
Sigma J Eng Nat Sci, Vol. 42, No. 6, pp. 1876−1883, December, 2024

Sigma Journal of Engineering and Natural Sciences
Web page info: https://sigma.yildiz.edu.tr

DOI: 10.14744/sigma.2023.00105

ABSTRACT

In this study, Genetic Algorithm (GA), a sort of randomized direct, iterative search methodol-
ogy built around natural selection, is employ in computers to discover approximations of solu-
tions to optimisation and search issues. GA employs operators including selection, crossover,
and mutation to tackle. In case of NP-hard issues, particularly for travelling salesman problem
(TSP), the GAs is beneficial. To reduce the overall distance, we propose a novel crossover
operator with its python code for the TSP. Along with the Python pseudo coding, we addi-
tionally introduced a mutation operator to enhance the consummation of GA in determining
the shortest distance in the TSP. To emphasize the proposed crossover and mutation operator,
we also illustrate different steps using examples. We integrated path representation with our
developed crossover and mutation operator as it is apparent method to represent a tour.

Cite this article as: Sharma MK, Chaudhary S, Rathour L, Mishra VN. Modified genetic al-
gorithm with novel crossover and mutation operator for travelling salesman problem. Sigma
J Eng Nat Sci 2024;42(6):1876−1883.

Research Article

Modified genetic algorithm with novel crossover and mutation operator
for travelling salesman problem

M.K. SHARMA1 , Sadhna CHAUDHARY1 , Laxmi RATHOUR2 , Vishnu Narayan MISHRA3,*
1Department of Mathematics, Chaudhary Charan Singh University, Meerut, 250004, India

2Department of Mathematics, National Institute of Technology, Chaltlang, Aizawl Mizoram, 796012, India
3Department of Mathematics, Faculty of Science, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur,

Madhya Pradesh 484887,India

ARTICLE INFO

Article history
Received: 11 July 2023
Revised: 19 September 2023
Accepted: 11 October 2023

Keywords:
Crossover Operator, Genetic
Algorithm, Muation Operator,
Python Coding, Travelling
Salesman Problem

*Corresponding author.
*E-mail address: vnm@igntu.ac.in; vishnunarayanmishra@gmail.com
This paper was recommended for publication in revised form by
Regional Editor Ahmet Selim Dalkilic

Published by Yıldız Technical University Press, İstanbul, Turkey
Copyright 2021, Yıldız Technical University. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

INTRODUCTION

Almost The basic concept of genetic algorithms (GA) is
a search-based optimisation approach and is introduced by
Holland [1]. The ‘survival of the fittest’ premise is the foun-
dation for GA, which are metaheuristics relies on natural
selection and Genetics principles. GA are often utilised to
produce high quality and superior solutions for search and
optimisation challenges. In other words, GA tend to find and
offer near-optimal solutions to scenarios that could require
a lot of time. GA are frequently employed in numerous

disciplines, comprises of soft computing, machine learning,
and operations research. It can optimise for continuous or
discrete variables without needing to know the derivatives.
Additionally, it works with numerically generated data,
experimental data, or analytical data and delivers a set of
optimal variables rather than simply one solution. GA pro-
cesses sustain a population of individuals and are iterative
in character. In essence, GAs can be described as composed
of two primary phases: the first is “Selection” for produc-
ing the next generation, and the second is “Manipulation,”

https://sigma.yildiz.edu.tr
https://orcid.org/0000-0003-3071-5931
https://orcid.org/0000-0003-1255-0395
https://orcid.org/0000-0002-2659-7568
https://orcid.org/0000-0002-2159-7710
http://creativecommons.org/licenses/by-nc/4.0/

Sigma J Eng Nat Sci, Vol. 42, No. 6, pp. 1876−1883, December, 2024 1877

which manipulates the selected individuals to produce the
next generation using various techniques, including cross-
over and mutation. Each iteration in GA is referred to as “a
generation,” and a population of new candidate solutions
is created utilising various biologically inspired operators
including mutation, crossover, and selection. In GA, each
individual is represented by a string known as chromosome
and may also be regarded as a problem-solving strategy.
These strings comprise characters known as genes, which
contain certain values known as alleles. GAs is appropri-
ate candidate to tackle the constrained, unconstrained and
combinatorial problem.

