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Abstract: Distance-based regression is an alternative method for parameter estimation in linear regression models when mixed-type 
explanatory variables are used. Distance-based regression is similar to classical linear regression, except that explanatory variables are 
measured by distance measures rather than raw values. In this study, datasets with sample sizes of 10, 25, 50, 100, 250 and 500 produced 
for Binomial, Normal, t, Chi-square and Poisson distributions of Euclidean, Gower and Manhattan distance measures and real data with 
discrete and continuous distribution that body weight at sixth months was used as outcome variable, body length and chest depth at 
sixth months of Saanen kids were used as explanatory variables as continuous data. Milk fat ratio was determined as the response 
variable, while the number of milking per day and the season of Polish Holstein Friesian cattle were determined as the explanatory 
variables as discrete data. It was aimed to determine the effect on the data sets (10, 50 and 100 sample sizes) by comparing the results 
obtained from the Linear Regression method. R packages "dbstats", "cluster" and "tidyverse" were used to perform the analysis. As a 
result, it has been determined that the use of Manhattan distance in data with Poisson distribution may produce unsuccessful results, 
especially in small sample sizes (n<50). Although there is no significant difference between Gower and Euclidean distances in different 
distributions according to sample sizes, it has been determined that the use of Euclidean distance measure in some distributions 
produces results that cause fluctuation. However, it has been understood that the Gower distance can be recommended as a more 
suitable choice since it has a more stable structure. For the applicability of the Least Square Estimation method, it may be recommended 
to use Distance Based Regression methods in cases where the necessary assumptions mentioned in this study cannot be met. 
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1. Introduction 
In any relationship analysis, the goal is to obtain an 
accurate and reliable prediction equation using the 
available data. This is one of the most important and 
common questions about whether there is a statistical 
relationship between a response variable (Y) and the 
explanatory variable(s) (Xi). One option to answer this 
question is to use regression analysis to model its 
relationship. There are several types of regression 
analysis. The type of regression model depends on the 
shape of the distribution of the response variable (Y) (Arı 
and Önder, 2013; Kurnaz and Önder, 2021; Kurnaz et al., 
2021).  
Linear regression analysis is a method of creating a model 
that predicts the desired response variable based on the 
variable(s) that can be detected more easily, at lower cost, 
or earlier than the variable to be determined. Simple 
linear regression analysis explains the linear relationship 
between the response variable and a single explanatory 
variable. If a linear relationship between a single response 
variable and more than one explanatory variable is 
desired, the relationship is examined by multiple linear 
regression analysis (Weisberg, 2005; Okur, 2009; Alpar, 
2010). In order for the parameter estimations of the 

