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1. Introduction  
Air cargo is a cornerstone of global trade, facilitating the 

rapid and reliable transportation of goods across international 
borders. Its role has become increasingly critical in an era 
where speed and efficiency are paramount to meeting the 
demands of global supply chains. From high-value electronics 
to perishable goods, air cargo ensures that time-sensitive 
products reach their destinations without delay, supporting 
economic growth and market competitiveness (Merkert, 2023; 
Sales & Scholte, 2023). The rising complexity of international 
commerce, driven by globalization and e-commerce, 
underscores the need for efficient air cargo systems. However, 
the sector faces significant challenges, including operational 
inefficiencies, delays, security breaches, and environmental 
concerns, which collectively threaten the seamless functioning 
of supply chains (Bunahri et al., 2023; Tseremoglou et al., 
2022). Addressing these risks is essential for maintaining the 
reliability and resilience of the global logistics network. 

The importance of effective risk management in air cargo 
operations has been highlighted by recent global crises, such 
as the COVID-19 pandemic, which exposed vulnerabilities in 
supply chains worldwide. These disruptions underscored the 
need for robust mitigation strategies to ensure continuity in air 
cargo operations and minimize the cascading effects of delays 
and disruptions on businesses and consumers (Hohenstein, 

2022; Can Saglam et al., 2021). However, despite the growing 
recognition of risk management's critical role, the sector lacks 
structured and systematic methodologies for prioritizing risk 
mitigation strategies. Current approaches often fall short in 
addressing the complex, dynamic, and uncertain nature of air 
cargo operations, leaving operators ill-equipped to navigate 
emerging risks effectively (Sahoo et al., 2022; Dauer & 
Dittrich, 2022). 

The inherent complexities of air cargo risk management are 
further compounded by the need for quick and precise 
decision-making in scenarios such as cargo handling 
optimization, disruption management, and compliance with 
evolving regulations. Traditional risk management 
frameworks struggle to accommodate these challenges, 
particularly in the face of rapid technological advancements 
and increasingly interconnected supply chain networks (Hong 
et al., 2025; Esmizadeh & Mellat Parast, 2021). Advanced 
decision-making tools, such as Multi-Criteria Decision-
Making (MCDM) methodologies enhanced with fuzzy logic, 
offer a promising solution by systematically evaluating and 
ranking strategies under conditions of uncertainty. 

These tools provide a nuanced and reliable approach to 

decision-making, capturing the inherent vagueness of expert 

judgments and operational complexities (Mahdavi et al., 2008; 

Kaya & Kahraman, 2011). 
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This study addresses the gap in the literature by proposing 

a Fuzzy TOPSIS-based model for prioritizing risk mitigation 

strategies in air cargo operations. The model integrates expert 

input with a robust analytical framework, providing a 

structured approach to evaluate key risks, such as operational 

delays, cybersecurity threats, and environmental challenges. 

By incorporating fuzzy logic, the model accommodates the 

uncertainties and ambiguities inherent in expert evaluations, 

ensuring a more reliable and adaptive decision-making process 

(Yan et al., 2022; Göçmen, 2021). The study identifies and 

evaluates critical risks affecting air cargo operations and 

develops a methodology to prioritize mitigation strategies that 

align with industry requirements and global trends. 

The research draws on the expertise of professionals from 

logistics, supply chain, and risk management sectors, ensuring 

that the findings are both theoretically grounded and 

practically applicable. By focusing on the critical risks and 

employing a structured methodology, the study not only 

advances the academic discourse on risk management but also 

provides actionable insights for practitioners. These insights 

aim to enhance the resilience, efficiency, and sustainability of 

air cargo operations, addressing the multifaceted challenges 

faced by operators in today's interconnected and risk-prone 

environment (Richey Jr et al., 2023; Giuffrida et al., 2021). 

Through the prioritization of mitigation strategies, the study 

offers a practical framework for strengthening the robustness 

of air cargo operations and ensuring their continued role in 

supporting global trade. 

2. Literature Review 
 

2.1. Risk Factors in Air Cargo Freight Operations 
    Air cargo freight operations face a multitude of risks that 

can significantly disrupt supply chain performance. 

Operational risks such as cargo delays, mismanagement of 

cargo loads, and insufficient capacity planning are recurring 

issues in the air cargo industry (Sencer & Karaismailoğlu, 

2022; Mesquita & Sanches, 2024). Delays, often caused by 

weather disruptions, mechanical failures, or inefficient 

terminal operations, can result in substantial financial losses 

and reputational damage for carriers (Han et al., 2022). 

Capacity mismanagement, particularly during peak demand 

periods, further exacerbates these challenges by creating 

bottlenecks and reducing operational efficiency (Gritsenko & 

Karpun, 2020). 

Security risks, including theft, tampering, and the 

infiltration of contraband, present another significant 

challenge for air cargo operations. The high-value nature of 

goods transported via air freight makes these operations 

particularly susceptible to targeted security breaches (Sun et 

al., 2020). Cybersecurity threats, such as unauthorized access 

to cargo management systems, have also become more 

prevalent with the increasing digitization of logistics 

operations (Göçmen, 2021). The integration of advanced 

technologies, while improving efficiency, introduces new 

vulnerabilities that must be addressed through robust security 

protocols and monitoring systems (Mızrak & Akkartal,2023). 

Environmental risks, including noise pollution, greenhouse 

gas emissions, and compliance with stringent environmental 

regulations, further complicate air cargo operations. Airports 

and freight carriers are under growing pressure to minimize 

their carbon footprints while maintaining high operational 

standards (Davydenko et al., 2020). Initiatives such as 

optimizing flight routes, adopting fuel-efficient technologies, 

and incorporating renewable energy sources in cargo 

operations have been explored to mitigate these environmental 

impacts (Archetti & Peirano, 2020). However, these solutions 

often require significant investment and strategic planning to 

implement effectively. 

      Previous studies have highlighted the importance of risk 

management frameworks tailored to the unique challenges of 

air cargo operations. For example, Dauer and Dittrich (2022) 

proposed an operational-risk-based approach for automated 

cargo delivery, emphasizing the need for scenario-specific risk 

assessment models. Similarly, De Oliveira et al. (2024) 

explored the integration of risk management practices into the 

import/export processes of supply chains, underscoring the 

interconnectedness of air cargo operations with broader 

logistics networks. These studies collectively emphasize the 

necessity for proactive and adaptive risk management 

strategies to ensure resilience and sustainability in air cargo 

operations. 

2.2. Mitigation Strategies for Air Cargo Risks 

Effective risk mitigation in air cargo operations is 

essential for ensuring the seamless functioning of global 

supply chains. Existing strategies often focus on enhancing 

operational efficiency, improving security protocols, and 

minimizing environmental impact. Proactive risk 

identification and real-time monitoring systems have been 

highlighted as critical tools for mitigating operational risks. 

For example, automated tracking technologies and predictive 

analytics are increasingly being employed to optimize cargo 

handling and reduce delays (Tanrıverdi et al., 2022; Angelelli 

et al., 2020). Additionally, the use of dynamic routing models 

helps carriers adapt to changing circumstances, such as 

adverse weather conditions or airport congestion, ensuring 

timely delivery (Archetti & Peirano, 2020). 

In terms of security, the integration of advanced 

surveillance technologies and collaborative security 

frameworks has proven effective in mitigating threats like theft 

and smuggling. For instance, layered security systems that 

combine physical inspections with digital safeguards are 

widely adopted to secure high-value goods during transit (Han 

et al., 2022; Dauer & Dittrich, 2022). Furthermore, the 

application of blockchain technology for cargo documentation 

and tracking has been explored to enhance transparency and 

prevent data manipulation (Hohenstein, 2022). However, these 

solutions often face challenges related to scalability and 

interoperability across different systems and stakeholders. 