Using genetic operations like selection, fitness, cross-
over, and mutation processes, GA seeks for the optimal
results.
• Fitness: The fitness value quantifies the similarity

between two individuals and is a favourable utility
metric that is determined for every individual in the
population.

• Selection: Each member of the population receives
several copies, which are used up in the mating pool to
create an entirely novel population. Therefore, the like-
lihood that an individual will produce additional copies
in the mating pool increases as fitness value increases.

• Crossover: Recombination of individuals generates
new individuals known as offspring or children. One-
point and two-point crossover are popular recombina-
tion strategies.

• Mutation: Maintaining diversity in the population can
be done through mutation. Each individual is mutated
with a minute or extremely low chance, such as less than
1.0.
The procedures below can be used to define an uncom-

plicated genetic algorithm and the flow chart for illustrat-
ing various steps is shown in Figure 1. The 2-diemnsional
array encompassing population size and chromosome size
defined the population. Here, population initialization can
be done by utilizing two methods namely random and heu-
ristic initialization.The fitness function ought to be quick
enough to calculate. It must quantify the degree to which a
given solution is fit or the degree to which fit people can be
created from the provided solution.

When a GA run ends, a lot depends on the termina-
tion condition of the GA. In general, we want a termination
condition that, at the end of the run, puts the outcome very
near to the bestone. The following are the termination cri-
teria’s for the GA-
• when X iterations have passed with no population

improvement.
• when the number of generations is fixed.
• when the value of the objective function reaches a spe-

cific, predetermined value.
I. Using n chromosomes, create a starting generation.

Here the population is initialized.
II. Assess each chromosome’s fitness.

III. Proportionally pick n/2 parents of the present
population.

IV. Use the crossover operator to produce children by
picking two parents at random.

V. Employ mutation to vary findings a little bit.
VI. Until all parents have been chosen and mated, repeat

steps 4 and 5.
VII. An entirely new population of chromosomes will

replace the old one.
VIII. Determine each chromosome’s level of fitness in novel

population.
IX. Stop when the number of generations reaches a pre-

determined maximum; otherwise, proceed to Step III.
We have numerous representations in literature employ-

ing the GAs. Path, binary, adjacency,ordinal and matrix-
representation are some significant representations and
the summary of these representation with novel crossover
operator is given in Table 1.

Arqub et al. [13] employ the continuous GA to solve
singular two-point boundary value problems. Arqub and
Hammour [14] discussed a method for employing con-
tinuous GA for solving systems of second-order boundary
value problems. In order to validate this method, a few test
problems were created and solved. Hammour et al. [15]
presented a GA approach for the modelling of dynamical

Figure 1. Flow chart of GA.

Sigma J Eng Nat Sci, Vol. 42, No. 6, pp. 1876−1883, December, 20241878

systems. For numerically approximating the solutions of
Troesch’s and Bratu’s problems, Hammour et al. [16] intro-
duce continuous GA. Recently, to approximate a class of
Lebesgue integrable functions, Raiz et al. [17] introduced
a novel sequence of linear positive operators. Schurer Beta
bivariate operators were initially developed by Mishra et al.
[18] in terms of generalisation exponential functions and
their approximation characteristics.

The Travelling Salesman Problem (TSP) is one of the
most well-known combinatorial issues in optimising. The
TSP is one of the most recent optimisation problems to
have undergone extensive deliberation. It was initially for-
mulated as an optimisation problem in 1930. In TSP, the
objective is to determine probable tour such that a travelling
salesman visits each city exactly once and back to the ini-
tial city in order to minimize the total cost devoted or total
distance covered. Since there are n! various approaches to
locate the tour for n cities, specifically for 11 cities, there are
39916 800 possible route to optimize the total cost. So, the
complexity of finding the best route increases as the num-
ber of cities increases. Thus, TSP is a candidate of NP (Non-
Polynomial) hard combinatorial optimization problems.

