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 ABSTRACT  

 

The inverted exponentiated exponential densities family is known for its flexibility and 

applicability in the field of reliability. This study evaluates the performance of different 

estimation methods for the inverted exponentiated Pareto (IEP) distribution, which is a special 

case of this family of distributions. In this study, the point and interval estimates of the 

parameters for the IEP distribution are obtained using Maximum Likelihood (ML), Maximum 

Product of Spacings (MPS), Cramer von Mises (CvM), and Anderson Darling (AD) methods. A 

Monte Carlo simulation is conducted to compare the efficiency of these estimation methods, 

while real data applications from different fields are utilized to demonstrate practical 

performance. The fitting performance of the methods is assessed using metrics such as root 

mean squared error, coefficient of determination, Anderson Darling, and the Kolmogorov-

Smirnov test. Simulation results indicate that the MPS method generally outperforms the ML 

and CvM methods, whereas real data applications reveal that the CvM method provides the best 

parameter estimates, followed by MPS. 

 

 Keywords: AD, Inverted exponentiated Pareto, Inverted exponentiated, MPS, CVM, MLE.  

 

1 INTRODUCTION 

Numerous probability distributions with flexible characteristics have been extensively 

studied. Lifetime distributions are key in characterizing reliability and life characteristics in 

engineering and practical applications. Recently, Ghitany et al. [1] introduced the inverted 

exponentiated exponential distribution (IEED) family, which became a versatile option for 

analyzing various data. Distributions such as the inverted exponentiated exponential (IEE), 
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inverted exponentiated Rayleigh (IER), and inverted exponentiated Pareto (IEP) are part of this 

distribution family. The hazard rate function for this class is non-monotonic, allowing for 

flexibility in fitting different types of data. Previous studies examined this family and found it 

a promising alternative for modeling lifetime data, outperforming some commonly used 

distributions (see: [2,3]). The IEP distribution is one of the special cases of this family of 

distributions. The previous studies [4] highlighted the versatility of the IEP distribution, 

demonstrating its suitability for modeling diverse datasets that exhibit decreasing or non-

monotone hazard rate behavior. The probability density function (pdf) and cumulative 

distribution function (cdf) for the IEP distribution are given as  

𝑓(𝑥; 𝛼, 𝛽) =  𝛼𝛽𝑥−(𝛽+1)(1 + 𝑥)−(𝛽+1) [1 − (
1 +  𝑥

𝑥
)
(−𝛽)

]

𝛼−1

, 𝑥, 𝛼, 𝛽 >  0 (1) 

and 

𝐹(𝑥; 𝛼, 𝛽) =  1 − [1 − (
1 +  𝑥

𝑥
)

−𝛽

]

𝛼

, 𝑥, 𝛼, 𝛽 >  0 (2) 

respectively. Here, α and β are model parameters. In Figure 1, in addition to cdf, different shapes 

for probability density and hazard rate functions are plotted for different values of parameters.  

 

Figure 1. The pdf, hrf, and cdf of the IEP distribution chosen parameters. 
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 Many studies have been conducted on the parameters, reliability, and hazard estimation 

of the IEED family. For example, system reliability was examined using classical and Bayesian 

approaches for the IEED family of distributions [5, 6]. Estimation for IER distribution was 

studied by Maurya et al. and Hashem et al.  [7, 8] on censored data. In addition, the study by 

Rastogi [9] involves estimating the unknown parameters of an IER distribution under Type II 

progressive censoring, along with the estimation of reliability and hazard functions, using the 

Expectation–Maximization (EM) algorithm for maximum likelihood estimation (MLE). 

Similarly, Maurya et al. [4] obtained maximum likelihood (ML) estimates of an IEP distribution 

under progressive censoring. [10] estimated parameters for the inverse exponential distribution, 

using maximum likelihood and least squares methods. [8] proposed a pivotal inference 

approach for estimating the two parameters of the inverse exponentiated Rayleigh distribution 

using progressive censored data. According to their work, point and interval estimators are 

derived via the pivotal quantity method.[11] examined the impact of pressure on micro splat 

splashing diameters using stress-strength reliability analysis. They utilized ML and Bayesian 

estimators, along with confidence intervals for the IER distribution. [12] discusses confidence 

set estimation for the generalized inverted exponential distribution based on k-record values. 

