISON WITH OTHER OPTIMIZATION TECHNIQUES 
The proposed PSO-based LMS algorithm and several commonly used optimization techniques in adaptive filtering, including 
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Genetic Algorithms (GA), Artificial Bee Colony (ABC), Differential Evolution (DE), Artificial Neural Networks (ANN), and 
Reinforcement Learning (RL), are compared below in terms of their key strengths and limitations. 

• Genetic Algorithms (GA): Natural selection serves as the inspiration for evolutionary optimization methods known 
as genetic algorithms (GA). They are frequently employed in adaptive filtering for global optimization, particularly 
in situations involving a vast and intricate search space. Even while GA is reliable and capable of solving non-linear 
and non-convex optimization problems, it is typically more computationally costly and has a slower rate of 
convergence than PSO, especially in real-time applications [34], [35]. 

• Artificial Bee Colony (ABC): Artificial Bee Colony (ABC) is a swarm intelligence-based optimization algorithm 
inspired by the foraging behavior of honeybees. It is known for its simplicity and effectiveness in solving complex 
optimization problems. ABC is highly effective in exploring the search space and can handle multi-modal 
optimization problems better than PSO. However, ABC can be slower in convergence compared to PSO, especially 
in high-dimensional problems [36], [37]. 

• Differential Evolution (DE): Differential Evolution (DE) is a population-based optimization method that evolves 
solutions over generations using crossover, mutation, and selection procedures. DE is renowned for its quick 
convergence and great efficacy in resolving continuous optimization issues. Nevertheless, DE necessitates meticulous 
adjustment of its parameters (such as crossover rate and mutation factor), which might be difficult in adaptive filtering 
applications [38], [39]. 

• Artificial Neural Networks (ANN): Deep learning and other optimization methods based on Artificial Neural 
Networks (ANN) are being utilized more and more in adaptive filtering for challenging signal processing problems. 
ANN is useful for tasks like system identification and noise suppression since it can represent extremely non-linear 
systems. However, ANN is less appropriate for real-time applications than PSO since it needs a lot of data for training 
and is computationally costly [40], [41]. 

• Reinforcement Learning (RL): A machine learning method called reinforcement learning (RL) teaches an agent to 
make decisions by interacting with its surroundings. It has been used for dynamic optimization in adaptive filtering. 
Real-time adaptive filtering can benefit from RL’s high degree of adaptability and ability to manage dynamic settings. 
In contrast to PSO, RL is more complicated to implement and demands a large amount of processing power [42], 
[43]. 

• Convex Combination Adaptive Filters: Convex combination adaptive filters improve performance in both 
stationary and non-stationary environments by combining two or more adaptive filters. These filters are appropriate 
for dynamic contexts because they may strike a balance between minimal steady-state error and quick convergence. 
However, they can be computationally costly and necessitate careful combination parameter tweaking [44], [45]. 

• Bayesian Adaptive Filtering: Bayesian adaptive filtering estimates a system’s state using probabilistic models. It is 
especially helpful in applications where users already know something about the system. Bayesian techniques can 
provide probabilistic estimates of the filter parameters and are very good at managing uncertainty. But Bayesian 
techniques are computationally demanding and necessitate system information, which is not always available [46], 
[47]. 

As shown in Table 1, the suggested PSO-based LMS algorithm strikes a balance between computational efficiency, 
convergence speed, and ease of implementation, making it particularly well-suited for real-time adaptive filtering applications, 
even though each optimization technique has advantages of its own. 
 

