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ÖZET 
Bu çalışmada, elastik zemine oturan, enine kuvvet ve momentlere maruz bir kirişin dinamik 
analizi incelenmiştir. Temel modelinde Winkler hipotezi baz alınmıştır. Kiriş üzerindeki 
tekil etkiler, diferansiyel denklemi kullanabilmek amacıyla, Dirac dağılım teorisi vasıtasıyla 
yayılı yüklere dönüştürülmüştür. Çalışmanın kullanışını göstermek amacıyla açıklayıcı bir 
örnek sunulmuş ve bir kısım hesaplanan değerler tablolarda ve şekillerde verilmiştir.  
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ABSTRACT 
In this study, the dynamic analysis of a free beam subjected to transverse forces and 
moments on an elastic soil are investigated. The foundation model is based on the Winkler 
hypothesis. Concentrated disturbances on beams are transformed to distributed loads in 
order to be able to use the governing differential equation established for distributed loads 
by using Dirac distribution theory. An illustrative example is presented in order to 
demonstrate the use of the study and some of the obtained results are given in tables and 
figures. 
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1. Introduction 
 
There are various methods used in the analysis of continuous foundations as a beam resting 
on elastic soils. The most important two of them are the subgrade modulus method 
pertaining to the theory of the first order and the method of modulus of elasticity based on a 
second order theory. The former presents a model in which the soil is assumed as dense 
liquid while the latter offers an elastic solid model. 
 
In the subgrade modulus method, proposed by Winkler, it is assumed that the deflection at 
any point of the beam on elastic soil is proportional to the pressure applied at that point and 
is independent of pressure acting at nearby points of the beam [9]. In other words, in this 
method the beam is considered as if it is resting on infinitely long independent elastic 
springs with subgrade modulus. In the elastic solid model, the effects of the neighbouring 
points to the point in question are taken into account by Boussinesque’s load-deformation 
relation in an isotropic elastic semi-space. In this case, the soil is characterized by its elastic 
properties, namely, elastic modulus and Poisson’s ratio. However, the solution of the 
differential equation established for this model may present certain computational 
difficulties and approximate methods may be needed to involve for the solution. 
 
However, both models do not represent the real soil exactly. It behaves neither as a dense 
liquid nor as an elastic solid. With a more realistic hypothesis, some researchers developed 
two-parameter models for the elastic soil [3, 4, 6, 8, 5]. In comparison with the single 
parameter model, i.e. Winkler model, these two-parameter foundation models represent the 
foundation characteristics more accurately. Vallabhan and Daloglu had developed relations 
in which subgrade modulus varies with depth which is equivalent to the two-parameter 
Vlasov -Leontiev solution and can be used in classical Winkler model [2]. 
 
In this paper, the subgrade modulus method is used, which is also preferred in practice for 
static problems due to its simplicity of mathematical formulation. One of the most 
important drawbacks of this method is difficulties in determining the modulus of subgrade 
reaction of the soil. The variation of contact pressure over the bearing area requires the 
variation of subgrade modulus as well; subgrade modulus depends not only on the physical 
characteristics of the soil but also on the foundation dimensions, the rigidity of the 
foundation, the distribution of loading on the superstructure and the thickness of the 
compressible layer which causes settlement. Therefore accurate determination of deflection 
of the foundation and stresses on the superstructure can only be possible by using these 
factors [7]. 
 
In addition to all of these, it is known that the subgrade modulus values for dynamic 
loading are different from those for static loading. Based on these facts, values for subgrade 
modulus should be determined by field tests conducted for different types of soils, different 
loading conditions and different loading areas. However in practice, except for very 
important structures, subgrade modulus values are taken from tables prepared for different 
soil types. In the subgrade modulus method, the rigidity of the superstructure, the stress 
distribution under the foundation base and lateral movement of the base soil are left out 
from the mathematical model. 
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2. MATHEMATICAL FORMULATION OF THE MODEL 
 
(Figure 1.1-a) shows a foundation beam with flexural rigidity EI(x), coefficient of viscous 
damping c(x) per unit length, base width b(x), cross-sectional area A(x), mass density ρ and 
mass [m(x) = ρ.A(x)] per unit length on a soil with subgrade modulus K0. The beam is 
subjected to distributed external load f(x,t) which may vary with position x and time t. The 
forces on a differential element of length dx are shown in (Figure 1.1-b), where V(x,t) is the 
transverse shear force, M(x,t) is the bending moment, y(x,t) is the transverse displacement, 
[ ty)x(c ∂∂⋅ ]  is the viscous damping force, ]ty)x(m[ 22 ∂∂⋅ is the inertia force and 

 is the elastic response of the soil. ]y)x(bKy)x(k[ 0 ⋅⋅=⋅
 
In the analysis the effects of shear and axial deformations and rotational inertia are ignored. 
The governing differential equation for the transverse vibration of a beam on elastic soil 
shown in (Figure 1.1) can be written as : 
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The solution of this partial differential equation under the boundary and initial conditions 
yields the response [ of the beam in position x and at time t. Once the deflection is 
determined, the slope, bending moment and the shear can be calculated by taking the first, 
second and third derivative of the solution (response) function with respect to x, 
respectively. 
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Figure 1.1-a The foundation beam on Winkler soil 
               -b The forces on a differential element 
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2.1. Natural Frequencies and Mode Shapes 
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For free vibration, , and with the assumption that the damping coefficient and 
the section characteristics are constant along the beam, the natural frequencies and modes 
can be obtained by the solution of the following homogeneous partial differential equation 
with constant coefficients.  
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The solution function of Eq. (2) can be written by the method of separation of variables as: 
 