regression model, which will be obtained as a result of 
both simple and multiple linear regression analysis, to be 
reliable, some assumptions about the model must be 
provided. In order to use the regression equation obtained 
in the simple linear regression analysis for estimation; The 
error terms (𝜖𝜖𝑖𝑖 =  𝑌𝑌𝑖𝑖 − 𝑌𝑌�) show normal distribution due 
to chance, the mean of the expected value of the errors is 
0 and the variance is homogeneous and equal to σ2, the 
errors are independent [Cov(𝜖𝜖𝑖𝑖, 𝜖𝜖𝑗𝑗)]=0, with error terms it 
is necessary to provide some assumptions such as the 
absence of correlation between the explanatory 
variable(s) (Alma and Vupa, 2008). In multiple linear 
regression, in addition to the assumptions in simple linear 
regression, the assumption that the explanatory variables 
are independent from each other should also be provided 
(Vural, 2007). This assumption, which can also be 
explained as the condition that the simple linear 
correlation coefficients between the explanatory variables 
are zero or very close to zero, is expressed as the absence 
of "multicolinearity" in statistics (Orhunbilge, 2017). In 
case of multiple connections, Least Squares estimation 
method loses its power (Vural, 2007). For the biological 
researches, some discrete or count variables such as sex, 
genotype, level of crossbreed (F1, G1, etc.) used as 
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explanatory variables that break the assumptions of linear 
regression. In cases where these assumptions cannot be 
met, it is recommended to change the parameter 
estimation methods (Arı and Önder, 2013). 
One of the few models developed as a solution for the 
above-mentioned situation in parameter estimation 
methods is Distance Based Regression methods. The 
purpose of these methods is to correctly address problems 
with non-true value estimators, including categorical or 
real-valued and categorical explanatory variables (Arenas 
and Cuadras, 2002). In statistics and data analysis, the 
geometric concept of distance between individuals or 
populations has been applied in fields such as 
anthropology, biology, genetics, psychology, linguistics, 
and others. The concept of distance is a useful tool for 
hypothesis testing and parameter estimation among other 
applications. In addition, the concept of distance is a basic 
tool in some statistical techniques such as fitness analysis 
or multidimensional scaling (Cuadras, 1988). Various 
multivariate approaches can evaluate relationships in 
connectivity (Varoquaux and Craddock, 2013), some 
factors have led researchers to examine multivariate 
distance matrix regression (MMR) (Anderson, 2001; 
McArdle and Anderson, 2001; Schork et al., 2008; Shehzad 
et al., 2014). These include: 
• Ability to examine more than one explanatory variable 
at a time (i.e. covariates can be included), 
• Applicability for categorical and/or continuous 
variables, 
• Ease of interpretability due to the regression-like 
analytical structure. 
Recently, the distance-based regression model has been 
successfully applied in many fields. In genomics, Xu et al. 
(2015) sequenced genes according to clusters associated 
with a distance-based regression model in the presence of 
a driver mutation and selected the important gene. In 
neuroscience, Shehzad et al. (2014) identified voxels 
(units of volume in body parts in images from computed 
tomography) associated with brain phenotypes with a 
distance-based regression model. In human microbiome 
research, Chen et al. (2012) determined the factors 
affecting the composition of the microbiome with a 
regression-based approach. In all these applications, the 
statistical significance derived from the distance-based 
regression model of the pseudo F test was calculated 
numerically with the permutation procedure, which 
proved to be superior for this purpose (Li et al., 2019). 
In this study, datasets with sample sizes of 10, 25, 50, 100, 
250 and 500 produced belonging to Binomial, Normal, t, 
Chi-square and Poisson distributions of Euclidean, Gower 
and Manhattan distance measures and real datasets 
showing discrete and continuous distribution (10, 50 and 
100 sample sizes) were examined. It is aimed to determine 
the effect of linear regression by comparing the results 
obtained from the linear regression method. 
 
 
 

2. Materials an Methods 
In this study, data sets consisting of Binomial, Poisson, 
Chi-Square, Normal, t distributions and linear regression 
(LR) (no distance measure) with sample sizes of 10, 25, 50, 
100, 250 and 500 were analyzed. Analyzes were 
performed using the R software version 4.2.2. 10000 
repetitions were used in the simulation study. The 
continuous data used in the study belong to the Saanen 
kids used in a study by Önder and Abacı (2015). While 
body weight at 6 months was used as outcome variable, 
body length and chest depth at 6 months were used as 
explanatory variables. The discrete data used in the study 
were previously reported by Aerts et al. (2022) belong to 
the Polish Holstein Friesian cattle used in the study. In this 
example, milk fat ratio was determined as the response 
variable, while the number of milking per day and the 
season were determined as the explanatory variables. 
Mean, standard deviation and error calculations of AIC, 
BIC, GCV values were used in the evaluation of the 
obtained results. 
Generally a linear regression model; It is defined as Y = Xβ 
+ ε. Here; Y; (nx1) dimensional response variable vector, 
X; (nxp) dimensional known coefficient matrix (design 
matrix), β; (nx1) dimensional unknown parameter vector 
(vector of coefficients), ε; It is an (nx1) dimensional 
residuals (error) vector, with a mean of zero (E(ε)=0) and 
a constant variance (var(ε)=σ2I) (Atkinson and Riani, 
2000). 
Least Square estimator (LSE) of a linear regression model 
(equation 1) can be defined as (Anon, 2023a); 
 