Using pivotal quantities, exact balanced confidence intervals and regions are constructed, with 

criteria proposed to select the optimal candidates. [13] addressed parameter estimation for a 

competing risks model with latent failure times following a general family of inverted 

exponentiated exponential distributions using ML and Bayesian methods with generalized 

progressive hybrid censored data. Most recently, [14] conducted a study on the estimation of 

reliability in a multi-component system for the IEP distribution. On the parameter estimation 

side, as previously mentioned, MLE and Bayesian methods generally stand out in the related 

literature due to their widespread application and proven effectiveness for IEP distribution (see 

[4,14]).  

 Although the MLE method is the most effective under regularity conditions, in some 

cases, alternative methods can provide successful estimations, as the characteristics of the data 

can make certain methods more suitable than others. The minimum distance estimators are 

recognized for their robustness to unusual observations [15]. Also, the Maximum Product of 

Spacings (MPS) method is a viable alternative to MLE and can offer an improved performance 

in specific scenarios. This study employs the MPS, Cramér-von Mises (CvM), Anderson 

Darling (AD), and the MLE method in estimating the parameters of the IEP distribution. 

Moreover, while studies on the IEED family of distributions have primarily focused on 
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reliability estimation using data from its typical reliability applications, this work also considers 

a precipitation dataset for its application. To the extent of the author's knowledge, the CvM and 

AD estimations have not been utilized before for estimating unknown parameters of the IEP 

distribution previously. Here a Monte Carlo simulation study across different parameter values 

and sample sizes is conducted, and the observed Fisher information matrix is computed. Also, 

applications to real-world data from different fields are presented. 

 The structure of the study is outlined as follows: Section 2 describes the data used in 

this study and provides an overview of the estimation methods along with objective functions. 

Next, a Monte Carlo simulation study is carried out using the AD, CvM, MPS, and MLE 

methods. In the subsequent section, real data applications are presented, followed by concluding 

remarks summarizing the findings. 

2 MATERIAL AND METHOD 

2.1 Data 

The first application involves a real dataset provided by [16], comprising thirty 

consecutive measurements of March precipitation (in inches) recorded in Minneapolis/St. Paul. 

The second dataset consists of 63 service times (measured in thousand hours) for aircraft 

windshields, as documented by [17].  

 First dataset :0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 

2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05. 

 Second dataset: 0.046, 1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 

1.719, 2.717, 0.280, 1.794, 2.819, 0.313, 1.915, 2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 

0.622, 1.978, 3.003, 0.900, 2.053, 3.102, 0.952, 2.065, 3.304, 0.996, 2.117, 3.483, 1.003, 2.137, 

3.500, 1.010, 2.141, 3.622, 1.085, 2.163, 3.665, 1.092, 2.183, 3.695, 1.152, 2.240, 4.015, 1.183, 

2.341, 4.628, 1.244, 2.435, 4.806, 1.249, 2.464, 4.881, 1.262, 2.543, 5.140. 

2.2 Methods 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample following the IEP distribution, and 

𝑋(1), 𝑋(2), … , 𝑋(𝑛) are the ordered observations. 
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2.2.1 The ML Estimation 

The MLEs of the parameters α and β, denoted as �̂�𝑀𝐿 and �̂�𝑀𝐿 are obtained by 

(�̂�𝑀𝐿 , �̂�𝑀𝐿) = argmax 𝑙𝑜𝑔 𝐿 ( 𝛼, 𝛽; 𝒙). As ML estimation has been previously detailed in 

earlier studies in the literature e.g. [4], the specific derivation is not repeated. Iterative methods 

are employed to estimate the parameters of the IEP distribution. The loglikelihood function for 

the IEP distribution is given in Eq.3. 

𝑙𝑜𝑔 𝐿(𝛼, 𝛽; 𝑥) =  

𝑛 𝑙𝑜𝑔(𝛼) +  𝑛 𝑙𝑜𝑔(𝛽) + (𝛽 −  1) ∑𝑙𝑜𝑔( 𝑥𝑖)

𝑛

𝑖=1

− 

(𝛽 +  1)∑𝑙𝑜𝑔(1 +  𝑥𝑖)

𝑛

𝑖=1

+ 

∑(𝛼 −  1) 𝑙𝑜𝑔 (1 − (
(1 +  𝑥𝑖)

 𝑥𝑖
)

−𝛽

)

𝑛

𝑖

 (3) 

The asymptotic variance-covariance matrix for the MLEs of parameters 𝛼 and 𝛽 is 

represented by the information matrix (Eq.4.). 

𝐼(𝛼, 𝛽) = −𝐸 [
𝜕2𝐿𝑜𝑔𝐿

𝜕𝛼𝜕𝛽
] (4) 

The use of the observed asymptotic variance-covariance matrix, rather than the exact 

expectations in the above expressions, is a typical implementation due to the difficulty of 

obtaining the expectations of the components of this matrix. Here the observed asymptotic 

variance-covariance matrix is used as well. The asymptotic variance-covariance matrix of the 

parameters can be obtained as  

[
𝑉𝑎𝑟(�̂� ) 𝑐𝑜𝑣(�̂��̂�)

𝑐𝑜𝑣(�̂��̂�) 𝑉𝑎𝑟(�̂�)
] =

[
 
 
 
 −

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼2
−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼𝜕𝛽

−
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼𝜕𝛽
−

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2 ]
 
 
 
 
−1

 (5) 

Components of this matrix are, 

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼2 = −
𝑛

𝑎2 , 
𝜕2𝑙𝑜𝑔𝐿

𝜕𝛽2 =
𝜎1

(
 𝑥𝑖+1

 𝑥𝑖
)
𝛽

 𝜎2

−
𝑛

𝛽2 −
𝜎1

(
 𝑥𝑖+1

 𝑥𝑖
)
2 𝛽

 𝜎2
2

 where 𝜎1 = log(
 𝑥𝑖+1

 𝑥𝑖
)2 (𝑎 − 1) and 

𝜎2 =
1

(
 𝑥𝑖+1

 𝑥𝑖
)
𝛽 − 1 and 

𝜕2𝑙𝑜𝑔𝐿

𝜕𝛼𝜕𝛽
= −

log(
 𝑥𝑖+1

 𝑥𝑖
)

(
 𝑥𝑖+1

 𝑥𝑖
)
𝛽

 (
1

(
 𝑥𝑖+1

 𝑥𝑖
)
𝛽−1)

 . 
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Under regularity conditions, the asymptotic properties of the MLE method promise that 

the asymptotic distribution of �̂� and �̂� are normal (see Maurya et al., 2018). Consequently, 

using the asymptotic distribution of the MLEs, the approximate confidence intervals for 

unknown parameters can be obtained using �̂� ∓ 𝑧𝜃/2√𝑉(�̂�) and �̂� ∓ 𝑧𝜃/2√𝑉(�̂�) when 𝑧𝜃/2 is 

the [100(1 − 𝜃/2)]𝑡ℎ percentile of standard normal distribution.  

2.2.2 The CvM Estimation 

The CvM estimation is a minimum distance estimation method that minimizes the 

Cramér–von Mises criterion to obtain parameter estimates by assessing the difference between 

the empirical and theoretical distribution functions. The CvM estimates of the parameters α and 

β, denoted as �̂�𝐶𝑣𝑀 and �̂�𝐶𝑣𝑀 are obtained by (�̂�𝐶𝑣𝑀, �̂�𝐶𝑣𝑀) = argmin𝐶𝑣𝑀 ( 𝛼, 𝛽; 𝒙) where 

𝐶𝑣𝑀(𝛼, 𝛽; 𝑥) =  ∑[1 – (1 – (
(1 +  𝑥(𝑖))

 𝑥(𝑖)
)

−𝛽

)

𝛼

−
(2𝑖 –  1)

(2𝑛)
]

2
𝑛

𝑖=1

 (6) 

The estimators of the parameters 𝛼 and β can be obtained by solving the following 

nonlinear equations. 