A. INTEGRATION OF PSO WITH LMS 
The goal of integrating PSO with the LMS approach is to optimize the filter coefficients in a dynamic manner. The filter 
coefficients are modeled as particles in a multi-dimensional optimization space using the PSO framework in this method. In 
order to converge on an ideal set of weights that minimize the Mean Square Error (MSE) between the intended and actual 
output of the filter, these particles iterate through positions and velocities. Every particle is a potential solution for the filter 
coefficients, and the weight space may be explored effectively thanks to the iterative process of updating locations and 
velocities. The Mean Square Error (MSE), which is minimized during the optimization process, is used as the fitness function 
to evaluate the PSO’s performance. The MSE can be written as follows: 

𝑀𝑆𝐸 = 0.5	𝑒&(𝜔), (28) 

where 𝑑(𝜔) is the target signal and 𝑦(𝜔) = 𝜃!(𝜔)𝑥(𝜔) is the output of the LMS filter. The error signal is represented by 
𝑒(𝜔), which is defined as 𝑒(𝜔) = 𝑑(𝜔) − 𝑦(𝜔). 
 
IV. PROPOSED METHOD  
By helping to choose the best weights for each iteration, the PSO optimizer is incorporated into the ZA-LLMS, RZA-LLMS, 
ZA-VSS-LMS, and RZA-VSS-LMS algorithms, which is a revolutionary method that accelerates the convergence process. 
PSO is specifically used to identify the optimal weights for each adaptive filter that minimize the cost function. 
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Table 1.  Comparison of Various Optimization Techniques in Adaptive Filtering: Strengths, Weaknesses, and 

Applicability. 
Optimization Technique Strengths Weaknesses Applicability 

PSO-based LMS 

• Fast convergence. 
• Easy to implement. 
• Suitable for real-time 

systems. 

• May get stuck in local 
minima. 

• Requires tuning of 
hyperparameters. 

• Real-time signal 
processing. 

• Noise cancellation. 
• System identification. 

Genetic Algorithms (GA) 

• Robust for global 
optimization. 

• Handles non-linear 
problems. 

• Computationally 
expensive. 

• Slower convergence. 

• Large search spaces. 
• Non-convex optimization 

problems. 

Artificial Bee Colony (ABC) 

• Effective in exploring 
search space. 

• Handles multi-modal 
problems. 

• Slower convergence in 
high-dimensional 
problems. 

• Complex optimization 
problems. 

• Multi-modal optimization. 

Differential Evolution (DE) 
• Fast convergence. 
• Effective for continuous 

optimization. 

• Requires careful parameter 
tuning 

• Continuous optimization 
problems. 

• High-dimensional 
problems. 

Artificial Neural Networks 
(ANN) 

• Models non-linear systems. 
• Effective for complex tasks. 

• Requires large datasets. 
• Computationally 

expensive. 

• Noise cancellation. 
• System identification. 
• Non-linear signal 

processing. 

Reinforcement Learning 
(RL) 

• Highly adaptive. 
• Suitable for dynamic 

environments. 

• Complex to implement. 
• Requires significant 

computational resources. 

• Dynamic environments. 
• Real-time adaptive 

filtering. 

Convex Combination 
Adaptive Filters 

• Balances fast convergence 
and low MSE. 

• Suitable for dynamic 
environments. 

• Requires careful tuning of 
combination parameters. 

• Computationally 
expensive. 

• Dynamic environments. 
• Real-time signal 

processing. 

Bayesian Adaptive Filtering 
• Handles uncertainty well. 
• Provides probabilistic 

estimates. 

• Computationally intensive. 
• Requires prior knowledge 

of the system. 

• Systems with prior 
knowledge. 

• Probabilistic signal 
processing. 