In existing literature, exact and metaheuristic algo-
rithms are two approaches to tackle TSP as shown in table
1. In case of exact algorithms, following are major exact
algorithms in literature introduced to encounter with TSP;
Dantzig et al. [19] introduced a methodology to solve the
large-scale TSP. Later, Petberg [20] proposed a branch and
cut method to get the optimal solution of symmetric TSP. A
cutting plane approach is proposed by Fleischmann [21] in
order to tackle the TSP in case of a road network. Thereafter,
Petberg and Homg [22] proposed branch and cut method

to optimize symmetric TSP with 532 cities. On the other
hand, various heuristic algorithms are also introduced in
order to tackle the TSP. Initially, Brady [5] proposed a GA
approach deal with TSP. Bhide et al. [23] proposed a Boolean
approach with the help of neural network to deal with TSP.
Dorigo and Gambardella [24] proposed an approach with
the help of ant colony system to tackle the TSP. Knox [25]
proposed the tabu search approach to solve the symmet-
ric TSP. Later, Chiang and Russell [26] proposed simulated
annealing algorithms to cope with vehicle routing problem.
Thereafter, Focacci et al. [27] developed a hybrid exact
method for TSP. A local search strategy was presented by
Ibarki et al. [28] for addressing and arranging issues with
extensive time window limitations. Larranaga et al. [11]
reviewed the various methodologies used to resolve TSP
by utilizing GA. Also, presented different crossover and
mutation operators which are proposed to tackle the TSP
with the GA. Thereafter, An amalgam GA was suggested by
Nguyen et al. [29] to discover the TSP solution. Ghadle and
Muley [30] proposed a modified version of GA encoded by
using MATLAB to tackle the TSP. Kumar and Gupta [31]
proposed a methodology to solve the TSP with fuzzy L-R
parameters. Majumdar and Bhunia [32] modelled an asym-
metric TSP in a way that the distance between each pair
of cities travelled is denoted as an interval value instead of
a precise value. Thereafter, Changdar et al. [33] modelled
a multi-objective TSP with triangular fuzzy parameters
and, proposed an effectual GA to tackle this modelled TSP.
Maity et al. [34] proposed a modified GA to cope with con-
strained solid TSP in different settings including fuzzy and
crisp.

We suggest a novel crossover operator for the TSP along
with its Python source code. We entailed a mutation opera-
tor in addition to the Python pseudo coding to improve the
effectiveness of GA in calculating the shortest distance in
the TSP. We additionally employ examples to demonstrate
the proposed crossover and mutation operator at various
stages. We combined our newly designed crossover and
mutation operator with path representation because this is
an obvious way to express a tour.

This article is organized as follows; Section one is com-
pletely devoted to the basics of GA and the literature review
of GA and TSP. The mathematical formulation of the TSP

Table 1. List of different representations

Representation Crossover operator Author
Binary Classical, repair Lidd[2]
Path Partially-mapped Goldberg and Lingle [3]

Order Davis [4]
Sorted match Brady [5]
Heuristic Grefenstette [6]
Maximal preservative Muhlenbein et al. [7]
Voting recombination Muhlenbein et al. [8]
Order based Syswerda [9]
Heuristic Grefenstette [6]
Order based Syswerda [10]
Position based Syswerda [10]
Alternating-positions Larranaga et al. [11]

Adjacency Alternative edge Grefenstette et al. [12]
Heuristic 1 Grefenstette et al. [12]
Subtour chunks Grefenstette et al. [12]

Ordinal Classical operator Grefenstette et al. [12]

Table 2. Summary of approaches for TSP

Exact Approach Heuristic approach
Branch and bound Genetic algorithm
Cutting Planes Neural network
Branch and Cut Simulated annealing
Others Tabu search

Particle swarm optimization
Ant colony optimization

Sigma J Eng Nat Sci, Vol. 42, No. 6, pp. 1876−1883, December, 2024 1879

is described in section two. Several types of representa-
tion involved in GA are described in section three. Major
crossover operators for path representation are presented in
section four. Novel crossover operator is illustrated in sec-
tion five. On the other hand, the novel mutation operator is
given in section six. Finally, the section seven is devoted to
the conclusion of the article.

Mathematical Formulation of TSP
One way to represent the TSP is as an integer linear pro-

gramming. The Dantzig-Fulkerson-Johnson (DFJ) formu-
lation and the Miller-Tucker-Zemlin (MTZ) formulation
are well-known formulations of TSP available in the liter-
ature (Dantzig [35] & Velednitsky [36]). In some circum-
stances, the MTZ formulation is still beneficial, although
the DFJ formulation is stronger.

