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This study evaluates the effectiveness of meta-models in predicting financial distress in 

the Turkish textile industry. Using economic data from 2013 to 2023, the research 
applies a meta-model that integrates Lasso, Ridge, Random Forest, Gradient Boosting 
Machines (GBM), and Support Vector Machines (SVM) as base models, with XGBoost 
serving as the meta learner. The results show that the meta-model outperforms a 

standalone XGBoost classifier, especially in minimizing false negatives, which is critical 
for the early detection of financial distress. The meta-model achieved superior recall and 
F1 scores, offering a more reliable tool for predicting financial instability in volatile 
sectors like textiles. However, the study also acknowledges limitations such as model 

selection bias, the complexity of hyperparameter tuning, and reduced interpretability 
due to the ensemble nature of the approach. The findings highlight the potential of 
meta-modeling for industry-specific financial risk prediction while suggesting future 
improvements in model transparency and generalizability.
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Bu çalışma, Türk tekstil sektöründeki finansal sıkıntıları tahmin etmede meta 
modellerin etkinliğini değerlendirmektedir. Araştırma, 2013'ten 2023'e kadar olan 
finansal verileri kullanarak Kement, Ridge, Rastgele Orman, Gradyan Arttırma 
Makineleri (GBM) ve Destek Vektör Makinelerini (DVM) temel modeller olarak entegre 

eden ve XGBoost'un meta öğrenici olarak hizmet ettiği bir meta model uygulamaktadır. 
Sonuçlar, meta modelin, özellikle finansal sıkıntının erken tespiti için kritik olan yanlış 
negatifleri en aza indirmede bağımsız bir XGBoost sınıflandırıcıdan daha iyi performans 
gösterdiğini göstermektedir. Meta model, tekstil gibi değişken sektörlerde finansal 

istikrarsızlığı tahmin etmek için daha güvenilir bir araç sunarak üstün hatırlama ve F1 
puanları elde etmiştir. Bununla birlikte, çalışma aynı zamanda model seçimi yanlılığı, 
hiperparametre ayarının karmaşıklığı ve yaklaşımın topluluk doğası nedeniyle 
yorumlanabilirliğin azalması gibi sınırlamaları da kabul etmektedir. Bulgular, meta 

modellemenin sektöre özgü finansal risk tahmini için potansiyelini vurgularken, model 
şeffaflığı ve genelleştirilebilirliğinde gelecekte yapılabilecek iyileştirmelere dair önerilerde 
bulunmaktadır.

 

 

1. Introduction 

Corporate financial distress is becoming a critical focus of financial management due to its 

substantial impact on the individual concerned firms, financial intermediaries, and the economy at 

large. Firms' financial distress, generally described as a failure of a firm to meet financial obligations 

as they come due can result in serious problems of disruption of operations, loss of customers and 

suppliers, and lastly bankruptcy. Consequently, corporate financial distress prediction has become 

more important. Managers need this kind of approach to anticipate corporate financial distress and 

hence can pro-actively intervene to prevent the degradation of a firm's financial position, while also 

https://dergipark.org.tr/tr/pub/ueip
https://doi.org/10.29216/ueip.1599431
https://dergipark.org.tr/en/pub/ueip/page/5737
https://dergipark.org.tr/tr/pub/ueip/page/5737
https://orcid.org/0000-0002-5160-3210
mailto:musa.gun@erdogan.edu.tr
https://orcid.org/0000-0002-5020-9342


Uluslararası Ekonomi, İşletme ve Politika Dergisi 

 International Journal of Economics, Business and Politics 

    2025, 9 (1), 20-36 

21 

 
 
 

assisting financial institutions in identifying early-stage high-impact defaults so that efficient 

commercial credit assignment is optimized (Cao et al., 2011). Moreover, the ramifications of 

financial distress go far beyond a single firm to the economy at large. When firms are in financial 

distress, this typically snowballs into broader operational challenges and broader economic 

instability (Islam et al., 2023). 

One of the main reasons that financial distress prediction is critical is due in part to its 

preservation of stakeholder interests. The early detection of financial distress holds the key because 

it fulfills stakeholders by informing their decisions. Identifying early warning signs of financial 

distress is crucial for all stakeholders, enabling them to respond appropriately to potential failures 

(Ashraf et al., 2019). Regardless of firm size, financial distress is a big danger to firms and is 

therefore a prominent issue for research within corporate finance (Khoja et al., 2019). Stakeholders 

can use different financial ratios and predictive models to evaluate the possibility of distress, and 

some of them can immediately start mitigating actions to decrease further severe financial disasters.  

Historical financial ratios and statistical models are the mainstays of many traditional 

approaches for predicting financial distress. Altman's Z-Score and Ohlson's O-Score have been 

widely used to evaluate the degree of distress as a function of historical financial statements 

(Campbell et al., 2008). These models employ financial ratios (profitability, liquidity & leverage) for 

evaluating the financial health of a firm based on historical data. However, while these models have 

proven valuable, recent advancements in machine learning have introduced more sophisticated 

techniques that enhance the accuracy of distress predictions by processing large datasets and 

identifying complex patterns. As an example, a financial distress prediction model that used sparse 

algorithms and Support Vector Machines (SVM) has been constructed to withstand dataset 

imbalance problems providing accuracy elevation due to prediction quality in unbalanced datasets 

(Zeng et al., 2020). Similarly, deep learning algorithms have been proven to considerably increase 

the predictive ability of financial distress models by abstracting deep trends in the data as well 

(Elhoseny et al., 2022). 

In this paper, we use a meta-model learning method to predict financial distress in Turkey's 

textile industry, a key sector sensitive to economic fluctuations. The textile industry was chosen 

due to its significant role in Turkey’s economy and global markets. In 2023, Turkey’s textile exports 

reached $9.5 billion, with 19,794 firms employing 397,000 people. Globally, the sector was valued 

at over $1.8 trillion in 2023 and is projected to grow 7.4% annually, surpassing $3 trillion by 2030. 

This study provides valuable insights into the financial stability of this vital and growing industry 

(TC Ticaret Bakanlığı, 2025).  

There are lots of papers regarding financial distress prediction across different industries and 

regions using various testing methods. For instance, a cost-sensitive stacking ensemble learning 

model is proposed on making more agile identification rates of financially distressed firms in China 

market with key features like asset-liability ratios and industry prosperity indices (Wang and Chi, 

2024). Likewise, another stacking ensemble model produced superior results as opposed to classical 

approaches for financial distress classification by feeding it with both stock information and non-

financials (Chen et al., 2024).  

Besides stacking models, other ensemble strategies such as Random Forest and Gradient 

Boosting Machines (GBM) are often used in financial distress prediction. Machine learning 

approaches like Random Forest and XGBoost (over traditional statistical results) are particularly 

superior at distinguishing between distressed and non-distressed firms with high precision and 

recall rates (Ramzan, 2023). Moreover, a model using non-stationary datasets validated by 

classification models can effectively predict financial distress across different economic 

environments (Chaves, Debiaso, & Garcia, 2023). 

https://dergipark.org.tr/tr/pub/ueip


 

Ahmet Akusta & Musa Gün 

 
 

22 
 
 

While research on financial distress prediction models has advanced, industry-specific 

research that considers specifics in different sectors is still required. For example, the utility of the 

Random Forest model to forecast financial distress in a conventional bank was illustrated, notably 

the Total Asset Turnover ratio as one of the key influential factors (Lestari, 2023).  

This study aims to contribute to the current literature by exploring a meta-model learning for 

predicting financial distress in the Turkish textile sector. This paper, through comparing meta-

models against classical single classifiers such as XGBoost, seeks to reveal the best method for 

predicting financial distress for this purpose. In the ensemble method, this study also aims to 

improve prediction accuracy with different machine learning models (Lasso Regression, Ridge 

Regression, Random Forest GBM, and SVM). It also investigates whether advanced predictive 

modeling approaches have potential in the Turkish textile industry and how industry-specific 

factors affect the prediction of financial distress. 

2. Literature Review 

The latest developments in financial distress prediction have identified methodology 

improvements and the use of original data and ensembles for predictiveness as key areas of 

innovation. This review summarizes the major studies on ensemble learning and meta-models in 

predicting corporate financial distress.  

Many studies have recently contributed with different new insights into financial data 

uncertainty and applied state-of-the-art data science/machine learning techniques. Abdullayev et 

al. (2025) presented an IAFDP-RWNVD approach with financial data uncertainty being treated by 

relative weighted neutrosophic valued distances. Various other studies have used multi-source data 

integration and sophisticated feature selection techniques to enhance the prediction accuracy.  

Wang and Chi (2024), tackling the data imbalance issue, put forward cost-sensitive stacking 

ensemble learning which for example targets important variables such as asset-liability ratios in 

predicting accuracy for Chinese companies. Chaves et al. (2023) are another implementer of this 

since they built strategies to cope with data stream characteristics; namely non-stationary and 

imbalanced, which is a challenge with concept drafts as well. These studies also emphasize the 

importance of sophisticated models (stacked models) for treating imbalance datasets which is one 

of the objectives performed in this study.  

Similarly, Yu et al. (2024) developed a classification framework for dealing with missing and 

imbalanced data, that can increase the prediction accuracy. Using a stacked model to deal with 

different data environments in this research has increased robustness in predicting financial 

distress in the textile industry. 

Different studies have been compared to analyze financial distress prediction between 

machine learning methodologies and traditional models. Ramzan (2023) and Ha et al. (2023) showed 

that machine learning models, i.e. Random Forest& XGBoost algorithms deliver a lot of lead to the 

traditional statistical models in terms of prediction accuracy. For example, Sehgal et al. (2021) 

contrasted neural networks with support-vector machines and logit models and found that in the 

Indian corporate sector machine learning performed far better in terms of predictive performance. 

This result significantly infers the study to meta-models that amalgamate some of machine learning 

algorithms in order of high accuracy predictions.  

Ensemble models (specifically stacking) have shown superior performance on many problems 

when compared to traditional algorithms (Hadi et al., 2022; Chen et al., 2024). Additional factors 

such as financial management and textual data have been observed to dramatically increase the 

performance of ensemble models (Tang et al., 2020). Based on these findings, our research employs 

meta-models to fuse multiple classifiers into a comprehensive and effective financial distress 

prediction model. One also could look at the intersection of multiple textual data and/or genetic 
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algorithms using neural networks, as a way to improve ensemble model performance (Zhang et al., 

2022). Working together, these series of studies concur with the field of research emphasizing 

ensemble methods, especially stacked models combining different classifiers to improve predictive 

outputs as in this current research.  

Furthermore, previous studies specifically focusing on the Turkish textile sector provide 

valuable insights into how financial distress models can be adapted to industry-specific contexts. 

For instance, Ezin (2022) conducted a ratio analysis on the Turkish textile manufacturing sector, 

leveraging data from the Central Bank of the Republic of Turkey and BIST listings from 2009 to 

2021, to investigate liquidity, financial structure, operational efficiency, and profitability. Similarly, 

Akkaya et al. (2008) explored capital structure, asset utilization, and profitability in the ISE leather-

textile industry using regression techniques, demonstrating the sector’s importance within Turkish 

manufacturing. Another key contribution by Altaş and Giray (2005) employed factor analysis and 

logistic regression to develop a financial failure model specific to the Turkish textile industry, 

highlighting both its significance and its vulnerability to economic crises. These studies underscore 

the necessity of examining the textile sector in Turkey, which remains a critical component of the 

country's economy and serves as a strong motivator for adopting advanced ensemble learning 

methods in financial distress prediction. 

Many have tried, different ways of integrating non-traditional data sources such as sentiment 

analysis and textual info into financial distress prediction models. Zhang et al. (2022) proposed a 

fine-grained sentiment analysis to develop early warning signals of financial distress, while Zhao et 

al. (2022) integrated sentiment tone features for better accuracy. Wang et al. (2018) introduced a 

random subspace method that integrates sentiment and textual data to enhance the performance 

of the model. Including these non-financial indicators resonates with our research's goal to leverage 

ensemble learning models, especially stacked models, that can integrate and process diverse data 

types effectively. 

Deep learning models are also popular for financial distress prediction. For instance, several 

studies have established neural networks for financial distress prediction in Chinese-listed 

companies. Kong et al. (2023) and El-Bannany et al. (2020) have made the comparison of deep 

learning techniques including MLP, LSTM, and CNN in terms that outperformed particularly for 

high dimensional datasets. Zhong and Wang (2022) indicate AI methods help in making early 

warning systems to predict financial distress more effectively. Inspired by this we expand on this 

study to incorporate deep learning models into meta-model frameworks that can better capture 

high-level patterns in financial data. 

While these developments have occurred, problems like data imbalance and model 

interpretability remain unsolved. Chaves, Debiaso, and García (2023) and Sun et al. (2021) 

addressed dynamic models that handle imbalanced datasets, while Liu et al. (2019) integrated 

network-based features with a GA-based gradient boosting method for enhanced accuracy. As we 

argued model interpretability, Zhang et al. (2022) were among the few proposing an explainable AI 

approach that uses Shapley additive explanations and partial dependence plots to improve financial 

distress prediction model transparency. Tran et al. (2022) similarly employed SHAP values to 

interpret Vietnamese financial distress prediction, emphasizing an ongoing trend in the research 

field for more interpretable models whilst seeking to balance how much accuracy should be 

sacrificed. The paper enumerates the efforts stated above via optimizing stacked models to deliver 

reliable predictions and suitable insights for decision-makers. 

3. Methodology 

3.1. Data Collection 

This study uses data from the Eikon financial database and a dataset of Turkish textile 

companies spanning the years 2013 to 2023. Our dataset consists of 13 textile companies over 
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time, with each company year is treated as a single observation, resulting in a total of 143 

observations. The variables in the dataset are given in Table 1. 

Table 1: Variables 

Ratio Category Literature References 

Net Profit Margin 
(%) 

Profitability Ratios 
(Prapanca and Kumalasari, 2023), (Wisnu and Astuti, 2023), 
(Silviyani et al., 2024), (Nurtati and Yuni, 2023), (Vebrizha et al., 
2024), (Eduard, and Adeline, 2023), (Apasya et al., 2024) 

Current Ratio, 
Quick Ratio 

Liquidity Ratios 
(Wisnu and Astuti, 2023), (Apasya et al., 2023), (Arifuddin et al., 
2023), ( Putri and Hendeyana, 2022), (Lumbantobing, 2020), 
(Agung Saputra, 2019) 

Total Debt to Total 
Assets (%) 

Leverage Ratios 

(Apasya et al., 2023), (Vebrizha et al., 2024), (Arifuddin et al., 

2023), (Widiastuti and Ali Ikhsan, 2022), (Elmi Dini and Umi, 
2023), (Fatimah et al., 2019) 

Asset Turnover Activity/Efficiency Ratios 
(Vebrizha et al., 2024), (Nurtati and Yuni, 2023), (Suryani and 

Desy, 2022), (Arini et al., 2021), (Prapanca and Kumalasari, 2023) 

Beta, WACC Equity 
Risk Premium (%) 

Market/Valuation Ratios 
(Goetz, 2020), (Atika, and Siti Handayani, 2013), (Heymans and 
Brewer, 2023), (Korteweg, 2007), (Jorge Ceron, 2012) 

ZScore 
Solvency/Distress  
Prediction Ratios 

(Silviyani et al., 2024), (Mavengere and Gumede, 2024), (Mufidah 
and Handayani, 2024), (Pravin and Dhabaliya, 2023), (Say, 2024), 
(Sharma et al., 2023) 

Several data preparation steps are required before the data can be used for model training 

and analysis, which ensures its quality and consistency. 

3.2. Data Preprocessing 

This dataset contains missing values for some company-year observations. It is managed with 

mean imputation for missing values and selected mean imputation over alternatives such as median 

and mode imputation since it performs better at maintaining data properties (Maheswari et al., 

2020).  

Table 2: Descriptive Statistics 

Metric Count Mean Std. Dev. Min 25% 50% 75% Max 

ZScore 16 2.28 0.89 0.62 1.71 2.00 2.74 4.02 

Beta 16 0.81 0.36 0.22 0.53 0.79 1.02 1.39 

Asset Turnover 16 0.63 0.16 0.37 0.53 0.64 0.76 0.94 

Net Profit Margin (%) 16 2.69 9.03 -20.90 -1.98 4.00 8.25 15.20 

Tot Debt/Tot Assets (%) 16 24.96 10.23 11.70 16.60 20.20 34.60 41.60 

Current Ratio 16 1.29 0.20 1.04 1.16 1.29 1.37 1.79 

Quick Ratio 16 0.71 0.17 0.46 0.62 0.70 0.80 1.08 

WACC Equity Risk Premium (%) 16 7.54 2.15 4.20 6.53 7.20 8.00 12.10 

We apply Z-score normalization to scale the independent variables and make them 

comparable across different scales. Z-scores, numerical measures from a dataset’s mean and 

standard deviation are popularly employed as a performance metric by ranking developers based 

on their scores (Santhanakrishnan and Senthooran, 2022). Z-standardization allows us to 

normalize the values and put them on one scale so they are understandable and comparable in the 

same sense (Mukhametzyanov, 2023). 

As shown in Table 2, financial metrics vary widely, particularly Net Profit Margin (%) and Total 

Debt/Total Assets (%), with standard deviations of 9.03 and 10.23, respectively. This high variability 

underscores the importance of normalization to mitigate the impact of extreme values and 

skewness. Additionally, the WACC Equity Risk Premium (%) ranges from 4.20% to 12.10%, 

indicating varying levels of risk across firms, which further supports the need for consistent data 

scaling. 

The Altman Z-Score approach is a well-known framework for forecasting financial difficulties 

in companies in different industries so it evaluates the probability of bankruptcy. Developed by 

Edward I. Altman, the model crunches a variety of discriminant analyses to relegate companies into 
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zones or risk tiers according to their Z-Scores and was adapted here to assist in decisions on the 

health of a firm (Ahuja and Singhal, 2014). According to Altman (1968), companies whose Z-scores 

are lower than 1.81 are considered poor beasts or bankrupt (very risky class) with a higher 

probability of declaring bankruptcy. Altman Z-Score dependent variable (binary classification) is 

defined as “Distressed”. Specifically, instances (observations) with a Z-Score of less or equal to 1.8 

are labeled Distressed (0), and all others i.e. greater than 1.8 as Not Distressed (1). This binary 

classification allows classification algorithms to predict financial distress effectively.  

3.3. Exploratory Data Analysis (EDA) 

Exploratory data analysis (EDA) is a conceptual knowledge of the dataset that helps to predict 

corporate financial distress. In this section, we give visualizations of the distribution of financial 

health for companies in the study and how this has evolved. 

Figure 1: Distribution of Z-score 

 

We use Altman Z-scores as the reliant metric for this analysis which is one of the most popular 

indicators of financial distress globally. In Figure 1, there is a very large amount of variation from 

negative to highly positive scores.  The distribution of most companies has moderate Z-scores, and 

yet the tail is longer on the high end so many firms are doing merely a wash of their financial 

stability. This distribution depicts the wide spectrum of financial performance trends of the industry 

throughout the reporting period. 

Figure 2: Z-scores by Company 
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Figure 2 further disaggregates the distribution to Show that companies differ in terms of their 

financial distress. There are some companies that certainly always have better Z-scores 

consistently, indicating stable and solid financial health standing.  In contrast, others display a 

broader range of Z-scores, suggesting periods of both stability and distress. Some companies also 

show many outliers, indicating that some firms had extreme events that caused them large swings 

in their Z-scores. 

Figure 3: Number of Distressed vs. Not Distressed Companies 

 

Figure 3 provides a clear cut to the number of distressed versus not distressed companies 

over the years and it gives an idea of where the industry is at its financial health trends. The chart 

shows some ups and downs over the number of bankrupt companies, certain years have more firms 

in trouble than others. 

Figure 4: Company Financial Distress Status Over the Years 
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The plots of time-dependent financial distress status for all the companies are presented in 

Figure 4. This one-dimensional visualization provides a pixel-perfect, company-specific 

representation — where every cell suggests whether the company was in distress (Z-score < 1.8) or 

not distressed (Z-score ≥ 1.8) for a given year. The heatmap illustrates an evolution from financial 

health and distress of all companies in our study period, where some keep relatively stable for years 

profitable or lossmaking others oscillate between distress and stability. 

This time-series view is important when trying to classify firms as chronically distressed 

versus temporarily financially disordered. 

3.4 Train-Test Split Train-Test Split 

The dataset is divided into 2 groups: 70% of the data is reserved for the training, comprising 

100 observations, while the remaining 30%, consisting of 43 observations, is allocated for the test 

set. The split is conducted randomly, ensuring that the training set is representative of the overall 

dataset, including a balanced proportion of distressed and non-distressed companies. 

3.5. Model Development 

The method of building and testing two different predictive models: the bare model and the 

meta-model are depicted in Figure 5.  

Figure 5: Model Development Workflow 

 

Data collection and preprocessing followed by the workflow split which led to two branches 

one for a bare XGBoost model developing and the other building a meta-model relying on base 

classifiers.  The first pathway involves the development of a bare model employing an XGBoost 

Classifier, which subsequently, calls for accuracy evaluation metrics. The second pathway on the 

other hand deals with building a meta-model where the models are developed first whole it is 

followed by an XGBoost Classifier approach to act as a meta-learner in immediate base estimators. 

A valid comparison of the bare and meta-models' performance in terms of predictive qualities is 

taken by computing these accuracy metrics of both and then arranging them systematic. The goal 
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of our comparison study is to establish the efficacy of the meta-model method vs the bare model in 

terms of prediction accuracy and robustness. 

The selection of base models, including Lasso Regression, Ridge Regression, Random Forest 

Classifier, Gradient Boosting Machine (GBM), and Support Vector Machine (SVM), is well-justified 

based on their strengths and suitability for handling diverse data characteristics. Lasso Regression 

is particularly effective for high-dimensional data with multicollinearity, offering both regularization 

and interpretability (Kan et al., 2019). Ridge Regression further mitigates multicollinearity issues 

while preventing overfitting (Chen & Jiang, 2017). Random Forest Classifier enhances predictive 

accuracy and captures complex, nonlinear relationships due to its ensemble learning structure 

(Rodriguez-Galiano et al., 2014). Gradient Boosting Machine (GBM) excels at feature discovery and 

handling intricate datasets (Xia et al., 2021). Support Vector Machine (SVM) is well-suited for 

classification tasks with complex decision boundaries (Chen, 2011). The XGBoost classifier was 

chosen as the meta-learner due to its high scalability, efficiency, and ability to integrate outputs 

from diverse models effectively (Sprangers et al., 2021). Moreover, evaluation metrics such as 

accuracy, precision, recall, and F1-score were deliberately selected to provide a comprehensive 

performance assessment, ensuring both correctness and robustness. This multifaceted evaluation 

approach ensures balanced insights into classification effectiveness, especially when managing 

class imbalances or varying misclassification costs. 

A metamodel, or a combination of models, defines how specific model inputs are mapped to 

those corresponding outputs. These are frequently generated by sampling a direct model and 

training a machine learning algorithm to predict certain outputs while the input values change 

(Lejeune, 2020).  

Meta-learning or, learning to learn, studies the systematic observations of different kinds of 

performance machines across multiple tasks and employs the lessons learned to help with the 

learning of the new tasks. This workflow leads to improved machine learning pipelines and neural 

architecture design as well as data-driven algorithms in the place of classical hand-engineered 

heuristics (Vanschoren, 2019). They are most helpful in few-shot learning settings wherein these 

frameworks can lower the meta-model space to learn and in general show improvement on what 

we've unseen before (Ye et al., 2021). Besides that, meta-learning helps non-expert users with 

learning algorithms that are likely to perform well for a specific dataset, greatly decreasing the need 

for extensive human model building and data analysis (Shahoud et al., 2021). 

Combined the outputs per base models and produced yet another dataset, which is now 

known as the meta-feature dataset. It is used as input for the meta-model in this case is the 

XGBoost classifier. 

Table 3: Models 

Model Parametreler 

Lasso Regression alpha=1.0, max_iter=1000, tol=0.0001 

Ridge Regression alpha=1.0, solver='auto', max_iter=1000 

Random Forest n_estimators=100, max_depth=None, random_state=42 

Gradient Boosting Machine (GBM) n_estimators=100, learning_rate=0.1, max_depth=3 

Support Vector Machine (SVM) C=1.0, kernel='rbf', gamma='scale' 

XGBoost (Meta Model) n_estimators=100, learning_rate=0.1, max_depth=3, eval_metric='logloss' 

XGBoost meta-model was fitted on the meta-feature data frame with the original Distressed 

training labels. Hyperparameters were tuned for both model complexity and performance, to make 

sure that the meta-model was synthesizing the inputs effectively from all base models. 

The trained meta-model produced final binary predictions for each observation, classifying 

firms as distressed or not distressed by the aggregated insights of the base models. Similarly, we 

trained the XGBoost model on the original Distressed labels from the training set. The model (once 
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tuned with its hyperparameters for tradeoff between complexity and correctness) classified the firms 

accordingly as either Distressed or Not Distressed by doing some pattern matching on the dataset. 

3.6. Model Results 

The comparison between the Bare XGBoost classifier and the Meta Model (Base Models + 

XGBoost) illustrates that the Meta Model performs better across most metrics as shown in Table 4. 

Meta Model has a significantly better accuracy of 86.0% than the Bare XGBoost (83.72%), which 

means that it is overall more correct in classifying. The Meta Model also excels in a recall, with 

93.0%, suggesting it is better at identifying distressed companies than the Bare XGBoost, which 

has a recall of 80.77%. The F1 score is stronger (90.0% vs. 85.71%), meaning the balance between 

precision and recall might be better in the Meta Model. However, the Bare XGBoost performs better 

in precision (91.3% vs. 85.0%), which is more reliable when predicting a company as distressed.  

Table 4: Model Results 

Model Bare XGBoost Classifier 
Meta Model 

(Base Models + XGBoost Classifier) 

Accuracy (%) 83.72 86.0 

Precision (%) 91.3 85.0 

Recall (%) 80.77 93.0 

F1 Score (%) 85.71 90.0 

The primary goal is to predict corporate financial distress accurately; minimizing false 

negatives is likely more critical. Missing a distressed company could have severe financial and 

operational repercussions. For that, the Meta-Model wins again with better recall and F1 score 

(90.00%). The meta-model does not increase the classification performance of a model, but the 

reduction in precision which stems from it is compensated by a larger recall and thus there is an 

overall improvement in a precision-recall trade-off. This means that the meta-model is therefore 

more reasonable and practical for financial distress prediction, where the cost of missing a 

distressed company (false negative) is much higher than the cost of a false alarm (false positive). 

4. Discussion 

In this study, we provide the basic XGBoost classifier and directly compare it to a meta-model 

for forecasting economic distress in businesses. Meta-model is far better than XGBoost in reducing 

false negatives -- an important aim when predicting financial distress. Previous literature suggests 

ensemble learning approaches, especially with meta-models show better performance than a single 

predictor like XGBoost. Studies in line with Chen et al. (2024) have developed the efficiency of 

classifier combination, which is consistent with our comparison in that the meta-model outperforms 

XGBoost across the board for important metrics in this study. Higher recall and F1 scores of the 

meta-model reflect better performance in catching distressed companies, which is important for the 

detection of financial distress.  

Financial distress prediction criteria were studied in this research, with the primary objective 

of reducing false negatives in that failing to predict an impending declared bankruptcy can result 

in a loss of opportunity for early intervention and bankruptcy. The meta-model's recall of 93% 

makes it much better suited for this goal than XGBoost, which achieved a recall of 80.77%. The 

meta-model shows this feature its value in this important area, as it can identify distressed 

companies better. 

While the slightly lower precision of the meta-model (85%) compared to XGBoost (91.3%) 

highlights the trade-off between precision and recall, recall is typically prioritized in the context of 

financial distress prediction. In volatile industries, false positives outweigh the overfit of a meta-

model and thus, we prefer the meta-model for its high recall. Recall is highest with the meta-model 

so that is especially important in sectors such as textiles being ridden with financial volatility state. 

https://dergipark.org.tr/tr/pub/ueip
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The performance metrics observed in this study—accuracy (86%), precision (85%), recall 

(93%), and F1 score (90%)—are consistent with results reported in the literature. For example, 

recent works like Engin and Durer (2023) had analogous results when applying XGBoost for 

financial distress prediction on Borsa Istanbul data which confirms the credibility of machine 

learning models in this kind of analytics. These comparable results thus also lend further support 

to predictive distress modeling, and machine learning particularly when financial ratios can be 

considered as independent variables.  

Despite the strong performance of the meta-model, it should be noted that there are several 

limitations. The model using only historical financial data from one industry can run the risk of not 

being able to generalize the results. This meta-model approach should be further investigated in 

other industries and geographies to judge the wider applicability of the model. For instance, Arini 

(2021) explored global retail companies using the Grover model, achieving a lower accuracy of 

76.67%. The application of meta-models to different sectors could serve as a validation of their 

generalized utility. 

Even if the meta-model is expressive at predicting accurately, interpretability is hard. Most 

meta-models are not easily interpretable, as is usual with complex models. One way to solve this 

problem, Zhang et al. (2022) propose employing explainable AI methods for supporting 

transparency. In subsequent studies, researchers can incorporate explainable AI techniques like 

Shapley additive explanations to increase accessibility to decision-makers while maintaining the 

power of these advanced models. 

From a practical standpoint, stakeholders such as financial analysts, investors, and 

policymakers can leverage the meta-model's predictions to make proactive decisions. For instance, 

investors can use early distress signals to adjust their portfolios and mitigate risk exposure, while 

financial institutions can tighten credit policies for at-risk firms. Policymakers may implement 

sector-specific support strategies based on predictive insights to stabilize vulnerable industries. 

Additionally, integrating explainable AI methods can further empower stakeholders by providing 

transparent reasoning behind distress predictions, fostering trust and enabling more informed 

decision-making. 

This study applied several key methodological strategies to enhance robustness and mitigate 

the risk of overfitting. Stratified sampling was used to ensure a balanced representation of 

distressed and non-distressed companies, preventing bias in model evaluation. Missing values were 

imputed, and independent variables were standardized to avoid the overfitting risk. 

Additionally, the meta-model combines predictions from multiple base models—Lasso, Ridge, 

Random Forest, Gradient Boosting, and Support Vector Machine—each capturing distinct patterns 

in the data. By leveraging the strengths of these base models, the meta-model improves the 

generalizability of the final prediction. Meta-models borrow the techniques provided by base models 

such as Lasso and Ridge regression to decrease overfitting, enable and then generalize the solution 

for unseen input ranges. 

The model is further evaluated on an independent test set to determine that its performance 

can still hold up beyond just the training data using metrics such as accuracy, precision, recall, 

and F1 scores. 

5. Conclusion 

In this study, we used a meta-model strategy to predict financial distress in the Turkish textile 

sector. It outperforms XGBoost for early detection of financial distress, especially in reducing false 

negatives and understanding its potential as well. This result is important for financial distress 

prediction because the non-observation of distressed firms will certainly cost them bankruptcy. The 
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results are very indicative that meta-models may be employed as a useful tool in the classification 

of financial distress in volatile sectors, such as textiles.  

This research sheds light on how machine learning models, especially meta-models can help 

improve the performance of financial distress predictions. The study results show that meta-models 

are superior in reducing false negative performance; identifying insights is invaluable for enhancing 

the predictive accuracy of financial distress models. These findings are relevant to the overall debate 

on financial distress prediction, discussing the benefits of meta-modeling techniques for better risk-

management practices elaboration in dynamic sectors.  

The study contributes to the literature by showing meta-models can predict financial distress 

and this specificity can be exploited in an industry-specific context. The first of which is to illustrate 

the power of employing a meta-model to amalgamate the attributes of several base models for 

financial distress prediction. Better performance (recall and F1 score) with the meta-model than all 

other baselines shows that this method adds significant value over existing approaches. This 

research also brings discussion of the importance of sector-specific models and explains that within 

textiles financial ratios can inform distress (possibly to be applied across other sectors). 

This study has however several limitations as well. The historical financial data of a single 

industry used in this study may limit the generalization of the results.  The method must be further 

developed for other sectors and regions to confirm its appropriateness. Moreover, incorporating 

additional indicators (non-financial like macroeconomic variables or sentiment analysis) could 

further improve the predictive power and relevance of the model in changing economic 

environments. 

Future research should explore how the integration of sector-specific models with 

macroeconomic and market sentiment indicators can enhance predictive accuracy across diverse 

industries. Additionally, expanding the model to account for global economic trends and cross-

industry comparisons could offer deeper insights into financial distress patterns. Addressing these 

aspects will not only validate the model's adaptability but also contribute to the broader research 

on financial distress prediction, potentially leading to more comprehensive and resilient risk 

management strategies. 
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