�̂�𝛽=(X'X)-1X'Y (1) 
 

here, X is n×k dimensional explanatory variable data 
matrix (design matrix), �̂�𝛽 is k×1 dimensional vector of 
coefficients and Y is n×1 dimensional vector of dependent 
variable observations.  
Matrix representation of General Sum of Squares (GSS) in 
linear regression model; GSS= Y'Y, matrix representation 
of Regression Sum of Squares (RSS); RSS=�̂�𝛽'X'Y, mean of 
Squares of Error (ESS) is expressed as ESS= GSS-RSS. 
The Distance Based Regression model involves multiple 
regression of a response matrix over any number of 
explanatory matrices; wherein each matrix contains 
distances or similarities (in terms of ecological, spatial or 
other attributes) between all binary combinations of n 
objects (sample units); Statistical significance tests are 
performed by permutation. The method shows flexibility 
in terms of the types of data that can be analyzed 
(numbers, absent, continuous, categorical) and the shapes 
of the response curves (Lichstein, 2007). 
For a selection of reference input points R={𝑚𝑚𝑘𝑘}𝑘𝑘=1𝐾𝐾  with 
R⊆X and corresponding outputs T={𝑡𝑡𝑘𝑘}𝑘𝑘=1𝐾𝐾  with T⊆Y, 
define 𝐷𝐷𝑥𝑥ϵℝ𝑁𝑁×𝐾𝐾 in such a way that its kth column contains 
the distances 𝑑𝑑(𝑥𝑥𝑖𝑖,𝑚𝑚𝑘𝑘) between the i= 1,…,N input points 
xi and the kth reference point mk. Analogously, define 
∆𝑦𝑦ϵℝ𝑁𝑁×𝐾𝐾 in such a way that its kth column contains the 
distances 𝛿𝛿(𝑦𝑦𝑖𝑖 , 𝑡𝑡𝑘𝑘) between the N output points yi and the 
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output tk of the kth reference point. The mapping g 
between the input distance matrix Dx and the 
corresponding output distance matrix Δy can be 
reconstructed using the multiresponse regression model 
(equation 2). 
 

∆𝑦𝑦=g(𝐷𝐷𝑥𝑥)+E. (2) 
 

The columns of the matrix Dx correspond to the K input 
vectors and the columns of the matrix Δy correspond to 
the K response vectors, the N rows correspond to the 
observations. The columns of the N × K matrix E 
correspond to the K residuals. Assuming that mapping g 
between input and output distance matrices has a linear 
structure for each response, the regression model has the 
form (equation 3). 
 

∆𝑦𝑦=𝐷𝐷𝑥𝑥B+E (3) 
 

The columns of the K × K regression matrix B correspond 
to the coefficients for the K responses. The matrix B can be 
estimated from data through a minimization of the 
multivariate residual sum of squares as loss function 
(equation 4): 
 

RSS(B)=tr((∆𝑦𝑦-𝐷𝐷𝑥𝑥B)´ (∆𝑦𝑦-𝐷𝐷𝑥𝑥B)) (4) 
 

Under the normal conditions where the number of 
equations in equation 3 is larger than the number of 
unknowns, the problem is overdetermined and, usually, 
with no solution. This corresponds to the case where the 
number of selected reference points is smaller than the 
number of available points (i.e. K<N). In this case, we must 
rely on the approximate solution provided by the usual 
least squares estimate of B (equation 5), 
 

𝐵𝐵�  =(𝐷𝐷𝑥𝑥´𝐷𝐷𝑥𝑥)-1𝐷𝐷𝑥𝑥´∆𝑦𝑦. (5) 
 

The problem is uniquely determined if he number of 
equations equals the number of unknowns (i.e. K=N 
because all the learning points are also reference points) 
in equation 3. It has a single solution if the matrix Dx is full-
rank (equation 6). So, 
 

𝐵𝐵�  =𝐷𝐷𝑥𝑥-1∆𝑦𝑦. (6) 
 

Clearly less interesting is the case where in equation 3 the 
number of equations is smaller than the number of 
unknowns (i.e. for K>N, corresponding to the situation 
where, after selecting the reference points, only a smaller 
number of learning points is used). This case usually leads 
to an underdetermined problem with infinitely many 
solutions (de Souza et al., 2015).  
The sum of squares associated with any term in any linear 
model can be calculated directly from a distance matrix. 
The reason for this is that for any centralized data matrix 
𝑌𝑌(𝑛𝑛×𝑝𝑝) (for p variables and n samples), it can be calculated 
with the inner product matrix YʹY used in classical 
multivariate statistics, as well as with the outer product 
matrix YYʹ. In addition, an outer product matrix can be 
obtained from any (n×n) distance matrix (Gower, 1966), 
thus allowing the analysis to be based on a chosen 
distance measure, including semimetric measures such as 

Bray-Curtis. 
Let 𝑋𝑋(𝑛𝑛×𝑚𝑚) be a model (i.e. design or regression) matrix 
with m number of parameters. For classical multivariate 
statistics (pxp), the total sum of squares is obtained by 
breaking down the inner product matrix YʹY. The total 
sum of squares (SST) is the trace or sum of the diagonal 
elements in this matrix (sum of squares for each variable), 
which we will symbolize by tr(YʹY). The fragmentation 
process can be done according to the linear model Y=Xβ + 
ϵ. Here β denotes the parameters matrix in the model and 
ϵ denotes the error matrix. The least squares solution for 
β is β =(𝑋𝑋’𝑋𝑋)−1X’Y. The prediction values matrix can be 
written as 𝑌𝑌�=XB=HY where; H is the idempotent 
prediction (hat) matrix and can be represented as 
𝑋𝑋(𝑋𝑋’𝑋𝑋)−1X’. The error (residuals) matrix can be 
represented as R=Y-𝑌𝑌�=(I-H)Y. The pseduo F statistic, 
which is a statistic applied to test the hypothesis of 
whether there is an effect of the model parameters, the 
regression sum of squares tr(𝑌𝑌� ʹ 𝑌𝑌�) and the error sum of 
squares tr(RʹR), is calculated as follows (equation 7): 
 

𝐹𝐹 =
𝑡𝑡𝑡𝑡(𝑌𝑌�́𝑌𝑌�)/(𝑚𝑚− 1)
𝑡𝑡𝑡𝑡(𝑅𝑅ʹ𝑅𝑅)/(𝑛𝑛 − 𝑚𝑚). (7) 

 

In case of a single variable, the pseudo F test is calculated 
the same as the Fisher F test. In the case of non-parametric 
testing, the probability of Type I error is P=P(F*>=F) 
where F* is the value calculated by permutation of the 
unit. The degrees of freedom (m-1) and (n-m) are not 
required for the permutation test and are taken as 
constants (Anderson, 2001).  
Once a similarity matrix is calculated, it is subjected to a 
regression analysis that tests hypotheses about this 
matrix. Whether there is a change in the level of similarity 
exhibited by pairs of individuals reflected in that matrix 
can be explained through the characteristics that these 
individuals have with others (e.g. a certain phenotype or a 
quantitative phenotype with higher or lower values of a 
certain feature) (Wessel and Schork, 2006). 
2.1. Euclidean Distance Measure 
Euclidean distance is the most commonly used distance 
measure to measure the similarity between two units and 
is based on the length of a straight line to be drawn 
between two units (Ünlükaplan, 2008). Using the 
Euclidean distance measure, the distance between two 
units is as follows: n is the number of units and p is the 
number of variables; i,j = 1,2,3……n , i. and j. distance of 
unit from each other can be calculated as (equation 8): 
 

�𝑑𝑑𝑖𝑖,𝑗𝑗� = ��𝑥𝑥𝑖𝑖1 − 𝑥𝑥𝑗𝑗1�
2 + �𝑥𝑥𝑖𝑖2 − 𝑥𝑥𝑗𝑗2�

2 + ⋯+ �𝑥𝑥𝑖𝑖𝑝𝑝 − 𝑥𝑥𝑗𝑗𝑝𝑝�
2. (8) 

 

This method has been proven to be compatible with the 
classical linear regression model when the Euclidean 
distance measure is used (Arenas and Cuadras, 2002). 
2.2. Manhattan Distance Measure 
It is the sum of the distances between objects according to 
their dimensions. In measuring the distance between two 
objects in two-dimensional space, the hypotenuse of the 
triangle shown inside shows the Euclidean distance. The 
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sum of the lengths of the sides of this triangle outside the 
hypotenuse gives the distance to Manhattan City Block. It 
is recommended to be used mostly for variables with 
discrete quantitative data. It is calculated as follows 
(equation 9) (Alpar, 2013): 
 

𝑑𝑑𝑖𝑖,𝑗𝑗 = ��𝑥𝑥𝑖𝑖𝑘𝑘 − 𝑥𝑥𝑗𝑗𝑘𝑘�
𝑝𝑝

𝑘𝑘=1

 (9) 

 