Let n be the number of cities, cij be the cost (distance)
form ith to jth city, and ui be the dummy variable.

xij is a binary variable and defined as:

The MTZ formulation of TSP is as follows:

The DFJ formulation of TSP is as follows:

Here, the last constraint, known as a subtour elimina-
tion constraint, assures that no appropriate subset Q can
form a sub-tour, resulting in a single tour as the solution
and not a union of smaller tours.

DIFFERENT TYPES OF REPRESENTATION

There have been a wide range of representations of a
chromosome to solve TSP problem by employing GA.
Binary, path, adjacency, ordinal and matrix representation
are major representation forms available in literature.

Binary Representation
Each city in the n-cities TSP is represented in binary as

a string of [log2n] bits, and an individual is represented as a
string of n[log2n] bits.

Example: In case of a 6-cities TSP, each city assigned
by 3-bit string. The tour 2-1-3-6-5-4 depicted as by using
Table 3.

 (001 000 010 011 100 101)

Path Representation
The elementary representation of a tour in TSP can be

done in a more appropriate way by using path representa-
tion. For a tour of n cities, if city i is the jth element of the
list, city i is the jth city to be visited.

Example:If n = 8. Then the tour is 4-2-3-1-7-5-8-6 is
represented as a string (4 2 3 1 7 5 8 6).

Ordinal Representation
In ordinal representation, ith member in set is a integer

between 1 to n - i + 1 and an ordered set consisting of vari-
ous destinations act as guide also exists.

Example: Let n = 8 and O = (1 2 3 4 5 6 7 8) be a refer-
ence list, then the tour 1-5-3-2-8-4-7-6 is represented by T
= (1 4 1 2 1 4 1 2 1)

Matrix Representation
In matrix representation, member ith row and jth col-

umn is 1 iff city i is visited before the city j
Example: The matrix representation of tour 2-3-1-4 is

CROSSOVER OPERATORS FOR TSP IN PATH
REPRESENTATOION

Partially Mapped (PMX), Cycle (CX), Cycle (CX2) are
predominantly used crossover operators of path represen-
tation in the current literature.

Table 3. An illustration of a visit of six cities in binary

i City i i City i
1 000 4 101
2 001 5 100
3 010 6 011

Sigma J Eng Nat Sci, Vol. 42, No. 6, pp. 1876−1883, December, 20241880

Partially Mapped (PMX)
Partially Mapped Crossover operator (PMX) was intro-

duced by Goldberg and Lingle [3] for path representation of
chromosomes in path representation. In PMX, after choos-
ing two random cut locations on the parents to produce off-
spring, one parent’s string is mapped onto the other parent’s
string. Thereafter, a remaining bit are filled with the help of
mapping with the constraint that no bit is repeated in the
offspring.

Example:Let us consider two parents P1 and P2 with
two random cut points

P1 = (1 2 | 3 4 5 6 | 7 8)
P2 = (2 7 | 5 8 4 1 | 6 3)
Then, the mapping segment between the cut points rep-

licated with each other in order to build offspring, the map-
ping is 2 ↔ 1,7 ↔ 6,1 ↔ 8.

O1 = (× × | 1 4 5 8 | × ×)
O2 = (× × | 3 4 5 6 | × ×)

Cycle Crossover Operator (CX)
Cycle crossover (CX) operator was first introduced by

Oliver et al. [37]. Any bit in this operator is obtained via
any of the parents to determine its position. Let P1 and P2
be two parent string to illustrate the operator

P1 = (1 2 3 4 5 6 7 8)
P2 = (2 4 6 8 7 5 3 1)
Now, select 1st element of offspring from first element

of either of P1 or P2. Here from two options (1or 2), we will
choose 1. For last element of O1, we must consider 8, as if 1
is taken then it would not result as a legal tour.