𝜕𝐶𝑣𝑀

𝜕𝛼
= 2 log ( 1 − (

 𝑥(𝑖) + 1

 𝑥(𝑖)
)

−𝛽

)(( 1 − (
 𝑥(𝑖) + 1

 𝑥(𝑖)
)

−𝛽

)

𝑎

) 

(
2𝑖 −  1

2𝑛
 + ( 1 − (

 𝑥(𝑖) + 1

 𝑥(𝑖)
)

−𝛽

)

𝑎

−  1 ) = 0 (7) 

𝜕𝐶𝑣𝑀

𝜕𝛽
= 2𝑎 𝑙𝑜𝑔 (

 𝑥(𝑖) + 1

 𝑥(𝑖)
) ((1 − (

 𝑥(𝑖) + 1

 𝑥(𝑖)
)

−𝛽

))

𝑎−1 (
2𝑖 −  1

2𝑛
 + ((1 − (

 𝑥(𝑖) + 1

 𝑥(𝑖)
)

−𝛽

))

𝑎

−  1)

(
 𝑥(𝑖) + 1

 𝑥(𝑖)
)

𝛽
= 0 (8) 

Since these derivations involve nonlinear equations, iterative methods are employed to 

estimate the parameters of the IEP distribution using the CvM method. 
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2.2.3 The MPS Estimation 

The MPS estimation is a method that maximizes the product of the spacings between 

ordered sample points to obtain parameter estimates. The MPS estimators of the parameters α 

and β, denoted as �̂�𝑀𝑃𝑆 and �̂�𝑀𝑃𝑆 are obtained by (�̂�𝑀𝑃𝑆, �̂�𝑀𝑃𝑆) = argmax  𝐷 ( 𝛼, 𝛽; 𝑥) where 

The objective function for the MPS method is, 

𝐷 = ∑𝑙𝑜𝑔

𝑛

𝑖=0

[𝐹(𝑋(𝑖+1)) −  𝐹(𝑋(𝑖))] (9) 

Here, 𝑋(𝑖) and F(⋅) are ordered observations, and the cdf is for the IEP distribution. The 

partial derivatives of the MPS objective function with respect to the parameters are 

𝜕𝑀𝑃𝑆

𝜕𝛼
=

𝑎  𝑙𝑜𝑔 (
𝑥(𝑖) + 1

𝑥(𝑖)
) 𝜎4

𝑎−1

(
𝑥(𝑖) + 1

𝑥(𝑖)
)
𝛽 −

𝑎  𝑙𝑜𝑔 (
𝑥(𝑖+1) + 1

𝑥(𝑖+1)
) 𝜎3

𝑎−1

(
𝑥(𝑖+1) + 1

𝑥(𝑖+1)
)
𝛽

𝜎4
𝑎 − 𝜎3

𝑎
= 0 (10)

 

and 

𝜕𝑀𝑃𝑆

𝜕𝛽
=

𝑎  𝑙𝑜𝑔 (
𝑥(𝑖) + 1

𝑥(𝑖)
) 𝜎4

𝑎−1

(
𝑥(𝑖) + 1

𝑥(𝑖)
)

𝛽 −
𝑎  𝑙𝑜𝑔 (

𝑥(𝑖+1) + 1
𝑥(𝑖+1)

) 𝜎3
𝑎−1

(
𝑥(𝑖+1) + 1

𝑥(𝑖+1)
)

𝛽

𝜎4
𝑎 − 𝜎3

𝑎
= 0 , (11)

 

where 

𝜎3 = 1 −
1

(
𝑥(i+1)+1

𝑥(i+1)
)

𝛽 and 𝜎4 = 1 −
1

(
𝑥(𝑖)+1

𝑥(𝑖)
)

𝛽 . 

Since these derivations involve nonlinear equations, iterative methods are employed to 

estimate the parameters of the IEP distribution using the MPS method. 

2.2.4 The AD Estimation 

The AD estimators of the parameters α and β, denoted as �̂�𝐴𝐷 and �̂�𝐴𝐷, are obtained by 

(�̂�𝐴𝐷 , �̂�𝐴𝐷) = argmin𝐴𝐷 ( 𝛼, 𝛽; 𝒙) where 

𝐴𝐷 = −𝑛 −
1

𝑛 ∑ (2𝑖 − 1)𝑛
𝑖=1 {𝑙𝑜𝑔𝐹(𝑥(𝑖)) + 𝑙𝑜𝑔(1 − 𝐹(𝑥(𝑛+𝑖−1))}}

(12) 
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Here, iterative methods are considered to estimate the parameters α and β. 