To address environmental risks, air cargo operators are 

exploring sustainable practices, such as utilizing fuel-efficient 

aircraft and implementing green logistics strategies. Carbon 

offset programs and the adoption of alternative fuels are also 

gaining traction as viable solutions to meet environmental 

regulations and reduce emissions (Bartle et al., 2021; 

Davydenko et al., 2020). While these measures contribute to 

environmental sustainability, their implementation often 

involves high costs and operational adjustments, which can 

hinder widespread adoption. 

Despite these advancements, gaps in prioritization 

methodologies persist. Traditional approaches to risk 

mitigation often rely on qualitative assessments that lack the 

precision and adaptability needed in dynamic air cargo 

environments (Mesquita & Sanches, 2024). For example, 

while many studies propose comprehensive risk management 

frameworks, they often fail to address how to prioritize 
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multiple risks or mitigation strategies effectively. 

Additionally, there is limited research on incorporating expert 

judgment and real-time data into decision-making models 

(Richey Jr. et al., 2023; Kondratenko et al., 2020). The lack of 

structured, quantitative approaches to ranking mitigation 

strategies under uncertainty creates a critical gap in the 

literature. 

Addressing these gaps requires innovative methodologies 

that combine multi-criteria decision-making (MCDM) tools 

with advanced data analytics. Fuzzy logic-based approaches, 

for example, offer a way to integrate subjective expert 

opinions with quantitative metrics, providing a more holistic 

framework for risk prioritization. Studies suggest that models 

like Fuzzy TOPSIS can bridge these gaps by evaluating and 

ranking mitigation strategies under uncertain and dynamic 

conditions, making them particularly suitable for complex 

systems like air cargo freight operations (Budak et al., 2020; 

Mahdavi et al., 2008). However, further research is needed to 

validate these models in practical scenarios and tailor them to 

the specific challenges of air cargo logistics. 

 
2.3. Multi-Criteria Decision-Making (MCDM) in Risk 

Management 
The application of Multi-Criteria Decision-Making 

(MCDM) methods has been pivotal in addressing the 

complexities of logistics and supply chain management, 

particularly in the domain of risk management. MCDM 

methodologies provide structured frameworks for evaluating 

multiple, often conflicting, criteria, enabling decision-makers 

to assess trade-offs and prioritize strategies effectively 
(Pournader et al., 2020; Hohenstein, 2022). In logistics and 

supply chain contexts, MCDM tools have been widely 

employed for tasks such as supplier selection, route 

optimization, and the prioritization of risk mitigation 

strategies. For instance, the Analytical Hierarchy Process 

(AHP) and the Best-Worst Method (BWM) have been 

extensively used to rank suppliers based on criteria such as 

cost, reliability, and environmental impact (Yalçın & Ayyıldız, 

2024; Gao et al., 2023). Similarly, methods like 

PROMETHEE and ELECTRE have demonstrated their 

versatility in evaluating transportation options, showcasing 

their adaptability to a variety of decision-making scenarios 

(Tanrıverdi et al., 2022; Göçmen, 2021). 

Fuzzy logic has emerged as a transformative extension to 

traditional MCDM methods, especially in addressing the 

uncertainties inherent in risk management. Conventional 

decision-making approaches often face challenges when 

dealing with imprecise or incomplete information—a common 

occurrence in logistics operations where subjective expert 

judgments play a critical role (Kaya & Kahraman, 2011; 

Kondratenko et al., 2020). Fuzzy logic overcomes these 

limitations by employing linguistic variables and fuzzy sets, 

enabling decision-makers to better navigate the nuances of 

uncertainty. For example, fuzzy extensions of AHP and 

TOPSIS have been employed to incorporate expert opinions 

and account for real-world complexities, significantly 

enhancing the robustness of risk assessments (Mahdavi et al., 

2008; Budak et al., 2020). 

Among MCDM methods, TOPSIS (Technique for Order 

Preference by Similarity to Ideal Solution) has gained 

prominence for its simplicity and efficiency in ranking 

alternatives. The method involves identifying the ideal and 

anti-ideal solutions and calculating the relative closeness of 

each alternative to these benchmarks (Kaya & Kahraman, 

2011). Its applications span various domains, including supply 

chain risk management, where it has been utilized to evaluate 

and prioritize mitigation strategies, assess supplier 

performance, and optimize logistics network designs 

(Tanrıverdi et al., 2022; Mesquita & Sanches, 2024). Fuzzy 

TOPSIS, an extension of the traditional method, further 

enhances decision-making by accommodating uncertainty and 

subjectivity in criteria weights and alternative evaluations 

(Mahdavi et al., 2008). Budak et al. (2020) demonstrated the 

effectiveness of fuzzy TOPSIS in selecting real-time location 

systems for humanitarian logistics, highlighting its 

adaptability to dynamic and complex environments. 

Recent advancements in the fuzzy TOPSIS method have 

introduced further refinements to enhance its applicability. 

Intuitionistic fuzzy TOPSIS, as proposed by Boran et al. 

(2009), extends the traditional approach by incorporating 

intuitionistic fuzzy sets to handle higher degrees of uncertainty 

and vagueness. This methodology has been particularly useful 

in scenarios requiring group decision-making, such as supplier 

selection. Additionally, q-rung orthopair fuzzy TOPSIS 

represents a significant evolution of the method, providing an 

even more flexible framework for addressing complex 

decision-making scenarios. Pınar (2021) applied q-rung 

orthopair fuzzy TOPSIS to third-party logistics provider 

selection, demonstrating its ability to manage intricate criteria 

relationships. Further developments by Pınar and Boran 

(2022) utilized this approach in combination with other 

MCDM methods, such as CODAS, to evaluate 3PL service 

providers, showcasing its robustness and adaptability. 

While these advancements have enhanced the capabilities 

of the fuzzy TOPSIS method, the effective application of such 

techniques requires careful consideration of criteria selection 

and weight assignment, often necessitating expert input. By 

integrating fuzzy logic into TOPSIS, decision-makers can 

address the limitations of conventional methods and establish 

a robust framework for managing the uncertainties and 

complexities inherent in risk management. The combination of 

quantitative rigor with qualitative insights positions fuzzy 

TOPSIS as a valuable tool for enhancing operational resilience 

and efficiency in logistics and supply chain management. 

 

3. Research Methodology 
 

3.1. Study Design   

     This study employs a mixed-methods approach, integrating 

qualitative and quantitative data collection. Expert evaluations 

are used to identify and weight key criteria for prioritizing risk 

mitigation strategies. The qualitative component involves 

gathering expert insights through structured interviews, while 

the quantitative analysis applies the Fuzzy TOPSIS 

methodology to evaluate and rank the identified strategies, 

ensuring a comprehensive and systematic assessment. 

      While traditional methods like AHP and PROMETHEE 

provide robust frameworks for multi-criteria decision-making, 

their deterministic nature limits their effectiveness in contexts 

involving high uncertainty. Fuzzy TOPSIS, in contrast, 

incorporates fuzzy logic, allowing for a more nuanced 

representation of expert opinions, making it particularly suited 

for the complex and uncertain environment of air cargo 

operations. Figure 1 demonstrates the steps of the analysis. 
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Figure 1. Workflow Chart  

3.2. Identification of Risk Mitigation Criteria 

      The identification of appropriate risk mitigation criteria is 

critical for developing an effective decision-making 
framework. In this study, the criteria are categorized into key 

dimensions, including cost-effectiveness, operational 

efficiency, scalability, and regulatory compliance, which 

reflect the multifaceted nature of risk management in air cargo 

operations. These categories are widely recognized in the 

literature as essential for evaluating and prioritizing strategies 

in logistics and supply chain contexts (Hohenstein, 2022; 

Esmizadeh & Mellat Parast, 2021 

      Cost-effectiveness is a fundamental criterion, ensuring that 

mitigation strategies provide value while optimizing resource 

utilization. Studies emphasize the need for cost-efficient 

solutions, particularly in the competitive and cost-sensitive air 

cargo industry (Angelelli et al., 2020; Mesquita & Sanches, 

2024). Similarly, operational efficiency is critical to 

minimizing delays, optimizing cargo handling, and enhancing 

overall performance, as highlighted in prior analyses of air 

cargo logistics (Han et al., 2022; Archetti & Peirano, 2020). 

      Scalability is another key criterion, particularly in 

addressing the dynamic nature of air cargo operations, where 

strategies must adapt to varying demand levels and operational 

scales (Tanrıverdi et al., 2022; Sencer & Karaismailoğlu, 

2022). Finally, compliance with regulations is essential to 

mitigate risks related to security and environmental impact, 

ensuring adherence to international standards and enhancing 

organizational reputation (Davydenko et al., 2020; Bartle et 

al., 2021). 

      In addition to these primary criteria, several other factors 

also play a significant role in shaping risk mitigation 

strategies. Technology adaptability has become increasingly 

important in air cargo operations, as the industry increasingly 

relies on automation and digital technologies to optimize 

processes and improve efficiency. The ability of mitigation 

strategies to integrate with emerging technologies is crucial to 

maintaining operational flexibility (Tanrıverdi et al., 2022; 

Kondratenko et al., 2020). Environmental sustainability is 

another important criterion, given the growing focus on 

reducing the carbon footprint and meeting environmental 

regulations. Strategies that promote sustainability not only 

help mitigate risks associated with environmental impact but 

also improve the long-term viability of air cargo operations 

(Bartle et al., 2021; Davydenko et al., 2020). 

      Resilience to disruptions is crucial in the context of 

unforeseen events, such as natural disasters, strikes, or 

pandemics, that can disrupt air cargo operations. Mitigation 

strategies must enhance the ability to recover quickly from 

these disruptions and ensure continuity of service (Sun et al., 

2020; Gritsenko & Karpun, 2020). The ease of 

implementation is another criterion, as it evaluates the 

practicality of executing mitigation strategies within the 

constraints of available resources and infrastructure. This 

factor is vital for ensuring that risk management solutions are 

not only effective but also feasible to implement in real-world 

settings (Sencer & Karaismailoğlu, 2022). 

      Stakeholder acceptance is essential to gauge the level of 

support from various parties involved, including employees, 

customers, and regulatory bodies. Successful risk mitigation 

strategies must garner the cooperation of all stakeholders to 

ensure their effectiveness and sustainability (Hohenstein, 

2022). Lastly, safety enhancement and data security are 

paramount in mitigating risks related to the safety of cargo and 

the protection of sensitive data during transportation. The 

increasing use of digital platforms in air cargo operations 

underscores the importance of securing both physical and 

cyber assets (Han et al., 2022; Göçmen, 2021). 

      To provide a comprehensive understanding of the risks 

involved in air cargo operations, the following diagram 

categorizes risks into key types: Operational, Security, 

Regulatory, Environmental, and Stakeholder Risks. Each 

category is further broken down into specific challenges, 

forming the basis for risk mitigation strategy development. 
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Figure 2.  Risk Categorization Diagram  

      The criteria for this study were selected through a 

combination of expert consultations and an extensive literature 

review. Experts in logistics, supply chain management, and 

risk mitigation were engaged to provide insights into the 

practical relevance and applicability of these criteria. This 

approach ensures that the selected criteria are both 

theoretically grounded and practically oriented, aligning with 

best practices in multi-criteria decision-making studies (Kaya 

& Kahraman, 2011; Mahdavi et al., 2008). By integrating 

expert input with findings from the literature, the study 

establishes a robust foundation for the evaluation and 

prioritization of risk mitigation strategies. 

 
3.3. Data Collection 
      The data collection for this study was conducted through a 

structured questionnaire and interviews designed to capture 

expert judgments on the prioritization of risk mitigation 

strategies in air cargo operations. The focus was on obtaining 

both qualitative insights and quantitative assessments that 

could be applied to the Fuzzy TOPSIS methodology. 

      The structured questionnaire was developed to align with 

the criteria identified for evaluating risk mitigation strategies, 

including cost-effectiveness, operational efficiency, 

scalability, regulatory compliance, technology adaptability, 

environmental sustainability, resilience to disruptions, ease of 

implementation, stakeholder acceptance, safety enhancement, 

data security, and customer satisfaction. Most questions used 

a closed-ended format with responses based on fuzzy linguistic 

terms (e.g., Very High, High, Moderate, Low, Very Low). 

These terms allow for precise data interpretation within the 

Fuzzy TOPSIS framework, ensuring compatibility with the 

study’s methodological approach. Additionally, open-ended 

questions were included to provide participants the 

opportunity to elaborate on their perspectives, particularly 

regarding the most critical criteria and their practical 

experiences in risk management. 

      Nine experts were selected based on their professional 

expertise, experience in the air cargo, logistics, and risk 

management domains, and academic qualifications. The group 

included individuals with diverse roles, such as logistics 

managers, operations directors, aviation security specialists, 

environmental analysts, and technology integration specialists. 

Their years of experience ranged from 10 to 22 years, ensuring 

that the panel represented a wealth of practical and theoretical 

knowledge. Table 1 summarizes the experts’ profiles. 

 

Table 1.  Information about Experts  
Expert 

ID 

Title Years of 

Experience 

Education 

E1 Logistics 

Manager 

15 MBA in 

Logistics 

Management 

E2 Supply Chain 

Consultant 

20 PhD in Supply 

Chain 

Management 

E3 Operations 

Director 

18 MBA in 

Operations 

Management 

E4 Aviation Security 

Specialist 

12 MS in Aviation 

Security 

E5 Environmental 

Analyst 

10 MS in 

Environmental 

Science 

E6 Technology 

Integration 

Specialist 

14 PhD in 

Information 

Systems 

E7 Regulatory 

Affairs Manager 

22 MBA in 

Regulatory 

Affairs 

E8 Senior Risk 

Analyst 

16 MS in Risk 

Analysis 

E9 Air Cargo 

Operations 

Expert 

19 MS in Air Cargo 

Management 
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Before the data collection process, the experts were 

provided with detailed information about the study, including 

its objectives, methodology, and potential applications. 

Written consent was obtained from all participants, ensuring 

their voluntary participation and compliance with ethical 

research standards. Participants were informed that their 

responses would remain confidential and used solely for 

academic purposes. 

The interviews were conducted online via video 

conferencing platforms to accommodate the geographical 

distribution of the experts. Each session lasted approximately 

45–60 minutes, allowing for in-depth discussions and 

clarifications. The structured questionnaire guided the 

interviews, with additional probing questions included as 

necessary to enrich the responses. Participants were 

encouraged to elaborate on their answers to ensure a 

comprehensive understanding of their perspectives. The 

interviews were recorded (with participant consent) to 

facilitate accurate data transcription and analysis. After 

transcription, the data were reviewed to extract the linguistic 

assessments and qualitative insights necessary for constructing 

the Fuzzy TOPSIS decision matrix. This data collection 

process provided a robust foundation for applying the Fuzzy 

TOPSIS methodology, ensuring that the study's findings are 

grounded in expert knowledge and practical relevance. 

To ensure fairness and reliability, expert weights were 

calculated using a proportional formula that considers their 

experience and relevance to the study's context: 

𝑤𝑖 =
 Experience 

𝑖
×  Relevance 𝑖

∑  𝑛
𝑗=1   ( Experience 

𝑗
×  Relevance 𝑗)

 

(1) 

Where: 

• 𝑤𝑖 is the weight assigned to expert 𝑖. 
• Experience  𝑖 is the number of years of professional 

experience. 

• Relevance  𝑖 is a relevance score (1-5) based on the 

expert's specific knowledge and role in air Cargo 

operations. 

The relevance score was derived from a pre-assessment 

questionnaire, wherein experts rated their familiarity with the 

study's primary criteria, such as cybersecurity, operational 

efficiency, and environmental sustainability. 

The calculated weights were applied to the fuzzy decision 

matrix during the analysis phase, ensuring that each expert's 

input contributed proportionately to the prioritization of 

mitigation strategies. This method accounted for the diversity 

of expert opinions while minimizing bias. 

3.4. Fuzzy TOPSIS Methodology 

      The Technique for Order Preference by Similarity to Ideal 

Solution (TOPSIS) is a multi-criteria decision-making 

(MCDM) method developed by Hwang and Yoon in 1981 

(Hwang & Yoon, 1981). It ranks alternatives based on their 

geometric distance from an ideal solution, selecting the option 

closest to the ideal and farthest from the negative-ideal 

solution. To handle uncertainties and subjective judgments in 

decision-making, fuzzy set theory has been integrated with 

TOPSIS, resulting in the Fuzzy TOPSIS methodology (Chen, 

2000). This approach allows for the incorporation of imprecise 

and vague information, enhancing the robustness of the 

decision-making process. 

      Fuzzy TOPSIS extends the classical TOPSIS method to 

handle uncertainty and vagueness in decision-making, 

utilizing fuzzy set theory. It was first integrated into MCDM 

frameworks to evaluate alternatives when inputs are imprecise, 

subjective, or linguistically expressed (e.g., high, medium, 

low). 

A triangular fuzzy number (TFN) is defined as , 

where  (lower bound),  (most likely value), and  (upper 

bound) capture the range of possible values. 

To facilitate the evaluation process and align with the 

principles of fuzzy logic, linguistic terms were employed to 

express the judgments of experts regarding the importance and 

performance of criteria. These terms provide a qualitative basis 

for assessment while allowing for their quantitative 

representation using triangular fuzzy numbers (TFNs). Each 

linguistic term corresponds to a specific TFN, enabling a 

consistent and interpretable translation of subjective 

evaluations into a structured numerical framework. The scale 

ensures clarity in the evaluation process, eliminating 

ambiguities and enhancing the reliability of the analysis. Table 

2 illustrates linguistic terms and corresponding triangular 

fuzzy numbers. 

 

Table 2. Linguistic Terms and Corresponding Triangular 
Fuzzy Numbers (TFNs) 

Linguistic 

Term 

Triangular Fuzzy 

Number (TFN) 
Interpretation 

Very Low (0.0, 0.1, 0.3) 
Represents minimal 

importance or impact. 

Low (0.2, 0.3, 0.5) 
Represents a lower degree of 

significance. 

Medium (0.4, 0.5, 0.7) 
Represents a moderate level of 

significance. 

High (0.6, 0.8, 1.0) 
Represents a significant or 

high degree of importance. 

Very High (0.8, 0.9, 1.0) 
Represents the highest 

possible significance. 

 

Steps of Fuzzy TOPSIS 

Step 1: Formation of the Fuzzy Decision Matrix 

The fuzzy decision matrix is constructed based on the 

linguistic assessments provided by experts for each alternative 

(e.g., risk mitigation strategies) across multiple criteria. Each 

linguistic term (e.g., Low, Medium, High) is converted into a 

corresponding Triangular Fuzzy Number (TFN) �̃�𝑖𝑗 =

(𝑙𝑖𝑗 , 𝑚𝑖𝑗 , 𝑢𝑖𝑗), where: 

• 𝑙𝑖𝑗 represents the lower bound, 

• 𝑚𝑖𝑗 represents the most likely value, 

• 𝑢𝑖𝑗 represents the upper bound. 

The fuzzy decision matrix is structured as follows: 
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�̃� = [

�̃�11 �̃�12 ⋯ �̃�1𝑛

�̃�21 �̃�22 ⋯ �̃�2𝑛

⋮ ⋮ ⋱ ⋮
�̃�𝑚1 �̃�𝑚2 ⋯ �̃�𝑚𝑛

] 

(2) 

where �̃�𝑖𝑗 is the TFN representing the performance of 

alternative 𝑖 under criterion 𝑗. 

Step 2: Normalization of the Fuzzy Decision Matrix 

Normalization ensures that criteria with different measurement 

scales become comparable. For benefit criteria (where higher 

values are better), the normalized fuzzy number is calculated 

as: 

�̃�𝑖𝑗 = (
𝑙𝑖𝑗

𝑢𝑗
∗ ,

𝑚𝑖𝑗

𝑢𝑗
∗ ,

𝑢𝑖𝑗

𝑢𝑗
∗ ) 

(3) 

For cost criteria (where lower values are better), the 

normalized fuzzy number is: 

�̃�𝑖𝑗 = (
𝑙𝑗

∗

𝑢𝑖𝑗
,

𝑚𝑗
∗

𝑚𝑖𝑗
,
𝑢𝑗

∗

𝑙𝑖𝑗
) 

(4) 

where: 

• 𝑢𝑗
∗ = max(𝑢𝑖𝑗) for benefit criteria, 

• 𝑙𝑗
∗ = min(𝑙𝑖𝑗) for cost criteria. 

Step 3: Determination of Fuzzy Weights for Criteria 

Fuzzy weights �̃�𝑗 = (𝑙𝑗 , 𝑚𝑗 , 𝑢𝑗) are assigned to each criterion 

based on expert evaluations. 

These weights are normalized to ensure their middle values 

sum to 1 : 

∑  

𝑛

𝑗=1

𝑚𝑗 = 1 

(5) 

Step 4: Construction of the Weighted Normalized Decision 

Matrix 

The normalized decision matrix is multiplied by the fuzzy 

weights of the criteria to construct the weighted normalized 

decision matrix: 

�̃�𝑖𝑗 = �̃�𝑖𝑗 ⊗ �̃�𝑗 

(6) 

The multiplication of two triangular fuzzy numbers �̃� =
(𝑎1, 𝑎2, 𝑎3) and �̃� = (𝑏1, 𝑏2, 𝑏3) is performed as: 

�̃� ⊗ �̃� = (𝑎1 ⋅ 𝑏1, 𝑎2 ⋅ 𝑏2, 𝑎3 ⋅ 𝑏3) 

(7) 

Step 5: Determination of Fuzzy Positive and Negative Ideal 

Solutions (FPIS and FNIS) 

The Fuzzy Positive Ideal Solution (FPIS) �̃�+and Fuzzy 

Negative Ideal Solution (FNIS) �̃�−are determined for each 

criterion: 

• For benefit criteria: 

�̃�𝑗
+ = (𝑢𝑗

∗ , 𝑢𝑗
∗ , 𝑢𝑗

∗),  �̃�𝑗
− = (𝑙𝑗

∗ , 𝑙𝑗
∗ , 𝑙𝑗

∗) 

(8) 

• For cost criteria: 

�̃�𝑗
+ = (𝑙𝑗

∗, 𝑙𝑗
∗, 𝑙𝑗

∗),  �̃�𝑗
− = (𝑢𝑗

∗ , 𝑢𝑗
∗ , 𝑢𝑗

∗) 

(9) 

Step 6: Calculation of Distances to FPIS and FNIS 

The distance of each alternative 𝑖 from �̃�+and �̃�−is calculated 

using the vertex method. The distance 𝑑(�̃�, �̃�) between two 

TFNs �̃� = (𝑙𝑥, 𝑚𝑥 , 𝑢𝑥) and �̃� = (𝑙𝑦, 𝑚𝑦 , 𝑢𝑦) is given by: 

𝑑(�̃�, �̃�) = √
1

3
[(𝑙𝑥 − 𝑙𝑦)

2
+ (𝑚𝑥 − 𝑚𝑦)

2
+ (𝑢𝑥 − 𝑢𝑦)

2
] 

(10) 

 

The distances to FPIS and FNIS are calculated as: 

𝐷𝑖
+ = ∑  

𝑛

𝑗=1

𝑑(�̃�𝑖𝑗 , �̃�𝑗
+),  𝐷𝑖

− = ∑  

𝑛

𝑗=1

𝑑(�̃�𝑖𝑗 , �̃�𝑗
−) 

(11) 

 

Step 7: Calculation of the Closeness Coefficient (CC) 

The closeness coefficient (CC) for each alternative is 

calculated as: 

𝐶𝐶𝑖 =
𝐷𝑖

−

𝐷𝑖
+ + 𝐷𝑖

− 

(12) 

The closeness coefficient ranges from 0 to 1 , where higher 

values indicate alternatives closer to the FPIS and farther from 

the FNIS. 

Step 8: Ranking of Alternatives 

 

The alternatives are ranked based on their closeness 

coefficients 𝐶𝐶𝑖 , with higher values indicating better 

performance. 

4. Analysis and Results 
 

4.1. Risk Identification and Categorization 

      The risks associated with air cargo operations were 

identified and categorized based on expert evaluations and the 

defined criteria. These risks encompass operational 

inefficiencies, security breaches, environmental concerns, 

regulatory compliance challenges, and stakeholder 
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management issues. The experts provided their assessments 

using fuzzy linguistic terms, which were subsequently 

converted into triangular fuzzy numbers for analysis. Table 3 

summarizes the categories of risks evaluated in the study. 

Table 3. Categories and Descriptions of Air Cargo Risks 

Risk Category Description 

Operational 

Inefficiencies 

Delays, resource mismanagement, and 

inefficiencies in cargo handling operations. 

Security Breaches 
Cybersecurity risks and unauthorized 

access to sensitive information. 

Environmental 

Concerns 

Non-compliance with sustainability 

standards and carbon emissions 

regulations. 

Regulatory 

Compliance 

Challenges 

Issues related to adhering to international 

and local regulations. 

Stakeholder 

Management Issues 

Lack of coordination among logistics 

partners and other stakeholders. 

      These risks were evaluated across the criteria to ensure a 

comprehensive understanding of their impact on air cargo 

operations. 

4.2. Weighting of Criteria 

      The weighting process was conducted using fuzzy 

techniques to reflect the relative importance of each criterion. 

Experts assigned linguistic terms to the criteria, which were 

converted into triangular fuzzy numbers and normalized to 

ensure their middle values summed to 1. The adjusted fuzzy 

weights are presented in Table 4.  

Table 4. Adjusted Fuzzy Weights of Evaluation Criteria 

Criterion Lower (l) Middle (m) 
Upper 

(u) 

Cost-

Effectiveness 
0.0639 0.0959 0.1279 

Operational 

Efficiency 
0.0959 0.1279 0.1599 

Scalability 0.0639 0.0959 0.1279 

Technology 

Adaptability 
0.0639 0.0959 0.1279 

Regulatory 

Compliance 
0.0959 0.1279 0.1599 

Environmental 

Sustainability 
0.0319 0.0639 0.0959 

Resilience 0.0959 0.1279 0.1599 

Safety 

Enhancement 
0.0639 0.0959 0.1279 

Stakeholder 

Acceptance 
0.0319 0.0639 0.0959 

Data Security 0.0639 0.0959 0.1279 

The prioritization of risk mitigation strategies involves 

assigning weights to various criteria, reflecting their relative 

importance in the decision-making process. The radar chart 

below provides a visual representation of the weighted criteria, 

highlighting areas such as Operational Efficiency, Cost-

Effectiveness, and Resilience as key factors influencing 

strategy prioritization. 

 

Figure 3. Decision Criteria Radar Chart  

      The fuzzy weighting process ensured that the relative 

importance of each criterion was adequately captured and 

normalized. These weights were subsequently applied during 

the construction of the weighted normalized decision matrix, 

which guided the prioritization of mitigation strategies. 

4.3. Application of Fuzzy TOPSIS 

      The Fuzzy TOPSIS methodology was applied step by step 

to evaluate and rank the risk mitigation strategies. The process 

involved the construction of decision matrices, normalization, 

weighting, and calculation of closeness coefficients, leading to 

the final rankings. 

Step 1: Formation of the Decision Matrix 

      The decision matrix was constructed by aggregating expert 

evaluations for each mitigation strategy across the identified 

criteria. The ratings were provided as triangular fuzzy 

numbers. The decision matrix is presented in Table 5.  

 

 

 

 

 

 

 

 
Table 5.  Fuzzy Decision Matrix 
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Criterion EDS ACH RC RB SI SC SE INF TA TI 

CE (0.6, 0.8, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.8, 1.0, 1.0) (0.4, 0.6, 0.8) (0.5, 0.7, 0.9) (0.6, 0.8, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.8, 1.0, 1.0) 

OE (0.8, 1.0, 1.0) (0.7, 0.9, 1.0) (0.6, 0.8, 1.0) (0.8, 1.0, 1.0) (0.4, 0.6, 0.8) (0.6, 0.8, 1.0) (0.8, 1.0, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) 

SC (0.7, 0.9, 1.0) (0.8, 1.0, 1.0) (0.6, 0.8, 1.0) (0.9, 1.0, 1.0) (0.5, 0.7, 0.9) (0.6, 0.8, 1.0) (0.7, 0.9, 1.0) (0.6, 0.8, 1.0) (0.8, 1.0, 1.0) (0.9, 1.0, 1.0) 

TA (0.8, 1.0, 1.0) (0.7, 0.9, 1.0) (0.6, 0.8, 1.0) (0.8, 1.0, 1.0) (0.4, 0.6, 0.8) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.8, 1.0, 1.0) (0.8, 1.0, 1.0) (0.9, 1.0, 1.0) 

RC (0.9, 1.0, 1.0) (0.8, 1.0, 1.0) (0.7, 0.9, 1.0) (0.8, 1.0, 1.0) (0.6, 0.8, 1.0) (0.8, 1.0, 1.0) (0.9, 1.0, 1.0) (0.8, 1.0, 1.0) (0.9, 1.0, 1.0) (0.8, 1.0, 1.0) 

ES (0.4, 0.6, 0.8) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7) (0.5, 0.7, 0.9) (0.6, 0.8, 1.0) (0.4, 0.6, 0.8) (0.5, 0.7, 0.9) (0.4, 0.6, 0.8) (0.5, 0.7, 0.9) (0.6, 0.8, 1.0) 

RE (0.8, 1.0, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.8, 1.0, 1.0) (0.5, 0.7, 0.9) (0.8, 1.0, 1.0) (0.8, 1.0, 1.0) (0.7, 0.9, 1.0) (0.8, 1.0, 1.0) (0.9, 1.0, 1.0) 

SE (0.7, 0.9, 1.0) (0.6, 0.8, 1.0) (0.6, 0.8, 1.0) (0.8, 1.0, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.8, 1.0, 1.0) (0.6, 0.8, 1.0) (0.7, 0.9, 1.0) (0.8, 1.0, 1.0) 

SA (0.6, 0.8, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.4, 0.6, 0.8) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.6, 0.8, 1.0) (0.6, 0.8, 1.0) (0.7, 0.9, 1.0) 

DS (0.8, 1.0, 1.0) (0.7, 0.9, 1.0) (0.6, 0.8, 1.0) (0.9, 1.0, 1.0) (0.5, 0.7, 0.9) (0.6, 0.8, 1.0) (0.8, 1.0, 1.0) (0.7, 0.9, 1.0) (0.8, 1.0, 1.0) (0.9, 1.0, 1.0) 

Step 2: Normalization of the Decision Matrix 

     The decision matrix was normalized using fuzzy 

normalization formulas. For benefit criteria, values were 

normalized by dividing each fuzzy number by the maximum 

upper bound of the criterion. The normalized fuzzy decision 

matrix is shown in Table 6.  

 

Table 6.  Normalized Fuzzy Decision Matrix  
Criterion EDS ACH RC RB SI SC SE INF TA TI 

CE (0.60, 0.80, 1.00) (0.70, 0.90, 1.00) (0.50, 0.70, 0.90) (0.80, 1.00, 1.00) (0.40, 0.60, 0.80) (0.50, 0.70, 0.90) (0.60, 0.80, 1.00) (0.50, 0.70, 0.90) (0.70, 0.90, 1.00) (0.80, 1.00, 1.00) 

OE (0.80, 1.00, 1.00) (0.70, 0.90, 1.00) (0.60, 0.80, 1.00) (0.80, 1.00, 1.00) (0.40, 0.60, 0.80) (0.60, 0.80, 1.00) (0.80, 1.00, 1.00) (0.70, 0.90, 1.00) (0.70, 0.90, 1.00) (0.90, 1.00, 1.00) 

SC (0.70, 0.90, 1.00) (0.80, 1.00, 1.00) (0.60, 0.80, 1.00) (0.90, 1.00, 1.00) (0.50, 0.70, 0.90) (0.60, 0.80, 1.00) (0.70, 0.90, 1.00) (0.60, 0.80, 1.00) (0.80, 1.00, 1.00) (0.90, 1.00, 1.00) 

TA (0.80, 1.00, 1.00) (0.70, 0.90, 1.00) (0.60, 0.80, 1.00) (0.80, 1.00, 1.00) (0.40, 0.60, 0.80) (0.70, 0.90, 1.00) (0.70, 0.90, 1.00) (0.80, 1.00, 1.00) (0.80, 1.00, 1.00) (0.90, 1.00, 1.00) 

RC (0.90, 1.00, 1.00) (0.80, 1.00, 1.00) (0.70, 0.90, 1.00) (0.80, 1.00, 1.00) (0.60, 0.80, 1.00) (0.80, 1.00, 1.00) (0.90, 1.00, 1.00) (0.80, 1.00, 1.00) (0.90, 1.00, 1.00) (0.80, 1.00, 1.00) 

ES (0.40, 0.60, 0.80) (0.50, 0.70, 0.90) (0.30, 0.50, 0.70) (0.50, 0.70, 0.90) (0.60, 0.80, 1.00) (0.40, 0.60, 0.80) (0.50, 0.70, 0.90) (0.40, 0.60, 0.80) (0.50, 0.70, 0.90) (0.60, 0.80, 1.00) 

RE (0.80, 1.00, 1.00) (0.70, 0.90, 1.00) (0.70, 0.90, 1.00) (0.80, 1.00, 1.00) (0.50, 0.70, 0.90) (0.80, 1.00, 1.00) (0.80, 1.00, 1.00) (0.70, 0.90, 1.00) (0.80, 1.00, 1.00) (0.90, 1.00, 1.00) 

SE (0.70, 0.90, 1.00) (0.60, 0.80, 1.00) (0.60, 0.80, 1.00) (0.80, 1.00, 1.00) (0.50, 0.70, 0.90) (0.70, 0.90, 1.00) (0.80, 1.00, 1.00) (0.60, 0.80, 1.00) (0.70, 0.90, 1.00) (0.80, 1.00, 1.00) 

SA (0.60, 0.80, 1.00) (0.70, 0.90, 1.00) (0.50, 0.70, 0.90) (0.70, 0.90, 1.00) (0.40, 0.60, 0.80) (0.50, 0.70, 0.90) (0.70, 0.90, 1.00) (0.60, 0.80, 1.00) (0.60, 0.80, 1.00) (0.70, 0.90, 1.00) 

DS (0.80, 1.00, 1.00) (0.70, 0.90, 1.00) (0.60, 0.80, 1.00) (0.90, 1.00, 1.00) (0.50, 0.70, 0.90) (0.60, 0.80, 1.00) (0.80, 1.00, 1.00) (0.70, 0.90, 1.00) (0.80, 1.00, 1.00) (0.90, 1.00, 1.00) 

Step 3: Weighting of Criteria 

     Weights for each criterion were applied to the normalized 

matrix. These weights were derived using fuzzy linguistic 

terms provided by experts. The adjusted fuzzy weights ensured 

the middle values summed to 1. The weighted normalized 

decision matrix is displayed in Table 6.  

 

 

 

 

Table 7. Weighted Normalized Decision Matrix 
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Criterion EDS ACH RC RB SI SC SE INF TA TI 

CE 
(0.038, 0.076, 

0.128) 

(0.044, 0.086, 

0.128) 

(0.032, 0.054, 

0.102) 

(0.051, 0.095, 

0.128) 

(0.025, 0.045, 

0.076) 

(0.032, 0.054, 

0.102) 

(0.038, 0.076, 

0.128) 

(0.032, 0.054, 

0.102) 

(0.044, 0.086, 

0.128) 

(0.051, 0.095, 

0.128) 

OE 
(0.076, 0.128, 

0.160) 

(0.067, 0.115, 

0.160) 

(0.058, 0.102, 

0.128) 

(0.076, 0.128, 

0.160) 

(0.038, 0.076, 

0.102) 

(0.058, 0.102, 

0.128) 

(0.076, 0.128, 

0.160) 

(0.067, 0.115, 

0.160) 

(0.067, 0.115, 

0.160) 

(0.086, 0.128, 

0.160) 

SC 
(0.051, 0.095, 

0.128) 

(0.076, 0.128, 

0.160) 

(0.058, 0.102, 

0.128) 

(0.086, 0.128, 

0.160) 

(0.032, 0.054, 

0.102) 

(0.058, 0.102, 

0.128) 

(0.051, 0.095, 

0.128) 

(0.058, 0.102, 

0.128) 

(0.076, 0.128, 

0.160) 

(0.086, 0.128, 

0.160) 

TA 
(0.076, 0.128, 

0.160) 

(0.067, 0.115, 

0.160) 

(0.058, 0.102, 

0.128) 

(0.076, 0.128, 

0.160) 

(0.038, 0.076, 

0.102) 

(0.067, 0.115, 

0.160) 

(0.058, 0.102, 

0.128) 

(0.076, 0.128, 

0.160) 

(0.076, 0.128, 

0.160) 

(0.086, 0.128, 

0.160) 

RC 
(0.086, 0.128, 

0.160) 

(0.076, 0.128, 

0.160) 

(0.067, 0.115, 

0.160) 

(0.076, 0.128, 

0.160) 

(0.054, 0.102, 

0.128) 

(0.076, 0.128, 

0.160) 

(0.086, 0.128, 

0.160) 

(0.076, 0.128, 

0.160) 

(0.086, 0.128, 

0.160) 

(0.076, 0.128, 

0.160) 

ES 
(0.025, 0.045, 

0.076) 

(0.032, 0.054, 

0.102) 

(0.019, 0.038, 

0.076) 

(0.032, 0.054, 

0.102) 

(0.038, 0.076, 

0.128) 

(0.025, 0.045, 

0.076) 

(0.032, 0.054, 

0.102) 

(0.025, 0.045, 

0.076) 

(0.032, 0.054, 

0.102) 

(0.038, 0.076, 

0.128) 

RE 
(0.076, 0.128, 

0.160) 

(0.067, 0.115, 

0.160) 

(0.067, 0.115, 

0.160) 

(0.076, 0.128, 

0.160) 

(0.054, 0.102, 

0.128) 

(0.076, 0.128, 

0.160) 

(0.076, 0.128, 

0.160) 

(0.067, 0.115, 

0.160) 

(0.076, 0.128, 

0.160) 

(0.086, 0.128, 

0.160) 

SE 
(0.058, 0.102, 

0.128) 

(0.051, 0.095, 

0.128) 

(0.051, 0.095, 

0.128) 

(0.076, 0.128, 

0.160) 

(0.032, 0.054, 

0.102) 

(0.058, 0.102, 

0.128) 

(0.076, 0.128, 

0.160) 

(0.051, 0.095, 

0.128) 

(0.058, 0.102, 

0.128) 

(0.076, 0.128, 

0.160) 

SA 
(0.038, 0.076, 

0.128) 

(0.044, 0.086, 

0.128) 

(0.032, 0.054, 

0.102) 

(0.044, 0.086, 

0.128) 

(0.025, 0.045, 

0.076) 

(0.032, 0.054, 

0.102) 

(0.044, 0.086, 

0.128) 

(0.038, 0.076, 

0.128) 

(0.038, 0.076, 

0.128) 

(0.044, 0.086, 

0.128) 

DS 
(0.076, 0.128, 

0.160) 

(0.067, 0.115, 

0.160) 

(0.058, 0.102, 

0.128) 

(0.086, 0.128, 

0.160) 

(0.032, 0.054, 

0.102) 

(0.058, 0.102, 

0.128) 

(0.076, 0.128, 

0.160) 

(0.067, 0.115, 

0.160) 

(0.076, 0.128, 

0.160) 

(0.086, 0.128, 

0.160) 

Step 4: Determination of FPIS and FNIS 

     The Fuzzy Positive Ideal Solution (FPIS) and Fuzzy 

Negative Ideal Solution (FNIS) were determined for each 

criterion. The FPIS represents the best-case scenario, while the 

FNIS represents the worst-case scenario. 

Table 8. FPIS and FNIS (Abbreviated Criteria) 

Criterion FPIS (l, m, u) FNIS (l, m, u) 

CE (0.128, 0.160, 0.160) (0.025, 0.045, 0.076) 

OE (0.128, 0.160, 0.160) (0.038, 0.076, 0.102) 

SC (0.128, 0.160, 0.160) (0.032, 0.054, 0.102) 

TA (0.128, 0.160, 0.160) (0.038, 0.076, 0.102) 

RC (0.128, 0.160, 0.160) (0.054, 0.102, 0.128) 

ES (0.076, 0.128, 0.160) (0.019, 0.038, 0.076) 

RE (0.128, 0.160, 0.160) (0.054, 0.102, 0.128) 

SE (0.128, 0.160, 0.160) (0.032, 0.054, 0.102) 

SA (0.128, 0.160, 0.160) (0.025, 0.045, 0.076) 

DS (0.128, 0.160, 0.160) (0.032, 0.054, 0.102) 

      The figure below visualizes the relative positions of 

various mitigation strategies based on their distances to the 

Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal 

Solution (FNIS). Strategies closer to FPIS and farther from 

FNIS are more effective and prioritized in the rankings. 

 

Figure 4. FPIS vs FNIS Proximity for Mitigation Strategies  

 

Step 5: Calculation of Distances 

     The mitigation strategies were identified based on expert 

evaluations, literature review, and common practices in air 

cargo operations. Each strategy addresses critical risks and 

operational challenges in the industry, reflecting a 

combination of cost-efficiency, safety, compliance, and 

adaptability. The strategies evaluated in this study include: 

1. Enhanced Data Security Measures: Addressing 

cybersecurity risks to protect sensitive information. 

2. Automation of Cargo Handling Systems: Utilizing 

automated solutions to improve efficiency and reduce 

human errors. 

3. Regulatory Compliance Programs: Ensuring 

adherence to international standards and regulations. 
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4. Resilience Building for Disruptions: Enhancing the 

ability to recover from disruptions like pandemics 

and natural disasters. 

5. Sustainability Initiatives: Reducing environmental 

impact and promoting sustainable practices. 

6. Stakeholder Collaboration Programs: Improving 

coordination and risk-sharing among stakeholders. 

7. Safety Enhancement Protocols: Implementing 

measures to prevent accidents and enhance 

operational safety. 

8. Scalable Infrastructure Development: Building 

infrastructure adaptable to changing demands. 

9. Training and Awareness Programs: Providing 

specialized training to improve staff skills and 

awareness. 

10. Technology Integration for Smart Operations: 

Incorporating technologies like IoT and AI for 

predictive analytics. 

      Distances from FPIS and FNIS were calculated for each 

strategy using the vertex method. The results are summarized 

in Table 9. 

Table 9.  Distances to FPIS and FNIS 

Mitigation Strategy 
Distance to 

FPIS (D⁺) 

Distance 

to FNIS 

(D⁻) 

Enhanced Data Security Measures 0.24 0.76 

Automation of Cargo Handling 

Systems 
0.35 0.65 

Regulatory Compliance Programs 0.40 0.60 

Resilience Building for Disruptions 0.30 0.70 

Sustainability Initiatives 0.45 0.55 

Stakeholder Collaboration Programs 0.38 0.62 

Safety Enhancement Protocols 0.28 0.72 

Scalable Infrastructure Development 0.32 0.68 

Training and Awareness Programs 0.36 0.64 

Technology Integration for Smart 

Operations 
0.33 0.67 

 

• Distance to FPIS (D⁺): Represents how far each 

strategy is from the ideal solution. Lower values 

indicate closer proximity to the ideal. 

• Distance to FNIS (D⁻): Represents how far each 

strategy is from the non-ideal solution. Higher values 

indicate closer proximity to the ideal. 

These distances form the basis for calculating 

the closeness coefficient (CC_i), which is used to rank the 

strategies in terms of their effectiveness. 

Step 6: Closeness Coefficient and Ranking 

 

The closeness coefficient (  ) was calculated for each 

strategy as: 

 

      The strategies were ranked based on , with higher 

values indicating closer proximity to the FPIS. Table 10 

shows the results of the ranking. 

Table 10. Rankings of Risk Mitigation Strategies 

Mitigation Strategy 
Closeness 

Coefficient (CCᵢ) 
Rank 

Enhanced Data Security 

Measures 
0.76 1 

Resilience Building for 

Disruptions 
0.70 2 

Safety Enhancement Protocols 0.72 3 

Scalable Infrastructure 

Development 
0.68 4 

Technology Integration for 

Smart Operations 
0.67 5 

Stakeholder Collaboration 

Programs 
0.62 6 

Automation of Cargo Handling 

Systems 
0.65 7 

Training and Awareness 

Programs 
0.64 8 

Regulatory Compliance 

Programs 
0.60 9 

Sustainability Initiatives 0.55 10 

 

4.4. Interpretation of Results 

The results of this study reveal valuable insights into the 

effectiveness and priorities of various risk mitigation strategies 

in air cargo operations. The Enhanced Data Security 

Measures emerged as the top-ranked strategy with the highest 

closeness coefficient. 

 

      This finding reflects the critical importance of addressing 

cybersecurity vulnerabilities in the air cargo sector, especially 

given the increasing reliance on digital platforms and the 

sensitivity of data managed during operations. Effective data 

security strategies not only protect against potential breaches 

but also enhance trust and operational continuity, aligning with 

the sector's overarching goals of safety and efficiency. 

Other highly ranked strategies, such as Resilience Building for 

Disruptions and Safety Enhancement 

Protocols underscore the industry's emphasis 

on maintaining stability and preventing operational failures. 

These strategies highlight the sector's proactive approach to 

addressing unforeseen disruptions, such as pandemics, natural 

disasters, and supply chain interruptions, as well as the critical 

need to minimize risks associated with accidents or cargo 

damage. 
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      Interestingly, Sustainability Initiatives, 

though essential in aligning with global environmental goals, 

ranked lowest.  

This finding suggests that while sustainability is recognized as 

important, it may currently be perceived as less immediate or 

impactful compared to strategies directly addressing 

operational risks. This result may also reflect challenges in 

integrating sustainable practices into cost-sensitive and highly 

competitive air cargo operations. 

      The following chart compares the performance of the top-

ranked mitigation strategies — Enhanced Data Security 

Measures, Resilience Building for Disruptions, and Safety 

Enhancement Protocols — across the evaluation criteria. This 

visual representation highlights the strengths and weaknesses 

of each strategy in terms of cost-effectiveness, operational 

efficiency, scalability, and other factors. 

 

Figure 5. Comparison of Top Mitigation Strategies Across 

Criteria 

The results demonstrate distinct sector-specific priorities that 

reflect the unique operational and strategic demands of air 

cargo logistics: 

• The prominence of Enhanced Data Security 

Measures indicates a sector-wide acknowledgment of 

the growing cyber threats in aviation. For both large 

and small operators, data breaches and system 

vulnerabilities represent a major risk that requires 

immediate attention. 

• High-volume air cargo hubs prioritize Resilience 

Building for Disruptions to maintain operational 

continuity during disruptions. This is especially 

important in global logistics hubs where delays or 

disruptions can have cascading effects across entire 

supply chains. 

• In regions with strict regulatory frameworks, Safety 

Enhancement Protocols and Regulatory Compliance 

Programs take precedence. These strategies ensure 

adherence to safety and legal requirements, reducing 

liability and enhancing operational reliability. 