)t(T)x(X)t,x(y ⋅=    (3) 
 
where;  is the characteristic shape function and  is a time function. The 
substitution of Eq. (3) into Eq. (2) leads to: 
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where; Roman indices denote derivatives with respect to x and over dots indicate 
derivatives with respect to time. Since the left hand side of Eq. (4) is a function only of x 
while the right hand side is a function of t only, Eq. (4) is true only if each side is equal to 
the same constant. Designating this constant by p and setting both sides equal to it yields 
 

0XpXEI IV =⋅−⋅        (5) 
 
and 
 

0T)pk(TcTm =⋅++⋅+⋅ &&&     (6) 
 
The solution of Eq. (5) is can be written as: 
 

( ) ( ) ( ) ( )xcoshCxsinhCxcosCxsinC)x(X 4321 λ⋅+λ⋅+λ⋅+λ⋅=     (7) 
 
where; 

 

4
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p
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The four integration constants in Eq. (7) are determined via the boundary conditions. 
In the case of under damped motion, the solution of Eq. (6) is can be written as: 
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where;  and  are parameters which depend on initial conditions and  is the 
damped natural frequency of the system which is given by: 

0T 0T& Dω
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where; ω  is the undamped natural frequency, namely 
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which is called as damping ratio. 

 
 

2.2 Shape Function of the Free Beam 
 
The four integration constants in the general solution of the characteristic shape function 
given in Eq. (7) are determined by the boundary conditions of the free beam shown in 
(Figure 1.1). The boundary conditions for such a beam are as follows: 
 

⎩
⎨
⎧

=′′′=
=′′=

=

⎩
⎨
⎧

=′′′=
=′′=

=

0)L(Xor0)t,L(V
0)L(Xor0)t,L(M

Lxat

0)0(Xor0)t,0(V
0)0(Xor0)t,0(M

0xat

  (13) 

 
Eqs. (13) gives a set of equations with constant coefficients. The determinant of the 
coefficients must be equal to zero for nontrivial solution. The expansion of this determinant 
leads to: 
 

( ) ( ) 1LcosLcosh =λ⋅λ         (14) 
 
which is the frequency equation for the free beam. The numerical solution of this 
transcendental equation gives with a good approximation the following relationship. 
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,...3,2,1n)2/1n(L =π⋅+=λ      (15) 
 
For the first mode, that is n = 1, Eq. (15) yields a value of 4.71 for ( )Lλ  while the exact 
value is appr. 4.73. For upper modes the difference is getting smaller. In the computations, 
the exact solutions of Eq. (14) must be used for the first several modes (say 5 modes), while 
Eq. (15) may be utilized for higher modes. After finding the values of ( )Lλ , the natural 
frequencies can be obtained from Eqs. (8) and (11) as follows: 
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The solution to the set of homogeneous equations (13) is parameter-dependent. However, 
normal modes are determined to a relative magnitude, therefore the constant arose in the 
solution may be taken unity. Hence, the characteristic shape function for the n-th mode is 
obtained as: 
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From Eq. (3) the displacement function for the n-th mode is given by: 
 

)t(T)x(X)t,x(y nnn ⋅=         (19) 
 
The general solution to the equation of motion, namely the total deflection is obtained by 
superimposing all modes as follows: 
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3. FORCED VIBRATION 
 
This paper deals with the transverse vibration of continuous beams on elastic soils 
subjected to dynamic disturbances due to concentrated loads and moments. However, the 
right hand side of Eq. (1) has been established for distributed loads. For this reason, 
concentrated loads will be transformed to distributed loads by the theory of generalized 
functions (distributions). The technique used in this study is to expand the Dirac 
distribution into a series of an orthogonal function family. 
 
 
3.1. Foundation Beams under Concentrated Forces 
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The concentrated force  on any position s of the beam may be transformed to distributed 
load by Dirac distribution as: 

)t,s(F

 
)x()t(F)t,x(f sss0 δ⋅φ⋅=                      (21) 

 
where; the load function is of the form: 
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In these equations  is the amplitude of the force located at a point s, s0F )t(sφ  is the time 
function of the force,  is Dirac distribution function centered at position s. This 
distribution is expanded into a series of shape functions. By taking the inner product of Eq. (23) 
with , and utilizing the properties of distributivity, homogeneity and orthogonality, can 
be  obtained as: 
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The inner product of shape function of free beam for the same mode is : 
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and from the definition of Dirac distribution [1]. 
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Substituting  into Eq. (23) yields: nA
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From Eqs. (21) and (28), the concentrated load  located at position s is transformed 
to distributed load as: 

)t,s(F

 

)x(XX1)t(
L

F
)t,x(f n

n
ns2

n
s

s0 ∑ ