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ABSTRACT

In this study, Genetic Algorithm (GA), a sort of randomized direct, iterative search methodol-
ogy built around natural selection, is employ in computers to discover approximations of solu-
tions to optimisation and search issues. GA employs operators including selection, crossover, 
and mutation to tackle. In case of NP-hard issues, particularly for travelling salesman problem 
(TSP), the GAs is beneficial. To reduce the overall distance, we propose a novel crossover 
operator with its python code for the TSP. Along with the Python pseudo coding, we addi-
tionally introduced a mutation operator to enhance the consummation of GA in determining 
the shortest distance in the TSP. To emphasize the proposed crossover and mutation operator, 
we also illustrate different steps using examples. We integrated path representation with our 
developed crossover and mutation operator as it is apparent method to represent a tour.
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INTRODUCTION

Almost The basic concept of genetic algorithms (GA) is 
a search-based optimisation approach and is introduced by 
Holland [1]. The ‘survival of the fittest’ premise is the foun-
dation for GA, which are metaheuristics relies on natural 
selection and Genetics principles. GA are often utilised to 
produce high quality and superior solutions for search and 
optimisation challenges. In other words, GA tend to find and 
offer near-optimal solutions to scenarios that could require 
a lot of time. GA are frequently employed  in numerous 

disciplines, comprises of soft computing, machine learning, 
and operations research. It can optimise for continuous or 
discrete variables without needing to know the derivatives. 
Additionally, it works with numerically generated data, 
experimental data, or analytical data and delivers a set of 
optimal variables rather than simply one solution. GA pro-
cesses sustain a population of individuals and are iterative 
in character. In essence, GAs can be described as composed 
of two primary phases: the first is “Selection” for produc-
ing the next generation, and the second is “Manipulation,” 
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which manipulates the selected individuals to produce the 
next generation using various techniques, including cross-
over and mutation. Each iteration in GA is referred to as “a 
generation,” and a population of new candidate solutions 
is created utilising various biologically inspired operators 
including mutation, crossover, and selection. In GA, each 
individual is represented by a string known as chromosome 
and may also be regarded as a problem-solving strategy. 
These strings comprise characters known as genes, which 
contain certain values known as  alleles. GAs is appropri-
ate candidate to tackle the constrained, unconstrained and 
combinatorial problem.

Using genetic operations like selection, fitness, cross-
over, and mutation processes, GA seeks for the optimal 
results.
• Fitness: The fitness value quantifies the similarity 

between two individuals and is a favourable utility 
metric that is determined for every individual in the 
population.

• Selection: Each member of the population receives 
several copies, which are used up in the mating pool to 
create an entirely novel population. Therefore, the like-
lihood that an individual will produce additional copies 
in the mating pool increases as fitness value increases.

• Crossover: Recombination of individuals generates 
new individuals known as offspring or children. One-
point and two-point crossover are popular recombina-
tion strategies.

• Mutation: Maintaining diversity in the population can 
be done through mutation. Each individual is mutated 
with a minute or extremely low chance, such as less than 
1.0.
The procedures below can be used to define an uncom-

plicated genetic algorithm and the flow chart for illustrat-
ing various steps is shown in Figure 1. The 2-diemnsional 
array encompassing population size and chromosome size 
defined the population. Here, population initialization can 
be done by utilizing two methods namely random and heu-
ristic initialization.The fitness function ought to be quick 
enough to calculate. It must quantify the degree to which a 
given solution is fit or the degree to which fit people can be 
created from the provided solution. 

When a GA run ends, a lot depends on the termina-
tion condition of the GA. In general, we want a termination 
condition that, at the end of the run, puts the outcome very 
near to the bestone. The following are the termination cri-
teria’s for the GA-
• when X iterations have passed with no population 

improvement.
• when the number of generations is fixed.
• when the value of the objective function reaches a spe-

cific, predetermined value.
I. Using n chromosomes, create a starting generation. 

Here the population is initialized. 
II. Assess each chromosome’s fitness.