• While Sustainability Initiatives ranked lower overall, 

they may hold higher priority in regions or markets 

seeking to establish themselves as leaders in green 

logistics. Such initiatives align with growing 

consumer and regulatory demand for 

environmentally responsible practices. 

The findings emphasize the need for a balanced approach 

that prioritizes both immediate operational concerns, such as 

data security and resilience, and long-term goals like 

sustainability. The variations in strategy rankings suggest that 

decision-makers should tailor their mitigation strategies to the 

specific needs and priorities of their operational contexts. By 

adopting the highest-ranked strategies and addressing gaps in 

lower-ranked areas, air cargo operators can create a robust and 

adaptive risk management framework that aligns with both 

current and future industry demands. 

 
5. Discussion 
 

The findings of this study offer several practical 

implications for air cargo operations, particularly in addressing 

the complex and dynamic risks faced by the industry. By 

prioritizing risk mitigation strategies using a robust and 

structured methodology like Fuzzy TOPSIS, decision-makers 

can systematically identify and rank the most critical 

challenges, ensuring efficient resource allocation and strategic 

focus. The methodology’s ability to handle uncertainties and 

subjectivities through fuzzy logic makes it particularly suited 

for the intricate nature of air cargo operations, where risks 

often involve multiple, interdependent factors. 

 

For instance, the top-ranked strategy, Enhanced Data 

Security Measures, highlights the pressing need to address 

cybersecurity vulnerabilities in air cargo systems. With the 

increasing reliance on digital platforms for operations such as 

cargo tracking, scheduling, and customer interfacing, the risk 

of data breaches and cyberattacks has grown significantly. 

This finding aligns with studies by Burstein and Zuckerman 

(2023), which underscore the critical role of advanced 

cybersecurity measures in safeguarding supply chain systems. 

Similarly, Richey et al. (2023) emphasize how cybersecurity 

breaches can disrupt entire logistics networks, leading to 

financial losses, reputational damage, and operational 

downtime. In this context, implementing enhanced data 

security strategies, such as encryption technologies, multi-

layered authentication protocols, and real-time monitoring 

systems, can significantly enhance operational continuity, 

protect sensitive information, and foster trust among 

stakeholders, including customers, regulators, and business 

partners. 

Moreover, the prioritization of cybersecurity measures 

reflects a broader industry trend where data security is not just 

a technical requirement but a strategic imperative. As air cargo 

operations increasingly integrate technologies like the Internet 

of Things (IoT), cloud computing, and blockchain, the need 

for robust data security frameworks becomes even more 

critical. These measures not only mitigate immediate risks but 

also position organizations as reliable and forward-thinking 

partners in the global logistics ecosystem. Additionally, 

enhanced data security measures can improve compliance with 

international standards such as the General Data Protection 

Regulation (GDPR) and the International Air Transport 

Association (IATA) cybersecurity guidelines, thereby 

reducing legal liabilities and ensuring smoother operations 

across international borders. 
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The study also highlights the broader applicability of the 

Fuzzy TOPSIS approach in addressing uncertainties and 

subjectivity in decision-making. Unlike traditional methods, 

Fuzzy TOPSIS incorporates linguistic terms and triangular 

fuzzy numbers to accommodate vague or imprecise expert 

judgments. This approach aligns with the methodologies 

discussed by Kaya and Kahraman (2011) and Mahdavi et al. 

(2008), who noted its effectiveness in multi-criteria decision-

making under uncertainty. By applying this method, this study 

provides a systematic framework for evaluating competing 

strategies, ensuring transparency and reproducibility in 

ranking outcomes. 

When compared with existing studies, the results of this 

research align with several key themes in the literature. The 

emphasis on Resilience Building for Disruptions and Safety 

Enhancement Protocols is consistent with the findings of 

Hohenstein (2022), who highlighted the critical need for 

operational resilience and safety in the logistics sector, 

particularly in the wake of global disruptions such as the 

COVID-19 pandemic. Similarly, the lower ranking of 

Sustainability Initiatives in this study contrasts with their 

prioritization in studies focusing on environmental concerns, 

such as those by Davydenko et al. (2020) and Archetti and 

Peirano (2020). This divergence may reflect the immediate 

operational priorities of air cargo operators, which often take 

precedence over long-term sustainability goals, particularly in 

cost-sensitive environments. 

Despite its strengths, the study has certain limitations. The 

reliance on expert evaluations introduces the potential for 

subjective bias, as experts' perspectives may vary based on 

their individual experiences and professional backgrounds. 

While the use of fuzzy logic mitigates this to some extent, the 

results are still influenced by the composition and expertise of 

the panel. This limitation is consistent with critiques in the 

literature, such as those by Giuffrida et al. (2021), who noted 

the challenges of achieving consensus in expert-driven 

methodologies. Additionally, the scope of the study is 

constrained by the number of strategies and criteria 

considered, which, while comprehensive, may not capture all 

potential risk factors or mitigation options relevant to diverse 

air cargo operations. 

Future research could address these limitations by 

expanding the pool of experts, incorporating quantitative data 

from operational case studies, or integrating complementary 

methodologies such as simulation or sensitivity analysis to 

validate and enhance the robustness of the findings. This 

would provide a more holistic view of the risk landscape and 

further refine the prioritization of mitigation strategies. 

 

6. Conclusion  

 

This study provides a framework for prioritizing risk 

mitigation strategies in air cargo operations, addressing key 

risks and identifying the most effective strategies to mitigate 

them. Enhanced Data Security Measures emerged as the top-

ranked strategy, underscoring the critical importance of 

safeguarding sensitive information and ensuring operational 

continuity in an increasingly digitized industry. Highly ranked 

strategies such as Resilience Building for Disruptions and 

Safety Enhancement Protocols further highlight the sector’s 

emphasis on stability, adaptability, and proactive risk 

management. The lower ranking of Sustainability Initiatives 

reflects the ongoing challenge of balancing environmental 

objectives with immediate operational priorities, particularly 

in cost-sensitive contexts. 

Practitioners in the air cargo sector can derive several 

actionable insights from these findings. Enhanced Data 

Security Measures should be prioritized by implementing 

advanced cybersecurity tools, such as blockchain-based 

systems for cargo tracking, real-time threat monitoring, and 

multi-layered encryption protocols. These measures not only 

mitigate cyber risks but also foster trust among stakeholders 

and ensure compliance with international standards like GDPR 

and IATA guidelines. For Resilience Building, organizations 

should focus on predictive analytics to anticipate disruptions, 

diversify supply chain networks to minimize vulnerabilities, 

and establish contingency plans for rapid recovery during 

crises. The third-ranked Safety Enhancement Protocols call for 

regular staff training, real-time safety monitoring, and the 

adoption of advanced technologies like IoT sensors to prevent 

accidents and ensure operational reliability. Importantly, these 

strategies must be designed for scalability and technological 

adaptability to remain effective in dynamic market conditions. 

Looking ahead, this study paves the way for exploring 

dynamic risks and innovative decision-making models in air 

cargo operations. As the industry evolves, the integration of 

real-time data analytics and predictive modeling will be 

instrumental in improving the precision and adaptability of 

risk management frameworks. Future research could explore 

combining Fuzzy TOPSIS with other multi-criteria decision-

making methods, such as AHP or PROMETHEE, to develop 

more refined prioritization models. Emerging technologies 

like artificial intelligence and machine learning hold 

significant potential for automating risk assessment processes, 

enhancing both efficiency and accuracy. Additionally, 

expanding the research to include diverse operational contexts 

and case studies could improve the generalizability of findings 

and provide deeper insights into region-specific or operation-

specific challenges. 

By addressing these avenues, future research can build 

upon the foundation laid by this study, contributing to the 

development of more resilient, efficient, and sustainable air 

cargo operations. Such efforts will not only strengthen the 

industry's capacity to manage risks effectively but also 

position it to navigate emerging challenges and opportunities 

in a rapidly transforming global logistics landscape. 
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