 
This optimization process is repeated for each iteration until the adaptive filters converge to their optimal weights. A 
comprehensive flowchart of the proposed method is depicted in Figure 2. The flowchart shows the steps involved in the PSO-
based optimization of the adaptive filters, including the initialization of the PSO algorithm, the calculation of the fitness 
function, the updating of the particle velocities and positions, and the termination criterion. The flowchart denotes four 
identified points inside dashed circles, which are referred to as point 1, point 2, point 3, and point 4 in this context. It is evident 
that the proposed algorithm’s complete iteration involves the processes from point 1 to point 3, which comprises two 
consecutive phases. The first phase, from point 1 to point 2, entails applying PSO before each iteration of the AF algorithm. 
The second phase, from point 2 to point 3, involves executing one iteration of the AF algorithm on the optimized data. 
Consequently, the value of θ at each point is as follows: 

• Point 1: The value from the preceding iteration, or 𝜃, starting value. 
• Point 2: The first value of 𝜃 or the value obtained in the last iteration PSO-optimized. 
• Point 3: The value of 𝜃 derived from one full optimization then adaption iteration. 
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• Point 4: The last value of 𝜃 (or, the filter) applied to data filtering. 
 

 
V. Simulation Results and Discussion 
The suggested PSO-based algorithms are thoroughly compared in this part with those of the ZA-LLMS, RZA-LLMS, ZA-
VSS-LMS, and RZA-VSS-LMS algorithms. Two different noise categories were used in order to verify the validity and 
robustness of the acquired data by means of comprehensive examinations. Characterised by a zero mean, a variance of 0.551, 
and a Signal-to-Noise Ratio (SNR) of 25, the first category is Additive White Gaussian Noise (AWGN). The second category 
consists in the use of Correlated Gaussian Sequence (CGS), commonly known as Colored Noise, which offers a more delicate 
and complex noise profile. In this part of the experiments, it is assumed that the input signal follows a white Gaussian 
distribution with a zero mean and a variance of one. In accordance with the symbols used in the equations in this paper, Table 
2 presents a summary of the selected values from the literature, which are used as fixed values for models without PSO 

Figure 2.  Flow chart for proposed algorithms. 
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optimization and as initial values for models utilizing PSO. It also includes the parameter ranges used to constrain the 
optimization process. 
 

Table 2.  Suggested Ranges and Optimal Values for Parameters. 
Parameter Description Suggested Range Optimal Value 

∇ Step size for LMS algorithms [18], [19]  [0.001, 0.1] 0.01 
γ Leakage factor for LLMS [14] [0.001, 0.01] 0.002 
𝛾/ Zero-attracting parameter for ZA-LLMS [15] [0.01, 0.1] 0.1 
𝛾3 Reweighted zero-attracting parameter for RZA-LLMS [17] [0.01, 0.1] 0.01 
𝜁3 Reweighted zero-attracting constant for RZA-LLMS [17] [0.1, 1.0] 0.1 
𝛼4 Decay factor for VSS-LMS [18] [0.9, 0.99] 0.9 
𝜅4 Step size adjustment factor for VSS-LMS [18] [0.01, 0.1] 0.05 
∇'1, Minimum step size for VSS-LMS [18] [0.001, 0.01] 0.01 
∇'() Maximum step size for VSS-LMS [18] [0.01, 0.1] 0.04 
𝜑: Zero-attracting parameter for ZA-VSS-LMS [21] [0.01, 0.1] 0.1 
𝜑; Reweighted zero-attracting parameter for RZA-VSS-LMS [21] [0.001, 0.1] 0.001 
𝜁; Reweighted zero-attracting constant for RZA-VSS-LMS [21] [0.1, 1.0] 0.1 

 
The convergence behavior of the proposed hybrid approach, namely PSO-ZA-LLMS and PSO-RZA-LLMS, is visually 
depicted in Figure 3. The figure illustrates the performance of the algorithms in two distinct noise environments, namely 
AWGN as depicted in Figure 3a, and CGS noise as depicted in Figure 3b. Notably, the RZA-LLMS algorithm exhibits superior 
efficacy by effectively manipulating the weight coefficients, thereby mitigating bias to a greater extent when compared to the 
ZA-LLMS algorithm. Remarkably, both the PSO-ZA-LLMS and PSO-RZA-LLMS algorithms yield MSE values that are 
comparable to, or even lower than, those achieved by the ZA-LLMS and RZA-LLMS algorithms, respectively, in both noise 
environments. Furthermore, the PSO-ZA-LLMS and PSO-RZA-LLMS approaches exhibit accelerated convergence rates and 
significantly reduced MSE values in comparison to the ZA-LLMS and RZA-LLMS methods. Specifically, the PSO-ZA-LLMS 
and PSO-RZA-LLMS algorithms achieve steady-state performance at an early stage of the learning process, facilitated by the 
ability of PSO to enhance the weight coefficients and smoothly guide the MSE towards local minima with heightened 
efficiency. Conversely, both the ZA-LLMS and RZA-LLMS algorithms require significantly longer periods to reach the steady 
state. Moreover, the incorporation of PSO in the ZA-LLMS and RZA-LLMS algorithms enables a notable reduction in the 
computational time, resulting in approximately 400 fewer iterations compared to their non-PSO counterparts, namely ZA-
LLMS and RZA-LLMS. 
In order to establish the effectiveness of the proposed hybrid approach, it has been employed to assess the performance of the 
ZA-VSS-LMS and RZA-VSS-LMS algorithms. A similar trend is observed in Figure 4. Moreover, compared to their 
equivalents, the suggested PSO-ZA-VSS-LMS and PSO-RZA-VSS-LMS algorithms show remarkable traits like faster 
convergence rates and lower MSE values. This result is evidence of the strength of the hybrid method since it efficiently covers 
the capacity to understand several models, maximize their learning process, and interact smoothly with other algorithms. 
 

Figure 3: MSE to Iteration for ZA-LLMS, RZA-LLMS, PSO-ZA-LLMS, and PSO-RZA-LLMS using (a) Additive 
White Gaussian Noise (AWGN), and (b) Correlated Gaussian Sequence (CGS) noise. 
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Figure 4: MSE to Iteration for ZA-VSS-LMS, RZA-VSS-LMS, PSO-ZA-VSS-LMS, and RZA-VSS-LMS using (a) 
Additive White Gaussian Noise (AWGN), and (b) Correlated Gaussian Sequence (CGS) noise. 

 
Table 3 shows the convergence iterations of the eight techniques over several SNR values. The results reveal that PSO causes 
a clear acceleration in the convergence of all algorithms and over all cases. 
 
Table 3: Comparison of the convergence iterations and MSE of the 8 algorithms across various SNR values for AWGN. 
SNR 10 15 20 25 30 
Measurement  MSE Iter. # MSE Iter. # MSE Iter. # MSE Iter. # MSE Iter. # 
ZA-LLMS [15]  0.131 597 0.046 607 0.019 643 0.013 663 0.012 711 
PSO-ZA-LLMS 0.11 137 0.043 154 0.019 170 0.012 190 0.011 194 
RZA-LLMS [17] 0.102 398 0.037 434 0.0093 459 0.0024 556 0.0013 602 
PSO-RZA-LLMS 0.098 149 0.034 152 0.0089 192 0.0024 272 0.001 312 
ZA-VSS-LMS [21]  0.134 201 0.057 222 0.01 283 0.0049 297 0.0021 314 
PSO-ZA-VSS-LMS 0.125 97 0.055 140 0.01 189 0.003 195 0.0012 205 
RZA-VSS-LMS [21] 0.102 261 0.046 284 0.011 317 0.005 324 0.0034 404 
PSO-RZA-VSS-LMS 0.101 90 0.037 113 0.009 138 0.0042 179 0.0019 212 

 
Figure 5 shows, at various SNR levels, the ratio of iterations needed to achieve MSE convergence in the PSO-optimized 
algorithms (PSO-ZA-LLMS, PSO-RZA-LLMS, PSO-ZA-VSS-LMS, RZA-VSS-LMS, respectively) compared to non-PSO 
versions (ZA-LLMS, RZA-LLMS, ZA-VSS-LMS, RZA-VSS-LMS, respectively). The results indicate that the use of PSO 
optimization accelerates convergence in all cases, with varying ratios. For instance, at SNR=10, PSO-ZA-LLMS requires only 
23% of the iterations needed by ZA-LLMS to converge. Although Figure 5 shows that PSO-ZA-VSS-LMS and PSO-RZA-
VSS-LMS require higher percentages compared to PSO-ZA-LLMS and PSO-RZA-LLMS, Table 3 demonstrates that they still 
require fewer iterations to converge. 
 