Manhattan City Block distance is a distance measure that 
is less sensitive to outliers (Timm, 2002). 
2.3. Gower Distance Measure 
The most basic feature of Gower distance is that it can be 
used in data sets that contain both categorical and 
continuous data. Gower distance is calculated using 
standardized data. Gower distance is calculated with a 
separate formula only when continuous data is used. The 
distance used for a data set containing both categorical 
and continuous data is called the Gower general similarity 
measure (URL2). Gower expressed the general similarity 
measure for categorical variables in the form (equation 
10): 
 

𝑆𝑆𝑖𝑖𝑗𝑗 =
∑ 𝑊𝑊𝑖𝑖𝑗𝑗𝑘𝑘𝑆𝑆𝑖𝑖𝑗𝑗𝑘𝑘
𝑝𝑝
𝑘𝑘=1
∑ 𝑊𝑊𝑖𝑖𝑗𝑗𝑘𝑘
𝑝𝑝
𝑘𝑘=1

 (10) 

 

here Sijk, k. according to variable value i. and j. It is a 
measure of similarity between observations. Wijk is i. and 
j. observation k. When comparing by variable, it takes the 
value 0 if there is no variable value, and 1 in other cases. 
For continuous variables in the data, Gower (1971) 
defined the similarity measure as (equation 11): 
 

𝑆𝑆𝑖𝑖𝑗𝑗 = 1 −
�𝑥𝑥𝑖𝑖𝑘𝑘 − 𝑥𝑥𝑗𝑗𝑘𝑘�

𝑅𝑅𝑘𝑘
 (11) 

 

here Rk is defined as the range of change of k. variable 
values of i. and j. observations (Servi, 2009). 
2.4. Comparison Criteria 
Akaike Information Criterion (AIC) can be called an 
indicator of the goodness of fit of any estimated statistical 
model. Akaike Information Criteria are asymptotically 
equivalent to cross-validation (URL3). It can be calculated 
with the equation (12): 
 

AIC = −2log(L) + 2k. (12) 
 

here, k is the number of parameters including the constant 
term, n is the number of observations, and L is likelihood 
(Ucal, 2006).  
The Bayesian information criterion (BIC) is based in part 
on the likelihood function and is closely related to the 
Akaike information criterion (AIC). When fitting models, it 
is possible to increase the maximum likelihood by adding 
parameters, but doing so can lead to overfitting. Both BIC 
and AIC try to solve this problem by introducing a penalty 
term for the number of parameters in the model; The 
penalty term is larger in BIC than AIC for sample sizes 
greater than 7 (McQuarrie and Tsai, 1998) and can be 
calculated as shown below (equation 13): 
 

BIC = −2log(L) + k log(n) (13) 

 

BIC differs from AIC in that the second part on the right-
hand side of the equation depends on the sample size. 
However, despite the superficial similarity between AIC 
and BIC, it was later determined that they differ within the 
Bayesian structure (Raftery, 1995; Wasserman, 2000). 
The Generalized Cross Validitation (GCV) criterion 
developed by Craven and Wahba in 1979 is one of the 
criteria for selecting the most appropriate model 
(Adıgüzel, 2021). The GCV criterion is based on the 
minimization of errors and also takes into account the 
complexity of the model (equation 14) (Yıldız, 2022). 
 

𝐺𝐺𝐺𝐺𝐺𝐺(𝑀𝑀) =
1
𝑁𝑁�

[𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑀𝑀(𝑥𝑥𝑖𝑖)]2

�1− 𝐺𝐺(𝑀𝑀)
𝑁𝑁 �

2

𝑁𝑁

𝑖𝑖=1

 (14) 

 

In the equation, C(M) is the function that penalizes the 
model complexity for valid basis functions, yi is the 
observation values of the dependent variable and fM(xi) is 
the prediction values, and N is the number of observations 
(Chen et al., 2012). 
All statistical evaluation was performed using R software 
(R Core Team, 2022). The sample code sequence used in 
the analysis is given below; 
library("dbstats") 
library("cluster") 
library(tidyverse) 
simulnumber=10000 
sampsize=25 
results=matrix(nrow= simulnumber, ncol=10) 
for(i in 1: simulnumber) { 
  Y=rnorm(sampsize,0,1) 
  X1=rchisq(sampsize,5) 
 X2=rchisq(sampsize,5) 
  Model1 <- dbglm(formula = Y ~ X1 + X2, family = 
gaussian(), method = "GCV", full.search = TRUE, metric = 
"euclidean", weights = NULL, range.eff.rank = c(1, 2)) 
 Model2 <- dbglm(formula = Y ~ X1 + X2, family = 
gaussian(), method = "GCV", full.search = TRUE, metric = 
"gower", weights = NULL, range.eff.rank = c(1, 2)) 
 Model3 <- dbglm(formula = Y ~ X1 + X2, family = 
gaussian(), method = "GCV", full.search = TRUE, metric = 
"manhattan", weights = NULL, range.eff.rank = c(1, 2)) 
 glm1 <- glm(Y ~ X1 + X2, family = gaussian()) 
 results[i,1]=summary(Model1$aic.model)[4][1] 
 results[i,2]=summary(Model1$bic.model)[4][1] 
 results[i,3]=summary(Model1$gcv.model)[4][1] 
 results[i,4]=summary(Model2$aic.model)[4][1] 
 results[i,5]=summary(Model2$bic.model)[4][1] 
 results[i,6]=summary(Model2$gcv.model)[4][1] 
 results[i,7]=summary(Model3$aic.model)[4][1] 
 results[i,8]=summary(Model3$bic.model)[4][1] 
 results[i,9]=summary(Model3$gcv.model)[4][1] 
 results[i,10]=summary(glm1$aic)[4][1] 
} 
sink("D:/result_matrix.txt") 
results 
sink() 
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3. Results and Discussion 
In order to examine the effects of distributions and 
distance measures on AIC, BIC and GCV, analyzes were 
made according to the factorial experimental design and 
the sample size was used as a covariate. Since the 
distribution × distance interaction was found to be 
insignificant (P>0.05), only main effects are presented. 
The sample size used as a covariate was determined to be 
statistically significant as expected (P<0.01), therefore 
marginal means and standard error values are given in the 
tables. According to the findings, it was determined that 
the distribution had a statistically significant effect on AIC, 
BIC and GCV (P<0.01), while distance measures had an 
effect only on the AIC value (P<0.01) as seen in table 1 and 
2. 
Although the lowest AIC value is obtained from data with 
normal distribution, there is no difference in terms of AIC 
value between the results obtained from Normal, 
Binomial and t distribution. The highest AIC values were 
obtained from data with Poisson distribution and a 
significant difference was determined between them and 
other distributions. It was determined that the AIC values 
obtained from the Chi-Square distribution were different 
from the AIC values obtained from the Normal and 
Poisson distributions, but there was no difference in terms 
of AIC values between the results obtained from the 
Binomial and t distribution. When the effect of 
distribution on BIC values was evaluated, it was 
determined that the BIC values obtained only from the 
Poisson distribution were significantly higher than those 
obtained from other distributions. It was observed that 

the BIC values obtained from other distributions were 
similar. When the effect of distributions on GCV values 
was evaluated, it was understood that the results obtained 
were similar to the effect on AIC (Table 1). 
It is understood that the difference in the AIC value arises 
from the values obtained from the linear regression least 
squares method and that there is no difference between 
the Euclidean, Gower and Manhattan distance measures 
(Table 2). Boj et al. (2002) mentioned that using distance 
measures when the existence of non-normal variables 
were more reliable than classic linear regression, which 
supports our results. 
For the combination of distribution × distance measure, 
AIC, BIC and GCV measurements are evaluated together 
and the hierarchical clustering dendrogram drawn using 
the Ward method and Square Euclidean distance is given 
in figure 1. 
According to the results obtained, it was determined that 
a total of 20 combinations could be examined in five 
clusters. According to this; All distance measures and the 
LSE solution used in the t distribution form a separate 
cluster (cluster 1), All distance measures and the LSE 
solution used in the binomial distribution form a separate 
cluster (cluster 2), Manhattan and the LSE solution in the 
normal distribution and Euclidean distance in the Poisson 
distribution form a separate cluster. It was determined 
that Manhattan, Gower and LSE solutions formed a 
separate cluster in the Poison distribution (cluster 4), and 
all methods in the Chi-square distribution and Euclidean 
and Gower solutions in the normal distribution formed the 
last cluster (cluster 6). 

 
Table 1. Effects of distributions on AIC, BIC and GCV 

Distributions AIC BIC GCV 
Binom 156.841 ± 0.027bc 159.956 ± 0.031b 0.984 ± 0.001b 
Chi-Square 156.870 ± 0.027b 159.978 ± 0.031b 0.981 ± 0.001bc 
Normal 156.763 ± 0.027c 159.876 ± 0.031b 0.979 ± 0.001c 
Poisson 157.002 ± 0.029a 160.421 ± 0.034a 0.989 ± 0.001a 
t 156.812 ± 0.027bc 159.915 ± 0.031b 0.983 ± 0.001bc 
P <0.001 <0.001 <0.001 

The co-variate, sample size, was determined as 54.3092; a,b= different letters in the same column indicate statistical difference (P<0.05). 
 
Table 2. Effects of distance measures on AIC, BIC and GCV 

Distances measure AIC BIC GCV 
Euclidean 156.557 ± 0.024b 160.025 ± 0.025 0.983 ± 0.001 
Gower 156.555 ± 0.024b 160.022 ± 0.025 0.983 ± 0.001 
Manhattan 156.576 ± 0.024b 160.040 ± 0.025 0.984 ± 0.001 
LR 157.743 ± 0.024a   
P <0.001 0.862 0.402 

The co-variate, sample size, was determined as 54.3092; a,b= different letters in the same column indicate statistical difference (P<0.05). 
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Figure 1. Hierarchical clustering dendrogram drawn by evaluating AIC, BIC and GCV measurements together for the 
distribution x distance measure combination. X_X: the first letter indicates the distribution and the second letter indicates 
distance measure. 
 
It is understood that the first two clusters are farther from 
the other clusters. It has been determined that binomial 
and t distributions form unique clusters, but other 
distributions form mixed clusters. When the last three 
clusters are examined; it is understood that normal 
distribution can be evaluated with different solutions of 
both Poisson and Chi-square distribution, but Chi-square 
and Poison distributions are not in the same cluster. This 
interpretation was supported by the study of Zapala and 
Schork (2012) that they mentioned the choice of an 
appropriate distance measure may be problematic, 
although our experience suggests that different distance 
measures provide roughly the same inferences. 
3.1. Real Data Results 
The effects of distance measures on the real data structure 
of continuous and discrete distribution for sample sizes of 
10, 50 and 100 are given in table 3 and 4. 
According to the findings obtained as a result of the 
analysis, it was determined that the LSE method produced 
higher AIC values than distance measurements for n = 10. 
It is understood that Euclidean and Gower have the same 
and lowest information criterion values among distance 
measures. Li et al. (2019) supports our results that 
distance-based regression with Euclidean distance was 
more reliable than linear regression for embryonic 
imprint data with the sample size of 24. Also Kim et al. 
(2001) mentioned that using Cook distance in local 
polynomial regression was more robust than standard 
approaches. It was observed that when the sample size 
was n=50, the AIC value obtained from the LSE method 

produced the lowest value closest to the Euclidean 
measure. For continuous distribution, it is seen that the 
Gower distance measure has the largest AIC value for the 
sample size n = 50. It was determined that the smallest AIC 
value for the sample size n=100 was the value obtained 
from linear regression. It is understood that the AIC value 
closest to this value belongs to the Euclidean distance 
measure. According to the results obtained, it was 
determined that the LSE estimation method did not 
produce reliable results according to the selection criteria 
obtained from distance-based regression in continuously 
distributed real data with a small sample size. It is 
understood that when the sample size increases, there is 
no significant difference with Euclidean, which is the 
distance measure for continuous data, when the 
assumptions of linear regression methods are met. It was 
observed that the Gower distance measure had the 
smallest BIC value for the sample size n = 50. Lichstein 
(2007) argued with supporting our results that use of 
Bray-Curtis distances was superior to linear regression.  
In data sets belonging to discrete distribution, the AIC 
values for sample size n = 10 were obtained from the 
Euclidean distance measure that produced the smallest 
value. It has been observed that the LSE method has the 
highest Akaike Information Criterion value. When we look 
at the BIC values, it is understood that the Euclidean 
distance measure produced the smallest value. It was 
determined that there was no difference between the GCV 
values obtained from all distance measurements. 
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Table 3. Effect of distance measurements on continuous data 