2.3 Evaluating Criteria 

The fitting performance is assessed through multiple metrics, including root mean 

squared error (RMSE), coefficient of determination (R²), and the Kolmogorov-Smirnov (KS) 

and Anderson Darling (AndDar) test statistic and p-values. Formulas of criteria used in 

evaluating results are given below.  

𝑅𝑀𝑆𝐸 = [
1

𝑛
∑(�̂�(𝑋(𝑖)) −

𝑖

𝑛 + 1
)
2𝑛

𝑖=1

]

1
2

 (13) 

𝑅2 = 1 −
∑ (�̂�(𝑋(𝑖)) −

𝑖
𝑛 + 1)

2
𝑛
𝑖=1

∑ (�̂�(𝑋(𝑖)) − �̅̂�(𝑋(𝑖)))
2

𝑛
𝑖=1

 (14) 

𝐾𝑆 = 𝑚𝑎𝑥 |�̂�(𝑋(𝑖)) −
𝑖

𝑛 + 1
| (15) 

𝐴𝑛𝑑𝐷𝑎𝑟2 = −𝑛 − 𝑆𝑛 , (16) 

where 𝑆𝑛 =
2𝑖−1

𝑛
(log(𝐹(𝑥𝑖)) + log(1 − 𝐹(𝑥n+1−i))) 

Here, �̂�(𝑋(𝑖)) is the estimated cdf, X(i) is the i-th order statistics, k is the number of the 

parameters, and n is the number of observations. 

3 SIMULATION STUDY 

This section focuses on a Monte Carlo simulation study conducted to evaluate the 

efficiency of estimation methods under various conditions. The study involves 1000 simulation 

runs, using sample sizes of 𝑛=10, 20, 50, 100, and 300. Parameter values are set as α=1, 0.5, 

and 3; β=1, 2, and 3. Estimates are obtained through the "genetic algorithm" function available 

in the Matlab R2021a optimization toolbox. The performance of the ML, MPS, CvM, and AD 

methods is assessed based on the well-known mean, variance, and Mean Squared Error (MSE) 

criteria. 
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Table 1. The Simulation Results for α and β=1. 

Method Mean Variance MSE Mean Variance MSE 

n=10 �̂� �̂� 

MLE 1.14716891 0.11653618 0.13819487 1.14116204 0.11379887 0.13372560 

CvM 1.09369312 0.13512124 0.14389964 1.09598416 0.13239732 0.14161028 

MPS 0.89252066 0.11289056 0.12444237 0.87960376 0.11996129 0.13445655 

AD 1.22845677 0.77304981 0.82524230 1.15532363 0.38391538 0.40804082 

n=20 �̂� �̂� 

MLE 1.1102750 0.08424498 0.09640557 1.09842024 0.07650079 0.08618734 

CvM 1.1003792 0.0987992 0.1088752 1.0912126 0.0947396 0.1030593 

MPS 0.9188027 0.0718207 0.0784137 0.90658045 0.07261128 0.08133849 

AD 1.0926948 0.1835829 0.19217526 1.06753173 0.13072170 0.13528223 

n=50 �̂� �̂� 

MLE 1.05831 0.047419 0.050819 1.043302 0.040942 0.042817 

CvM 1.06615 0.069658 0.074035 1.046368 0.06054 0.06269 

MPS 0.94488 0.034942 0.037980 0.932457 0.033509 0.038071 

AD 1.02769 0.049671 0.050439 1.014062 0.045379 0.045577 

n=100 �̂� �̂� 

MLE 1.03534 0.021187 0.022436 1.029194 0.018441 0.019293 

CvM 1.03744 0.030809 0.032212 1.031819 0.027428 0.028441 

MPS 0.96743 0.017637 0.018698 0.962811 0.016303 0.017686 

AD 1.022734 0.022982 0.023499 1.018341 0.021035 0.021371 

n=300 �̂� �̂� 

MLE 1.01515 0.00601 0.00624 1.01274 0.006189 0.006351 

CvM 1.00718 0.008712 0.008763 1.00477 0.008774 0.008797 

MPS 0.98035 0.005649 0.006035 0.978706 0.005988 0.006441 

AD 1.01006 0.007165 0.007267 1.007574 0.00731 0.007367 

 

 When Table 1 is examined, according to all of the sample sizes considered (except for 

β parameter for n=10 and n=300), the MPS estimations provided more efficient estimations for 

parameters of the IEP distribution according to the MSE criterion. The ML estimation for the β 

parameter performed better when n=10 and n=300 than the other estimation methods. 