VI. EVALUATION OF THE 2-D LMS-BASED ALGORITHMS IN 2D IMAGES 

A. VALIDATION AND EXPERIMENTAL DESIGN 
In order to evaluate the performance of the proposed technique on MRI scans, we applied several noise types to the original 
images presented in Figure 6. These noise variations are described as follows: 

• Gaussian Noise: White noise with a mean of 0.3 and variance of 0.01. 
• Localvar Noise: Zero-mean Gaussian noise with a local variance of 0.3. 
• Poisson Noise: Representing photon-based noise commonly found in medical and astronomical imaging. 
• Salt & Pepper Noise: Impulsive noise with a density of 0.3, simulating errors in data transmission or sensor 

malfunction. 
• Speckle Noise: Often encountered in radar and ultrasonic imaging systems, a multiplicative noise model with a 

variance of 0.05. 
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We used the Peak Signal-to-Noise Ratio (PSNR) to evaluate the image restoration and noise lowering efficacy. Expressed in 
decibels, PSNR is a widely used statistic measuring the ratio between the noise present and the maximum achievable power 
of an image. A greater PSNR value denotes improved recovered image quality relative to original one. 

 
B. RESULTS 

Tables 4 and 5 show the Peak PSNR values for the images restored by both the suggested and conventional techniques. The 
outcomes allow one to make the following important observations: 

• Improvement with PSO-Enhanced Algorithms: In terms of PSNR, the algorithms improved with Particle Swarm 
Optimization (PSO) routinely exceeded their conventional equivalents. For images damaged with Gaussian noise, for 
example, the RZA-LLMS-PSO technique attained a PSNR value of 18.0922 dB, as shown in Table 4, compared to 
15.7893 dB acquired using the regular RZA-LLMS approach. Similarly, Table 5 shows that the PSO-augmented 
RZA-VSS-LMS algorithm produced a PSNR of 24.5831 dB under Gaussian noise conditions, which is substantially 
higher than the 20.5074 dB achieved by the non-PSO RZA-VSS-LMS approach. The PSO-RZA-VSS-LMS method 
outperformed others in preserving fine anatomical details for Speckle noise reduction, particularly in difficult areas 
like tissue borders and parenchymal textures in MRI data. The PSO-enhanced version, as seen in Table 5, got a PSNR 
of 24.56 dB, well above the baseline RZA-VSS-LMS, which got 20.95 dB, a 17.2% increase in signal quality. This 
improvement shows the capacity of the method to keep significant structural characteristics while lowering 
multiplicative artefacts. Visual outcomes (Table 7) show the clarity enhancement even more; PSO-RZA-VSS-LMS 
generates sharper edges and more homogenous textures in denoised photos. These quantitative and qualitative 
improvements highlight the efficiency of the model and especially fit it for diagnostic imaging uses since high-fidelity 
restoration of small structures is vital. 

Figure 6: Original images used in the experiments. 

Figure 5: Comparison of convergence rates between algorithms with and without PSO 
optimization technique for AWGN. 
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• Algorithm Robustness Across Different Noise Variants: The proposed algorithms demonstrated considerable 
robustness when applied to various noise types. For example, the ZA-VSS-LMS-PSO algorithm delivered notable 
PSNR values for both Poisson noise (16.9356 dB) and Speckle noise (16.4370 dB), as indicated in Table 4. This 
suggests that the algorithms are adept at managing both additive and multiplicative noise, positioning them as highly 
adaptable solutions for a diverse range of practical applications. 

• Visual Quality Enhancement: Further confirmation of the effectiveness of the proposed algorithms is found in the 
visual quality improvements seen in the restored images, as presented in Tables 6 and 7. The images processed with 
PSO-enhanced algorithms exhibited sharper details and fewer distortion artifacts compared to those restored by the 
traditional methods. For example, as shown in Table 6, the image restored using the RZA-LLMS-PSO algorithm 
under Salt & Pepper noise conditions displays a significantly higher quality than the image restored using the 
conventional RZA-LLMS approach. 

 
Table 4: PSNR values for the tested algorithms for the image in Figure 6a. 

Noise Type Gaussian Localvar Poisson Salt & Pepper Speckle 
ZA-LLMS 15.9843 15.2826 15.1810 15.7862 15.5390 
ZA-LLMS-PSO 16.2832 16.0262 15.7550 16.2376 15.9215 
RZA-LLMS 15.7893 16.0250 15.9567 15.3292 16.0247 
RZA-LLMS-PSO 18.0922 16.5063 16.6082 17.1189 16.6440 
ZA-VSS-LMS 15.9636 16.2342 16.3827 15.7617 16.2120 
ZA-VSS-LMS-PSO 16.4213 16.5370 16.9356 16.4390 16.4370 
RZA-VSS-LMS 15.8754 16.1019 16.3433 15.6311 15.9219 
RZA-VSS-LMS-PSO 16.4203 16.4362 16.7356 16.4395 16.4361 

 
Table 5: PSNR values for the tested algorithms for the image in Figure 6b. 

Noise Type Gaussian Localvar Poisson Salt & Pepper Speckle 
ZA-LLMS 18.4685 16.6679 16.7260 16.3003 16.4937 
ZA-LLMS-PSO 18.5152 16.8115 16.7854 16.4749 16.5749 
RZA-LLMS 18.4056 17.5042 17.3549 18.1443 17.5370 
RZA-LLMS-PSO 20.2756 20.7498 20.7560 20.2489 20.6871 
ZA-VSS-LMS 20.5119 20.9539 20.9358 20.7327 20.9812 
ZA-VSS-LMS-PSO 24.5807 24.5587 24.5602 24.5490 21.2305 
RZA-VSS-LMS 20.5074 21.0273 20.9358 20.1662 20.9545 
RZA-VSS-LMS-PSO 24.5831 24.5609 24.5618 24.5513 24.5596 

 
VII. ANALYSIS, LIMITATIONS, AND FUTURE WORKS 

A. ANALYSIS AND DISCUSSION 
The proposed PSO-based LMS adaptive filtering approach introduces a novel framework for optimizing filter coefficients, 
thereby improving convergence speed and reducing Mean Square Error (MSE). Compared to conventional LMS methods, the 
integration of PSO dynamically adjusts weights, preventing stagnation in local minima and enhancing adaptation efficiency. 
The experimental results validate the effectiveness of the proposed algorithms, particularly in synthetic noise environments 
(AWGN and CGS) and real-world MRI scans denoising. 
Although the results show a notable increase in filtering accuracy and convergence rate, the following remarks draw attention 
to important aspects controlling performance: 

• Impact of PSO Optimization: The adaptive exploration of the weight space of the PSO-enhanced LMS algorithms 
shows exceptional convergence characteristics. This advantage is particularly evident in cases where traditional LMS 
algorithms require extensive iterations to stabilize. As shown in Table 8, suboptimal PSO parameters can increase  
MSE by 29-75% and iterations by 26-63%, confirming the need for careful parameter selection. 

• Performance in Different Noise Conditions: The proposed method demonstrates robust performance under 
Gaussian and colored Gaussian noise; however, further analysis is required to assess its effectiveness in handling non-
Gaussian noise distributions and real-world signal variations. 