O1 = (1 × × × × × × 8)
Similarly, for 2nd and 4th element, we have 2 and 4

respectively.
O1 = (1 2 × 4 × × × 8)
The relative positions of the elements selected up until

this point are considered to form a tour. Think about the 3rd
element of the O1. Any of the parents can be the source for
this component. Let’s say we choose it to come from parent
2. This indicates that the second parent must also be picked

for the 5th, 6th, and 7th components of offspring because they
make up another cycle. As a result, we discover the follow-
ing offspring:

O1 = (1 2 6 4 7 5 3 8)

Cycle Crossover Operator (CX) 2
Hussain et al. [38] proposed cycle crossover operator 2

(CX2) for TSP to optimize distance travelled.
Step 1. Let us consider two parents for mating. Choose

the 1st bit of the 1st offspring using 2nd parent string.
Step 2. The bit selected in Step 1 is present in the 1st par-

ent, followed by the same similar location bit selected in the
2nd parent, which is present in the 1st parent, and the similar
location bit selected in the 2nd parent, which is then selected
for the first bit of the 2nd offspring.

Step 3. The 1st parent will have the chosen bit from Step
3, and the 1st offspring would contain the following bit in
the 2nd parent’s identical place.

Step 4. Continue Steps 2 and 3 until the 1st bit of the 1st
parent does not appear in the 2nd offspring, at which point
the procedure may be stopped.

Step 5. If any bits remain, they will be similar in the 1st
parent and the 2nd offspring up to this point, and vice versa
for both parents.

Example:
Let us consider two parent chromosomes for mating
P1 = (3 4 8 2 7 1 6 5)
P2 = (4 2 5 1 6 8 3 7)
By employing above steps, the two offspring initiated

are as follows:
O1 = (4 8 6 2 5 3 1 7)
O2 = (1 7 4 8 6 2 5 3)

PROPOSED CROSSOVER OPERATOR

In this section we will propose the Increasing partially
mapped crossover operator (IPMX) and the python coding
of the proposed operator is given in Figure 2. The proposed
operator is defined by the following steps.

Figure 2. Python coding of proposed crossover operator.

Sigma J Eng Nat Sci, Vol. 42, No. 6, pp. 1876−1883, December, 2024 1881

Step 1. Select a pair of chromosome parents for mating.
Step 2. Pick out two random cut points on each parent

to construct two offspring.
Step 3. First arrange the bits between two random cuts

in the increasing order for each parent chromosome
Step 4. Now these portions between cut points are

mapped onto other parent strings.
Step 5. Fill the remaining bits from the primary parent

such that there is no dispute.
Step 6. To fill the bits with conflict, use the notion of

partial mapping.
Example: Let us consider two parent chromosomes for

mating with randomly two cut points marked by “|”.
P1 = (1 2 | 3 4 5 6 | 7 8)
P2 = (2 7 | 5 8 4 1 | 6 3)
The two children O1 and O2 are constructed as follows:
Initially arrange all bits of randomly selected segment

in the increasing order. Then mapped the resulted strings
between cut points onto other parents.

O1 = (× × | 1 4 5 8 | × ×)
O2 = (× × | 3 4 5 6 | × ×)
Now, fill the bits from original parent which does not

have any conflict. Here for O1, 2,7 are filled and for O2, 2,7
are filled.

O1 = (× 2 | 1 4 5 8 | 7 ×)
O2 = (2 7 | 3 4 5 6 | × ×)
To fill the remaining bits, use the notion of partially

mapping. The first × in first offspring O1 is 1 which comes
from P1 but 1 is already present in O1. So, in P1 we check
the element corresponding to 1 of P2, here 1 ↔ 6, first ×
is occupies by 6. Again, the second × in the O1 is 8 but 8 is
already present in O1. So, in P1 we check the element corre-
sponding to 8 of P2, here 8 ↔ 4, but 4 is present in O1, again
check mapping 4 ↔ 5. But 5 is existing in O1, again check 5
↔ 3, 3 occupies the second × of in P1

O1 = (6 2 | 1 4 5 8 | 7 3)
O2 = (2 7 | 3 4 5 6 | 1 8)
Similarly, we complete the second offspring O1.

PROPOSED MUTATION OPERATOR

GAs employ mutation to help the procedure evade local
solutions and give the population newly developed, com-
pletely improbable instances. The summary of mutation

operators is presented in Table 4. In this section, we propose
a novel mutation operator of path representation in GA.