Table 2. The Simulation Results for α=0.5 and β=1.5. 

Method Mean Variance MSE Mean Variance MSE 

n=10 �̂� �̂� 

MLE 0.577859 0.037183 0.043245 1.659585 0.145069 0.170536 

CvM 0.556911 0.039066 0.042305 1.605075 0.172322 0.183362 

MPS 0.491265 0.027559 0.027635 1.385413 0.165099 0.178229 

AD 0.53109 0.034298 0.035265 1.522759 0.171612 0.17213 

n=20 �̂� �̂� 

MLE 0.547037 0.021364 0.023576 1.604913 0.138804 0.149811 

CvM 0.531148 0.023325 0.024296 1.575843 0.151472 0.157225 

MPS 0.485016 0.014875 0.0151 1.381182 0.137015 0.151132 

AD 0.515455 0.019184 0.019423 1.52078 0.151043 0.151475 

n=50 �̂� �̂� 
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Table 2 (Continued). The Simulation Results for α=0.5 and β=1.5. 

Method Mean Variance MSE Mean Variance MSE 

MLE 0.522472 0.008162 0.008667 1.583312 0.087704 0.094645 

CvM 0.519148 0.0107 0.011066 1.566425 0.113044 0.117456 

MPS 0.487298 0.006478 0.00664 1.424244 0.087126 0.092865 

AD 0.509835 0.008639 0.008735 1.533871 0.103991 0.105139 

n=100 �̂� �̂� 

MLE 0.511018 0.003376 0.003497 1.537007 0.049374 0.050743 

CvM 0.509777 0.004268 0.004364 1.534701 0.068247 0.069452 

MPS 0.490184 0.002895 0.002991 1.432924 0.045813 0.050313 

AD 0.503828 0.003416 0.003431 1.507302 0.054463 0.054516 

n=300 �̂� �̂� 

MLE 0.501821 0.001155 0.001158 1.508832 0.020478 0.020556 

CvM 0.501935 0.001573 0.001577 1.508298 0.030791 0.03086 

MPS 0.493891 0.001076 0.001113 1.465412 0.019429 0.020626 

AD 0.499776 0.001288 0.001288 1.499337 0.023764 0.023764 

 

 According to Table 2, the MPS estimations provided more efficient estimations for 

parameters of the IEP distribution for nearly all of the cases according to the MSE criterion 

when α<β. When sample sizes were n=10 and n=300, the MLE method slightly performed 

better for the β parameter.  

Table 3. The Simulation Results for α=3 and β=2. 

Method Mean Variance MSE Mean Variance MSE 

n=10 �̂� �̂� 

MLE 3.157901 0.199023 0.223956 2.109823 0.133131 0.145192 

CvM 3.117907 0.205831 0.219733 2.092254 0.137451 0.145961 

MPS 2.86754 0.161828 0.179373 1.957424 0.130235 0.132047 

AD 3.023329 0.198482 0.199026 2.052693 0.133464 0.136241 

n=20 �̂� �̂� 

MLE 3.176184 0.179092 0.210133 2.068628 0.094346 0.099056 

CvM 3.13639 0.198528 0.21713 2.054232 0.095054 0.097995 

MPS 2.874764 0.151692 0.167377 1.925536 0.088318 0.093863 

AD 3.073496 0.187776 0.193177 2.027683 0.092983 0.093749 

n=50 �̂� �̂� 

MLE 3.101851 0.14072 0.151093 2.029305 0.04506 0.045919 

CvM 3.099932 0.15792 0.167906 2.022161 0.045969 0.04646 

MPS 2.850305 0.139326 0.161735 1.918465 0.041734 0.048382 

AD 3.042292 0.151618 0.153407 2.001181 0.043785 0.043787 

n=100 �̂� �̂� 

MLE 3.045159 0.122246 0.124286 2.0097 0.02689 0.026984 

CvM 3.032136 0.143489 0.144522 2.004854 0.032214 0.032237 

MPS 2.861807 0.112669 0.131766 1.932097 0.025289 0.0299 

AD 3.00291 0.133243 0.133251 1.992761 0.028761 0.028813 

n=300 �̂� �̂� 
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Table 3 (Continued). The Simulation Results for α=3 and β=2. 