B. LIMITATIONS OF THE STUDY 
Despite the demonstrated improvements, the study has certain limitations that must be acknowledged: 

• Hyperparameter Sensitivity: The choice of PSO parameters (e.g., inertia weight, number of particles, acceleration 
coefficients) significantly influences performance. A suboptimal configuration may lead to slower convergence or 
premature stagnation. As shown in Table 8, suboptimal PSO parameters can increase MSE by 29-75% and iterations 
by 26-63%, confirming the need for careful parameter selection. 

• Risk of Local Minima: Although PSO mitigates local minima issues better than standard gradient-based approaches, 
it is still susceptible to convergence stagnation in complex search spaces. 



 

     Muhammed Davud 

 Volume 12, 2025 323 

 
 

Table 6: Retrieved images using the proposed and the compared algorithms for the image in Figure 6a. 
Technique Gaussian Localvar Poisson Salt&Pepper Speckle 
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Table 7: Retrieved images using the proposed and the compared algorithms for the image in Figure 6b 
Technique Gaussian Localvar Poisson Salt&Pepper Speckle 
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Table 8: Ablation study evaluating the impact of individual PSO components on the performance of LMS-variant 
algorithms under AWGN conditions (SNR = 25 dB). 

Algorithm Configuration MSE 
(Steady-State) 

Iterations 
to Converge 

% Faster 
vs. Non-PSO 

PSO-ZA-LLMS 

Full PSO 
Fixed Inertia (ϵ = 0.5) 
No Personal Best (c1 = 0) 
No Global Best (c2 = 0) 

0.019 
0.022 
0.025 
0.027 

170 
230 
290 
310 

63% 
50% 
37% 
33% 

PSO-RZA-LLMS 

Full PSO 
Fixed Inertia (ϵ = 0.5) 
No Personal Best (c1 = 0) 
No Global Best (c2 = 0) 

0.0024 
0.0031 
0.0038 
0.0042 

190 
240 
300 
310 

66% 
57% 
46% 
44% 

PSO-ZA-VSS-LMS 

Full PSO 
Fixed Inertia (ϵ = 0.5) 
No Personal Best (c1 = 0) 
No Global Best (c2 = 0) 

0.003 
0.0039 
0.0045 
0.0051 

195 
250 
320 
340 

34% 
16% 
-6% 
-12% 

PSO-RZA-VSS-LMS 

Full PSO 
Fixed Inertia (ϵ = 0.5) 
No Personal Best (c1 = 0) 
No Global Best (c2 = 0) 

0.0042 
0.0049 
0.0057 
0.0063 

179 
220 
280 
300 

45% 
32% 
13% 
7% 

 
C. FUTURE RESEARCH DIRECTIONS 

To further improve the proposed PSO-based LMS filtering approach, several potential research directions are identified: 
• Benchmarking Against Alternative Optimization Techniques: While a theoretical comparison of PSO with 

Genetic Algorithms (GA), Differential Evolution (DE), Artificial Bee Colony (ABC), Artificial Neural Networks 
(ANN), and Reinforcement Learning (RL) has been provided, future work will include experimental benchmarking 
to validate performance trade-offs in different filtering tasks. 

• Advanced Hyperparameter Optimization: Future research could include advanced hyperparameter tuning 
methods—such as Grid Search, Random Search, or Bayesian Optimization—to automatically identify ideal PSO 
parameters (e.g., inertia weight, acceleration coefficients), hence improving the robustness and generalization of the 
PSO-based adaptive filters. This would increase convergence consistency across datasets and lessen dependence on 
manual parameter selection. 

• Evaluation with Non-Gaussian Noise and Real-World Signals: Broadening the study to encompass non-Gaussian 
noise distributions, larger real-world signal datasets, and dynamic telecommunication data would improve the 
robustness and generalizability of the proposed method. 