This operator is completely defined by a linear function
and is mathematically defined as follows:

Let xi be the bits in chromosome of n size
L(xi)= xi + 1 ∀xi where xi represent bits in chromosome
The python coding of the proposed operator is pre-

sented in Figure 3.
Example: Let us consider p = (2 3 5 6 1 4 7 8) be a parent

chromosome to emphasize the proposed mutation operator
in a better way.

By applying the Linear function of mutation operator,
we get a child chromosome as

C = (3 4 6 7 2 5 78 1)

CONCLUSION

Utilising the survival of the fittest principle, GA a form
of evolution method to deal with optimisation issues. They
have been effectively utilized in several types of optimi-
zation issues, including the TSP. In TSP, our main aim to
locate a tour of every node in a weighted network and min-
imise the overall weight, we must solve the TSP. We have
examined various methods of representations of a tour in
TSP which are available in literature that could be employed
in genetic algorithms attempting to solve the TSP. We also
reviewed partially mapped (PMX), cycle (CX) and cycle
crossover 2 (CX2) available in literature for path represen-
tation as it the any form of tour is originally represented as
path. In this article, we proposed modified version of GA
by introducing an increasing partially mapped crossover
operator (IPMX) and a mutation operator to get optimize
solution of a TSP. We also, provide python coding of our
novel crossover and mutation operator for the better imple-
mentation of modified version of GA. GA and its modified
versions are applicable in different types of optimization

Figure 3. Python coding of proposed mutation operator.

Table 4. Summary of mutation operator in GA

Mutation Operator Author
Simple
Insertion

Holland [1]
Fogel [39]

Exchange Banzhaf [40]
Scramble Syswerda [10]
Displacement Michalewicz [41]
Inversion Fogel [42]

Sigma J Eng Nat Sci, Vol. 42, No. 6, pp. 1876−1883, December, 20241882

problems other than TSP such as transportation problem,
vehicle routing problem, neural networks, and so on.

AUTHORSHIP CONTRIBUTIONS

Authors equally contributed to this work.

DATA AVAILABILITY STATEMENT

The authors confirm that the data that supports the
findings of this study are available within the article. Raw
data that support the finding of this study are available from
the corresponding author, upon reasonable request.

CONFLICT OF INTEREST

The author declared no potential conflicts of interest
with respect to the research, authorship, and/or publication
of this article.

ETHICS

There are no ethical issues with the publication of this
manuscript.

REFERENCES

 [1] Holland J. Adaption in Natural and Artificial Systems.
Ann Arbor: University of Michigen Press; 1975.

 [2] Lidd ML. The travelling Salesman Problem Domain
Application of a Fundamentally New Approach to
Utilizing Genetic Algorithms. Technical Report,
MITRE Corporation, 1991.

 [3] Goldberg DE, Lingle Jr. R. Alleles, Loci and the TSP.
In Grefenstette, J. J. (Ed.). Proceedings of the First
International Conference on Genetic Algorithms
and Their Applications,Hillsdale, New Jersey:
Lawrence Erlbaum; 1985. p. 154–159.

 [4] Davis L. Applying Adaptive Algorithms to Epistatic
Domains. Proceedings of the International Joint
Conference on Artificial Intelligence. New York,
USA: ACM Digital Library; 1985. p. 162–164.

 [5] Brady RM. Optimization strategies gleaned from bio-
logical evolution. Nature 1985;317:804–806. [CrossRef]

 [6] Grefenstette JJ. Incorporating Problem Specific
Knowledge into Genetic Algorithms. In Davis,
L. (ed.) Genetic Algorithms and Simulated
AnnealingLos Altos, CA: Morgan Kaufmann; 1987.
p. 42–60.

 [7] Muhlenbein H, Gorges-Schleuter M, Kramer O.
Evolution algorithms in combinatorial optimiza-
tion. Paral Comput 1988;7:65–85. [CrossRef]

 [8] Muhlenbein H. Parallel Genetic Algorithms,
Population Genetics and Combinatorial ¨
Optimization. In Schaffer, J. (ed.) Proceedings on
the Third International Conference on Genetic
Algorithms, Los Altos, CA: Morgan Kaufmann
Publishers; 1988. p. 416–421.

 [9] Syswerda G. Schedule optimization using genetic
algorithms. In L. Davis (Ed.), Handbook of genetic
algorithms. USA: Van Nostrand Reinhold; 1991. p.
332–349.