Method Mean Variance MSE Mean Variance MSE 

MLE 3.044297 0.056834 0.058796 2.010898 0.012503 0.012621 

CvM 3.048189 0.068014 0.070336 2.012961 0.01488 0.015048 

MPS 2.949892 0.056863 0.059374 1.972669 0.012465 0.013212 

AD 3.029772 0.059695 0.060581 2.005611 0.012985 0.013017 

 

 Finally, for α>β, all of the methods performed similarly for the cases considered. For 

smaller sample sizes, the MPS estimations are more efficient, and for larger sample sizes, the 

MLEs stand out more; also, the AD method is competitive when larger sample sizes are 

considered. 

 Overall, it can be said that the MSEs of all estimates decline with increasing sample 

size. This indicates that the examined estimation methods are potentially effective for data-

fitting applications. In addition, the MPS estimations stand out for nearly all scenarios 

considered, and as expected, the ML estimations are improved when the sample size increases. 

4 APPLICATION RESULTS AND DISCUSSION 

This section presents modeling two different data from environmental and operational 

reliability areas with the IEP distribution using the ML, MPS, CvM, and AD methods. The 

fitting performances of the methods are examined through the criteria given in Section 2. In 

addition, fitted density, quantile-quantile (Q-Q), and probability–probability (P-P) plots are 

presented. Superior fit is indicated by smaller RMSE, AD, and KS statistics, alongside larger 

R² values and higher p-values from the KS test. In Table 4, estimated parameters and asymptotic 

confidence intervals (ACI) for the first data set are provided. 

Table 4. Estimated Parameters and confidence intervals for the first data set. 

Method �̂� �̂� ACI for  �̂� ACI for �̂� 

ML 7.093474 4.479320 
(6.5912, 

7.5958) 

(4.2895, 

4.6692) 

MPS 7.593473 4.663268 
(7.0912, 

8.0958) 

(4.4734, 

4.8531) 

CVM 6.593476 4.4767998 
(6.0912, 

7.0958) 
(4.287, 4.6667) 

AD 6.093473 4.0720337 
(5.5912, 

6.5958) 

(3.8822, 

4.2619) 
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According to Table 4, the ML and CvM methods yield relatively narrower intervals, 

suggesting stable estimation. The comparative results for the estimation methods are presented 

in Table 5 for precipitation data. Additionally, the fitted densities, Q-Q, and P-P plots for each 

method are illustrated in Figures 2 and 3. The analysis is carried out using Matlab R2021 and 

its built-in functions. 

Table 5. Evaluating criteria for the first dataset. 

Method AndDar R2 RMSE KS (p-value) 

ML 0.160548 0.9896     0.0302 
0.0757 

(0.99026) 

MPS 0.178832 0.9895     0.0307 
0.0695 

(0.99657) 

CVM 0.171681 0.9916 0.0267 
0.0663 

(0.99819) 

AD 0.236604 0.9825 0.0381 
0.1068  

(0.8480) 

 

According to Table 5, the ML, MPS, AD, and CvM methods performed very closely for 

modeling precipitation data. However, the CvM method stands out for all criteria by providing 

the highest R2 and p-values and the lowest AD, KS, and RMSE values. 

 

Figure 2. Fitting plots of estimation methods for the first dataset. 
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Figure 3. Q--Q and P-P plots for the first data set. 

It can be seen from Figure 2 that the CvM estimation method described the first dataset 

better than the other two methods. The ML, MPS, and AD methods are overfitted at the peak 

of the distribution compared to the CvM. Considering the sample size of this dataset (n=30), 

the CvM method seems to provide a more accurate estimation in this case. The Q-Q and P-P 

plots suggest that all four estimators perform similarly, with slight deviations in the upper 

quantiles suggesting underestimation at the tails. 