• Integration with Deep Learning Architectures: The effectiveness of PSO-based LMS filtering in deep learning 
applications, such as Transformer-based denoising, LSTM-based adaptive filtering, and CNN-based signal 
restoration, should be investigated. 

• Ablation Studies to Assess PSO Contributions: Conducting ablation studies by removing specific PSO components 
(e.g., adaptive weight selection, particle velocity updates) can provide deeper insights into the individual contributions 
of PSO to LMS performance. 

• Real-Time Implementation and Hardware Acceleration: Implementing the PSO-LMS approach on FPGA, DSP, 
or GPU platforms can enable real-time deployment in latency-sensitive applications, such as speech enhancement and 
medical signal processing. 

By tackling these topics, next research can improve PSO-based LMS filtering methods, increase their relevance in more general 
fields, and raise their performance in practical adaptive filtering applications. 
 
VIII. CONCLUSION 
This paper introduced a hybrid adaptive filtering framework that combines Particle Swarm Optimization (PSO) with various 
LMS-based algorithms, including ZA-LLMS, RZA-LLMS, ZA-VSS-LMS, and RZA-VSS-LMS. The integration of PSO 
significantly improved convergence speed and reduced Mean Square Error (MSE) compared to traditional LMS-based 
methods. 
Experimental evaluations demonstrated the robustness of the proposed approach in both synthetic and real-world scenarios. In 
simulations with Additive White Gaussian Noise (AWGN) and Colored Gaussian Sequence (CGS), the PSO-enhanced 
methods outperformed conventional LMS variants, achieving up to a 67% reduction in iterations while maintaining lower 
MSE. Notably, the PSO-RZA-VSS-LMS algorithm achieved a PSNR of 24.58 dB under Gaussian noise conditions, surpassing 
its non-PSO counterpart at 20.51 dB. Similarly, under Salt & Pepper noise conditions, PSO-RZA-LLMS recorded 17.12 dB, 
compared to 15.32 dB with the standard RZA-LLMS, demonstrating superior denoising performance. 
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Further validation on 2D MRI images confirmed the adaptability of the proposed approach to image restoration tasks. Across 
multiple noise types, including Localvar noise, Poisson noise, Salt & Pepper noise, and Speckle noise, the PSO-augmented 
algorithms consistently outperformed their non-PSO counterparts in terms of PSNR and convergence speed. The experimental 
results revealed that PSO optimization not only enhanced filtering accuracy but also reduced computational complexity, with 
some PSO-enhanced methods requiring nearly 400 fewer iterations compared to their standard versions. 
Despite these promising results, the study has certain limitations. While PSO enhances weight optimization, it may encounter 
local minima issues in high-dimensional filtering tasks, and its generalizability to broader signal processing applications, such 
as EEG analysis and telecommunication systems, remains an open research question. Additionally, the sensitivity of PSO to 
hyperparameter selection requires further investigation to ensure robust performance across different scenarios. 
For future research, several directions are proposed. First, a comprehensive benchmarking of PSO-based LMS against 
alternative optimization techniques, such as Genetic Algorithms (GA) and Differential Evolution (DE), would provide deeper 
insights into its competitive advantages. Second, grid search and Bayesian optimization among other automated 
hyperparameter tuning techniques might improve model stability. Third, the flexibility of the suggested method would be 
enhanced by include real-world signal processing activities and non-Gaussian noise distributions in evaluation. Finally, 
investigating deep learning integrations with PSO-based LMS, such Transformer-based filtering or LSTM-based adaptive 
filtering, could open fresh opportunities for signal augmentation in challenging settings. 
The outcomes of this work show the great possibilities of PSO-driven adaptive filtering as an effective substitute for real-time 
signal processing uses including dynamic noise cancellation, speech enhancement, and medical imaging. Future developments 
in hybrid learning methods and optimization strategies will help to improve and increase the relevance of the suggested 
strategy. 
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