III. Proportionally pick n/2 parents of the present 
population.

IV. Use the crossover operator to produce children by 
picking two parents at random.

V. Employ mutation to vary findings a little bit.
VI. Until all parents have been chosen and mated, repeat 

steps 4 and 5.
VII. An entirely new population of chromosomes will 

replace the old one.
VIII. Determine each chromosome’s level of fitness in novel 

population.
IX.  Stop when the number of generations reaches a pre-

determined maximum; otherwise, proceed to Step III.
We have numerous representations in literature employ-

ing the GAs. Path, binary, adjacency,ordinal and matrix-
representation are some significant representations and 
the summary of these representation with novel crossover 
operator is given in Table 1.

Arqub et al. [13] employ the continuous GA to solve 
singular two-point boundary value problems. Arqub and 
Hammour [14] discussed a method for employing con-
tinuous GA for solving systems of second-order boundary 
value problems. In order to validate this method, a few test 
problems were created and solved. Hammour et al. [15] 
presented a GA approach for the modelling of dynamical 

Figure 1. Flow chart of GA.
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systems. For numerically approximating the solutions of 
Troesch’s and Bratu’s problems, Hammour et al. [16] intro-
duce continuous GA. Recently, to approximate a class of 
Lebesgue integrable functions, Raiz et al. [17] introduced 
a novel sequence of linear positive operators. Schurer Beta 
bivariate operators were initially developed by Mishra et al. 
[18] in terms of generalisation exponential functions and 
their approximation characteristics.

The Travelling Salesman Problem (TSP) is one of the 
most well-known combinatorial issues in optimising. The 
TSP is one of the most recent optimisation problems to 
have undergone extensive deliberation. It was initially for-
mulated as an optimisation problem in 1930. In TSP, the 
objective is to determine probable tour such that a travelling 
salesman visits each city exactly once and back to the ini-
tial city in order to minimize the total cost devoted or total 
distance covered. Since there are n! various approaches to 
locate the tour for n cities, specifically for 11 cities, there are 
39916 800 possible route to optimize the total cost. So, the 
complexity of finding the best route increases as the num-
ber of cities increases. Thus, TSP is a candidate of NP (Non- 
Polynomial) hard combinatorial optimization problems.

In existing literature, exact and metaheuristic algo-
rithms are two approaches to tackle TSP as shown in table 
1. In case of exact algorithms, following are major exact 
algorithms in literature introduced to encounter with TSP; 
Dantzig et al. [19] introduced a methodology to solve the 
large-scale TSP. Later, Petberg [20] proposed a branch and 
cut method to get the optimal solution of symmetric TSP. A 
cutting plane approach is proposed by Fleischmann [21] in 
order to tackle the TSP in case of a road network. Thereafter, 
Petberg and Homg [22] proposed branch and cut method 

to optimize symmetric TSP with 532 cities. On the other 
hand, various heuristic algorithms are also introduced in 
order to tackle the TSP. Initially, Brady [5] proposed a GA 
approach deal with TSP. Bhide et al. [23] proposed a Boolean 
approach with the help of neural network to deal with TSP. 
Dorigo and Gambardella [24] proposed an approach with 
the help of ant colony system to tackle the TSP. Knox [25] 
proposed the tabu search approach to solve the symmet-
ric TSP. Later, Chiang and Russell [26] proposed simulated 
annealing algorithms to cope with vehicle routing problem. 
Thereafter, Focacci et al. [27] developed a hybrid exact 
method for TSP. A local search strategy was presented by 
Ibarki et al. [28] for addressing and arranging issues with 
extensive time window limitations. Larranaga et al. [11] 
reviewed the various methodologies used to resolve TSP 
by utilizing GA. Also, presented different crossover and 
mutation operators which are proposed to tackle the TSP 
with the GA. Thereafter, An amalgam GA was suggested by 
Nguyen et al. [29] to discover the TSP solution. Ghadle and 
Muley [30] proposed a modified version of GA encoded by 
using MATLAB to tackle the TSP. Kumar and Gupta [31] 
proposed a methodology to solve the TSP with fuzzy L-R 
parameters. Majumdar and Bhunia [32] modelled an asym-
metric TSP in a way that the distance between each pair 
of cities travelled is denoted as an interval value instead of 
a precise value. Thereafter, Changdar et al. [33] modelled 
a multi-objective TSP with triangular fuzzy parameters 
and, proposed an effectual GA to tackle this modelled TSP. 
Maity et al. [34] proposed a modified GA to cope with con-
strained solid TSP in different settings including fuzzy and 
crisp.

We suggest a novel crossover operator for the TSP along 
with its Python source code. We entailed a mutation opera-
tor in addition to the Python pseudo coding to improve the 
effectiveness of GA in calculating the shortest distance in 
the TSP. We additionally employ examples to demonstrate 
the proposed crossover and mutation operator at various 
stages. We combined our newly designed crossover and 
mutation operator with path representation because this is 
an obvious way to express a tour.

This article is organized as follows; Section one is com-
pletely devoted to the basics of GA and the literature review 
of GA and TSP. The mathematical formulation of the TSP 

Table 1. List of different representations

Representation Crossover operator Author
Binary Classical, repair Lidd[2]
Path Partially-mapped Goldberg and Lingle [3]

Order Davis [4]
Sorted match Brady [5]
Heuristic Grefenstette [6]
Maximal preservative Muhlenbein et al. [7]
Voting recombination Muhlenbein et al. [8]
Order based Syswerda [9]
Heuristic Grefenstette [6]
Order based Syswerda [10]
Position based Syswerda [10]
Alternating-positions Larranaga et al. [11]

Adjacency Alternative edge Grefenstette et al. [12]
Heuristic 1 Grefenstette et al. [12]
Subtour chunks Grefenstette et al. [12]

Ordinal Classical operator Grefenstette et al. [12]

Table 2. Summary of approaches for TSP

Exact Approach Heuristic approach
Branch and bound Genetic algorithm
Cutting Planes Neural network
Branch and Cut Simulated annealing
Others Tabu search

Particle swarm optimization
Ant colony optimization



Sigma J Eng Nat Sci, Vol. 42, No. 6, pp. 1876−1883, December, 2024 1879

is described in section two. Several types of representa-
tion involved in GA are described in section three. Major 
crossover operators for path representation are presented in 
section four. Novel crossover operator is illustrated in sec-
tion five. On the other hand, the novel mutation operator is 
given in section six. Finally, the section seven is devoted to 
the conclusion of the article.

Mathematical Formulation of TSP
One way to represent the TSP is as an integer linear pro-

gramming. The Dantzig-Fulkerson-Johnson (DFJ) formu-
lation and the Miller-Tucker-Zemlin (MTZ) formulation 
are well-known formulations of TSP available in the liter-
ature (Dantzig [35] & Velednitsky [36]). In some circum-
stances, the MTZ formulation is still beneficial, although 
the DFJ formulation is stronger.

Let n be the number of cities, cij be the cost (distance) 
form ith to jth city, and ui be the dummy variable. 

xij is a binary variable and defined as:

The MTZ formulation of TSP is as follows:

The DFJ formulation of TSP is as follows:

Here, the last constraint, known as a subtour elimina-
tion constraint, assures that no appropriate subset Q can 
form a sub-tour, resulting in a single tour as the solution 
and not a union of smaller tours.

DIFFERENT TYPES OF REPRESENTATION

There have been a wide range of representations of a 
chromosome to solve TSP problem by employing GA. 
Binary, path, adjacency, ordinal and matrix representation 
are major representation forms available in literature.

Binary Representation
Each city in the n-cities TSP is represented in binary as 

a string of [log2n] bits, and an individual is represented as a 
string of n[log2n] bits.

Example: In case of a 6-cities TSP, each city assigned 
by 3-bit string. The tour 2-1-3-6-5-4 depicted as by using 
Table 3.

 (001 000 010 011 100 101)

Path Representation
The elementary representation of a tour in TSP can be 

done in a more appropriate way by using path representa-
tion. For a tour of n cities, if city i is the jth element of the 
list, city i is the jth city to be visited. 

Example:If n = 8. Then the tour is 4-2-3-1-7-5-8-6 is 
represented as a string (4 2 3 1 7 5 8 6).

Ordinal Representation
In ordinal representation, ith member in set is a integer 

between 1 to n - i + 1 and an ordered set consisting of vari-
ous destinations act as guide also exists. 

Example: Let n = 8 and O = (1 2 3 4 5 6 7 8) be a refer-
ence list, then the tour 1-5-3-2-8-4-7-6 is represented by T 
= (1 4 1 2 1 4 1 2 1)

Matrix Representation
In matrix representation, member ith row and jth col-

umn is 1 iff city i is visited before the city j
Example: The matrix representation of tour 2-3-1-4 is 

CROSSOVER OPERATORS FOR TSP IN PATH 
REPRESENTATOION 

Partially Mapped (PMX), Cycle (CX), Cycle (CX2) are 
predominantly used crossover operators of path represen-
tation in the current literature. 

Table 3. An illustration of a visit of six cities in binary

i City i i City i
1 000 4 101
2 001 5 100
3 010 6 011
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Partially Mapped (PMX)
Partially Mapped Crossover operator (PMX) was intro-

duced by Goldberg and Lingle [3] for path representation of 
chromosomes in path representation. In PMX, after choos-
ing two random cut locations on the parents to produce off-
spring, one parent’s string is mapped onto the other parent’s 
string. Thereafter, a remaining bit are filled with the help of 
mapping with the constraint that no bit is repeated in the 
offspring. 

Example:Let us consider two parents P1 and P2 with 
two random cut points

P1 = (1 2 | 3 4 5 6 |  7 8)
P2 = (2 7 | 5 8 4 1 |  6 3)
Then, the mapping segment between the cut points rep-

licated with each other in order to build offspring, the map-
ping is 2 ↔ 1,7 ↔ 6,1 ↔ 8. 

O1 = ( × × | 1 4 5 8 |  × ×)
O2 = (× × | 3 4 5 6 |  × ×)

Cycle Crossover Operator (CX) 
Cycle crossover (CX) operator was first introduced by 

Oliver et al. [37]. Any bit in this operator is obtained via 
any of the parents to determine its position. Let P1 and P2 
be two parent string to illustrate the operator

P1 = (1 2 3 4 5 6 7 8)
P2 = (2 4 6 8 7 5 3 1)
Now, select 1st element of offspring from first element 

of either of P1 or P2. Here from two options (1or 2), we will 
choose 1. For last element of O1, we must consider 8, as if 1 
is taken then it would not result as a legal tour.

O1 = (1 × × × × × × 8)
Similarly, for 2nd and 4th element, we have 2 and 4 

respectively. 
O1 = (1 2 × 4 × × × 8)
The relative positions of the elements selected up until 

this point are considered to form a tour. Think about the 3rd 
element of the O1. Any of the parents can be the source for 
this component. Let’s say we choose it to come from parent 
2. This indicates that the second parent must also be picked 

for the 5th, 6th, and 7th components of offspring because they 
make up another cycle. As a result, we discover the follow-
ing offspring:

O1 = (1 2 6 4 7 5 3 8)

Cycle Crossover Operator (CX) 2
Hussain et al. [38] proposed cycle crossover operator 2 

(CX2) for TSP to optimize distance travelled.
Step 1. Let us consider two parents for mating. Choose 

the 1st bit of the 1st offspring using 2nd parent string.
Step 2. The bit selected in Step 1 is present in the 1st par-

ent, followed by the same similar location bit selected in the 
2nd parent, which is present in the 1st parent, and the similar 
location bit selected in the 2nd parent, which is then selected 
for the first bit of the 2nd offspring. 

Step 3. The 1st parent will have the chosen bit from Step 
3, and the 1st offspring would contain the following bit in 
the 2nd parent’s identical place.

Step 4. Continue Steps 2 and 3 until the 1st bit of the 1st 
parent does not appear in the 2nd offspring, at which point 
the procedure may be stopped.

Step 5. If any bits remain, they will be similar in the 1st 
parent and the 2nd offspring up to this point, and vice versa 
for both parents.

Example:
Let us consider two parent chromosomes for mating
P1 = (3 4 8 2 7 1 6 5 )
P2 = (4 2 5 1 6 8 3 7)
By employing above steps, the two offspring initiated 

are as follows:
O1 = (4  8 6 2 5 3 1 7)
O2 = ( 1 7 4 8 6 2 5 3)

PROPOSED CROSSOVER OPERATOR

In this section we will propose the Increasing partially 
mapped crossover operator (IPMX) and the python coding 
of the proposed operator is given in Figure 2. The proposed 
operator is defined by the following steps.

Figure 2. Python coding of proposed crossover operator.
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Step 1. Select a pair of chromosome parents for mating.
Step 2. Pick out two random cut points on each parent 

to construct two offspring.
Step 3. First arrange the bits between two random cuts 

in the increasing order for each parent chromosome
Step 4. Now these portions between cut points are 

mapped onto other parent strings.
Step 5. Fill the remaining bits from the primary parent 

such that there is no dispute.
Step 6. To fill the bits with conflict, use the notion of 

partial mapping.
Example: Let us consider two parent chromosomes for 

mating with randomly two cut points marked by “|”.
P1 = (1 2 | 3 4 5 6 |  7 8)
P2 = (2 7 | 5 8 4 1 |  6 3)
The two children O1 and O2 are constructed as follows:
Initially arrange all bits of randomly selected segment 

in the increasing order. Then mapped the resulted strings 
between cut points onto other parents.

O1 = (× × | 1 4 5 8 |  × ×)
O2 = (× × | 3 4 5 6 |  × ×)
Now, fill the bits from original parent which does not 

have any conflict. Here for  O1, 2,7 are filled and for O2, 2,7 
are filled.

O1 = (× 2 | 1 4 5 8 |  7 ×)
O2 = (2 7 | 3 4 5 6 |  × ×)
To fill the remaining bits, use the notion of partially 

mapping. The first × in first offspring O1 is 1 which comes 
from P1 but 1 is already present in O1. So, in P1 we check 
the element corresponding to 1 of P2, here 1 ↔ 6, first × 
is occupies by 6. Again, the second × in the O1 is 8 but 8 is 
already present in O1. So, in P1 we check the element corre-
sponding to 8 of P2, here 8 ↔ 4, but 4 is present in O1, again 
check mapping 4 ↔ 5. But 5 is existing in O1, again check 5 
↔ 3, 3 occupies the second × of in P1

O1 = ( 6 2 | 1 4 5 8 |  7 3)
O2 = (2 7 | 3 4 5 6 |  1 8)
Similarly, we complete the second offspring O1.

PROPOSED MUTATION OPERATOR

GAs employ mutation to help the procedure evade local 
solutions and give the population newly developed, com-
pletely improbable instances. The summary of mutation 

operators is presented in Table 4. In this section, we propose 
a novel mutation operator of path representation in GA.

This operator is completely defined by a linear function 
and is mathematically defined as follows:

Let xi be the bits in chromosome of n size
L(xi)= xi + 1 ∀xi where xi represent bits in chromosome 
The python coding of the proposed operator is pre-

sented in Figure 3.
Example: Let us consider p = (2 3 5 6 1 4 7 8) be a parent 

chromosome to emphasize the proposed mutation operator 
in a better way. 

By applying the Linear function of mutation operator, 
we get a child chromosome as

C = (3 4 6 7 2 5 78 1)

CONCLUSION

Utilising the survival of the fittest principle, GA a form 
of evolution method to deal with optimisation issues. They 
have been effectively utilized in several types of optimi-
zation issues, including the TSP. In TSP, our main aim to 
locate a tour of every node in a weighted network and min-
imise the overall weight, we must solve the TSP. We have 
examined various methods of representations of a tour in 
TSP which are available in literature that could be employed 
in genetic algorithms attempting to solve the TSP. We also 
reviewed partially mapped (PMX), cycle (CX) and cycle 
crossover 2 (CX2) available in literature for path represen-
tation as it the any form of tour is originally represented as 
path. In this article, we proposed modified version of GA 
by introducing an increasing partially mapped crossover 
operator (IPMX) and a mutation operator to get optimize 
solution of a TSP. We also, provide python coding of our 
novel crossover and mutation operator for the better imple-
mentation of modified version of GA. GA and its modified 
versions are applicable in different types of optimization 

Figure 3. Python coding of proposed mutation operator.

Table 4. Summary of mutation operator in GA

Mutation Operator Author
Simple 
Insertion 

Holland [1]
Fogel [39]

Exchange Banzhaf [40]
Scramble Syswerda [10]
Displacement Michalewicz [41]
Inversion Fogel [42]
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problems other than TSP such as transportation problem, 
vehicle routing problem, neural networks, and so on.
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