[10] Grefenstette JJ. Incorporating Problem Specific
Knowledge into Genetic Algorithms. In Davis, L.
(ed.) Genetic Algorithms and Simulated Annealing,
Los Altos, CA: Morgan Kaufmann; 1987. p. 42–60.

[11] Larranaga P, Inza I, Kuijpers CMH, Grana M, Lozano
JA. Algoritmos Geneticos en el Problema del Viajante
de Comercio. ‘ Informatica y Automatica (submit-
ted). 1966.

[12] Grefenstette J, Gopal R, Rosmaita B, Van Gucht D.
Genetic Algorithms for the TSP. In Grefenstette,
J. J. (ed.) Proceedings of the First International
Conference on Genetic Algorithms and Their
Applications, Hillsdale, New Jersey: Lawrence
Erlbaum; 1986. p. 160–165.

[13] Abu Arqub O, Abo-Hammour Z, Momani S,
Shawagfeh N. Solving singular two-point boundary
value problems using continuous genetic algorithm.
Abstr Appl Anal 2012;2012:205391. [CrossRef]

[14] Arqub OA, Abo-Hammour Z. Numerical solution
of systems of second-order boundary value prob-
lems using continuous genetic algorithm. Inf Sci
2014;279:396–415. [CrossRef]

[15] Abo-Hammour ZE, Alsmadi O, Momani S, Abu
Arqub O. A genetic algorithm approach for predic-
tion of linear dynamical systems. Math Probl Eng
2013;2013:1–12. [CrossRef]

[16] Abo-Hammour Z, Abu Arqub O, Momani S,
Shawagfeh N. Optimization solution of Troesch’s
and Bratu’s problems of ordinary type using novel
continuous genetic algorithm. Discrete Dyn Nat Soc
2014;2014:401696. [CrossRef]

[17] Raiz M, Kumar A, Mishra VN, Rao N. Dunkl ana-
logue of Sz $\acute {a} $ sz-Schurer-Beta operators
and their approximation behaviour. Math Found
Comput 2022;5:315–330. [CrossRef]

[18] Mishra VN, Raiz M, Rao N. Dunkl analouge of Sz $\
acute {a} $ sz Schurer Beta bivariate operators. Math
Found Comput 2023;6:651–669. [CrossRef]

[19] Dantzig G, Fulkerson R, Johnson S. Solution of a
large-scale traveling-salesman problem. J Oper Res
Soc Am 1954;2:393–410. [CrossRef]

[20] Petberg MW, Homg S. On the symmetric traveling
salesman problems: a computational study. Math
Prog Stud 1980;12:61–77. [CrossRef]

[21] Fleischmann B. A cutting plane procedure for the
travelling salesman problem on road networks. Eur
J Oper Res 1985;21:307–317. [CrossRef]

[22] Padberg M, Rinaldi G. Optimization of a 532-city
symmetric traveling salesman problem by branch
and cut. Oper Res Lett 1987;6:1–7. [CrossRef]

[23] Bhide S, John N, Kabuka MR. A Boolean neural net-
work approach for the traveling salesman problem.
IEEE Trans Comput 1993;42:1271–1278. [CrossRef]

https://doi.org/10.1038/317804a0
https://doi.org/10.1016/0167-8191(88)90098-1
https://doi.org/10.1155/2012/205391
https://doi.org/10.1016/j.ins.2014.03.128
https://doi.org/10.1155/2013/831657
https://doi.org/10.1155/2014/401696
https://doi.org/10.3934/mfc.2022007
https://doi.org/10.3934/mfc.2022037
https://doi.org/10.1287/opre.2.4.393
https://doi.org/10.1007/BFb0120887
https://doi.org/10.1016/0377-2217(85)90151-1
https://doi.org/10.1016/0167-6377(87)90002-2
https://doi.org/10.1109/12.257714

Sigma J Eng Nat Sci, Vol. 42, No. 6, pp. 1876−1883, December, 2024 1883

[24] Dorigo M, Gambardella LM. Ant colony system: a
cooperative learning approach to the traveling sales-
man problem. IEEE Trans Evol Comput 1997;1:53–
66. [CrossRef]

[25] Knox JE. The application of tabu search to the
symmetric traveling salesman problem. Colarado:
University of Colorado at Boulder; 1989.