Criteria Distance measure n=10 n=50 n=100 

AIC 

Euclidean 41.72 208.47 338.74 
Gower 41.72 209.33 340.35 

Manhattan 41.77 208.77 340.10 
LR 43.44 208.50 338.70 

BIC 
Euclidean 42.32 214.21 345.96 

Gower 42.32 213.16 347.57 
Manhattan 42.38 214.50 347.32 

GCV 
Euclidean 2.57 3.50 3.47 

Gower 2.57 3.56 3.54 
Manhattan 2.59 3.52 3.53 

 
Table 4. Effect of distance measurements on discrete data 

Criteria Distance measures n=10 n=50 n=100 

AIC 

Euclidean 20.31 48.03 147.00 
Gower 20.44 48.11 146.63 

Manhattan 20.38 50.21 147.77 
EKK 22.27 48.41 148.60 

BIC 
Euclidean 21.10 51.81 152.21 

Gower 21.24 51.89 151.84 
Manhattan 21.18 53.99 152.98 

GCV 
Euclidean 0.26 0.14 0.24 

Gower 0.26 0.14 0.24 
Manhattan 0.26 0.15 0.25 

 
It was determined that the Manhattan distance measure 
produced the highest AIC value when the sample size was 
n=50. It was observed that the criterion value obtained 
from linear regression was close to the Euclidean 
measure, which has the smallest criterion value. This may 
be because the assumptions for linear regression were 
met. It has been determined that the Gower distance 
measure, which produces reliable results in discrete data, 
produces the smallest AIC value for the sample size n=100 
for discrete distribution. While BIC values were 
determined to be the Euclidean distance measure that 
produced the smallest information criterion for sample 
sizes of 10 and 50, it was determined that the Gower 
distance measure had the smallest value when the sample 
size was 100. It appears that there is no significant 
difference in GCV values for all sample sizes. Kurnaz and 
Önder (2021) supports our results that they mentioned 
the comparison of Euclid, Manhattan and Gower distance 
measures within the scope of distance based regression 
can give more reliable results especially existence of 
discrete explanatory variables. Cuadras and Arenas 
(1990) mentioned the use of Gower distance for mixed 
explanatory variables (discrete and continuous) to predict 
normal response variable was more powerful than linear 
regression, which supports our results. Ferreira Barreto et 
al. (2020) found that distance-based estimation for fNIRS 
signals and behavioral data was successful. Haron et al. 
(2019) also mentioned that distance-based regression is a 
good alternative method for estimating the unknown 
parameters in regression modeling when dealing with 
mixed-type of exploratory variables. 
 
 
 

4. Conclusion 
When the effect of Distance Based Regression methods on 
distributions is evaluated, it is seen that the lowest 
information criteria value is in the data set consisting of 
explanatory variables with a normal distribution 
structure, which is a theoretical expectation. Considering 
the AIC, BIC and GCV values obtained from distance 
measures, it can be recommended to use this distance 
measure for model selection since the Gower distance 
measure has the lowest information criteria values 
compared to other distance measures. 
When the findings are evaluated, it can be said that using 
Manhattan distance in data with Poisson distribution, 
especially in small sample sizes (n<50), may produce 
unsuccessful results. Although there is no significant 
difference between Gower and Euclidean distances in 
different distributions depending on sample sizes, it has 
been determined that the use of Euclidean distance 
measure in some distributions produces results that cause 
fluctuations. However, the Gower distance can be 
suggested as a more appropriate choice because it has a 
more stable structure. This may be because the Gower 
distance is calculated using standardized data. 
When the information criteria values in model selection 
were examined, it was determined that the method that 
produced the highest AIC value for all distributions and 
sample sizes of the data sets was the LSE estimation 
method for linear regression. When information criteria 
values are evaluated for model selection, choosing the 
model that produces the smallest value increases the 
prediction success. Therefore, it can be said that the model 
obtained from linear regression analysis methods will not 
be reliable. In cases where the necessary assumptions 
mentioned in this study cannot be met for the applicability 
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of the LSE estimation method, it may be recommended to 
use Distance Based Regression methods. 
It is considered that in future studies, evaluating other 
distance measures such as Bray-Curtis, Orloci's Chord, 
Chi-square, Canberra and Hellinger and/or examining 
combinations of explanatory variables with different 
distributions may be useful for the subject. 
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