In Table 6, estimated parameters and asymptotic confidence intervals for the second data 

set are provided. 

Table 6. Estimated parameters and confidence intervals for the second data set. 

Method �̂� �̂� ACI α ACI β 

ML 3.09890 3.25060 
(2.8304, 

3.3674) 

(3.0608, 

3.4405) 

MPS 3.59890 3.7506 
(3.3304, 

3.8674) 

(3.5607, 

3.9405) 

CVM 2.59893 3.30898 
( 2.3304, 

2.8674) 

(3.1192,  

3.4989) 

AD 2.0989 2.75060 
(1.8304, 

2.3674) 

(2.5608, 

2.9405) 

 

According to Table 6, the ML, MPS, and CVM methods exhibited narrower confidence 

intervals, and the AD has the widest confidence intervals, implying greater variability. The 

comparative results for the estimation methods are presented in Table 7 for aircraft windshield 

data. Moreover, the fitted density, Q-Q, and P-P plots are provided for each method in Figures 

4 and 5.  
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Table 7. Evaluating criteria for the second dataset. 

Method AndDar R2 RMSE KS(p-value) 

ML 2.7410 0.903899 0.08550 0.185989(0.022169) 

MPS 2.2232 0.9486991 0.06403 0.152975(0.094129) 

CVM 2.2841 0.944583 0.06114 0.129424(0.221862) 

AD 2.5650 0.908621 0.075221 0.1372821 (0.1694) 

 

Table 7 reveals that the MPS and CvM methods exhibit similar performance in modeling 

the aircraft windshield data and overweighing the ML and AD estimations. Among these, the 

MPS method achieved the highest R2 while the CvM method presented the lowest KS and 

RMSE metrics. 

 

Figure 4. Fitting plots of estimation methods for the second dataset. 

 

Figure 5. The Q-Q and P-P plots for the second data set. 

According to Figure 4, although MPS described the distribution much better than the 

other methods, the ML method fitted data well in general but overfitted slightly at the peak. The 

CVM method is performed well in fitting the distribution as well. When the Q-Q and P-P plots 

are examined, it can be seen that similar outcomes are obtained as in fitted density plots. Since 

P-P plots emphasize deviations in distribution tails and Q-Q plots detect differences in 
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distribution shape, the Q-Q and P-P plots indicate that the CVM and MPS provide a closer fit 

to the theoretical distribution, and the ML and MPS reflect the tails of distribution much better. 

 In the applications, the MPS and CvM estimation methods demonstrated greater 

accuracy in estimating the parameters of the IEP distribution compared to the AD and ML 

methods for the data considered. For the first dataset, the CvM method proved to be the most 

effective. For the second dataset, both CvM and MPS outperformed ML and AD in fitting the 

parameters. 

 Although there is a growing body of research on the IEED family of distributions, 

studies remain limited and typically focus on maximum likelihood and Bayesian estimation. 

This work extends beyond traditional reliability studies by applying the approach to 

environmental data, highlighting the potential of the IEP distribution for modeling data across 

diverse fields. In addition, it is seen that considering the MPS method can lead to greater 

efficiency for considered data and simulations, even for small samples. Overall, the MPS and 

CVM methods can be strong alternatives to the ML method in estimating the parameters of the 

IEP distribution. 

5 CONCLUSION AND SUGGESTIONS 

Given its flexibility and applicability, the family of inverted exponentiated densities is 

frequently used as a reliable model for fitting a wide range of data. The IEP distribution is a 

special case of this family of distributions and is appreciated due to its flexibility. Here the ML, 

MPS, AD, and CvM methods are employed to estimate the parameters of the IEP distribution 

and evaluate their modeling performance through simulations and real data applications from 

different fields. The Monte Carlo simulation results reveal that the MPS method outperformed 

the AD, ML, and CvM for nearly all the cases considered. In real data applications, the CvM 

method emerges as the best method, with its closest competition being the MPS method. This 

study explores the application of MPS, AD, and CvM estimation methods for the IEP 

distribution, in addition to the traditional MLE approach, and demonstrates their effectiveness 

using two real data sets. These findings provide valuable insights into the practical use of 

different estimation techniques for IEP distribution. 
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