[26] Chiang WC, Russell RA. Simulated annealing meta-
heuristics for the vehicle routing problem with time
windows. Ann Oper Res 1996;63:3–27. [CrossRef]

[27] Focacci F, Lodi A, Milano M. A hybrid exact
algorithm for the TSPTW. Informs J Comput
2013;14:403–417. [CrossRef]

[28] Ibaraki T, Imahori S, Kubo M, Masuda T, Uno T,
Yagiura M. Effective local search algorithms for
routing and scheduling problems with general
time-window constraints. Transp Sci 2007;39:206–
232. [CrossRef]

[29] Nguyen HD, Yoshihara I, Yamamori K, Yasunaga M.
Implementation of an effective hybrid GA for large-
scale traveling salesman problems. IEEE Trans Syst
Man Cybern Part B (Cybernetics) 2007;37:92–99.
[CrossRef]

[30] Ghadle KP, Muley YM. Travelling salesman problem
with MATLAB programming. Int J Adv Appl Math
Mech 2015;2:258–266.

[31] Kumar A, Gupta A. Assignment and travelling sales-
man problems with coefficients as LR fuzzy parame-
ters. Int J Appl Sci 2015;10:155–170.

[32] Majumdar J, Bhunia AK. Genetic algorithm for
asymmetric traveling salesman problem with
imprecise travel times. J Comput Appl Math
2011;235:3063–3078. [CrossRef]

[33] Changdar C, Mahapatra GS, Pal RK. An efficient
genetic algorithm for multi-objective solid travelling

salesman problem under fuzziness. Swarm Evol
Comput 2014;15:27–37. [CrossRef]

[34] Maity S, Roy A, Maiti M. A modified genetic algo-
rithm for solving uncertain constrained solid
travelling salesman problems. Comput Ind Eng
2012;83:273–296. [CrossRef]

[35] Dantzig GB. Linear programming and extensions.
Princeton, NJ: Princeton University Press; 1993.

[36] Velednitsky M. Short combinatorial proof that the
DFJ polytope is contained in the MTZ polytope for
the Asymmetric Traveling Salesman Problem. arXiv
preprint arXiv 2018:1805.06997.

[37] Oliver IM, Smith D, Holland JR. A study of permu-
tation crossover operators on the traveling salesman
problem. In Oliver IM, Smith DJ, Holland JRC (Ed.).
Genetic Algorithms and their Applications. Sussex,
London: Psychology Press; 2013. p. 224–230.

[38] Hussain A, Muhammad YS, Nauman Sajid M,
Hussain I, Mohamd Shoukry A, Gani S. Genetic
algorithm for traveling salesman problem with
modified cycle crossover operator. Comput Intell
Neurosci 2017;2017:430125. [CrossRef]

[39] Fogel DB. An evolutionary approach to the traveling
salesman problems. Biol Cybrn 1988;60:139–144.
[CrossRef]

[40] Banzhaf W. The ‘molecular’ traveling salesman. Biol
Cybrn 1990;64;7–14. [CrossRef]

[41] Michalewicz Z. Genetic Algorithms + Data
Structures = Evolution Programs. Berlin Heidelberg:
Springer Verlag; 1992. [CrossRef]

[42] Fogel DB. Empirical estimation of the computation
required to discovery approximate solutions to the
traveling salesman problem using evolutionary pro-
gramming. Proceedings of 2nd Annual Conference
on Evolutionary Programming. 1993. p. 56–61.

https://doi.org/10.1109/4235.585892
https://doi.org/10.1007/BF02601637
https://doi.org/10.1287/ijoc.14.4.403.2827
https://doi.org/10.1287/trsc.1030.0085
https://doi.org/10.1109/TSMCB.2006.880136
https://doi.org/10.1016/j.cam.2010.12.027
https://doi.org/10.1016/j.swevo.2013.11.001
https://doi.org/10.1016/j.cie.2015.02.023
https://doi.org/10.1155/2017/7430125
https://doi.org/10.1007/BF00202901
https://doi.org/10.1007/BF00203625
https://doi.org/10.1007/978-3-662-02830-8

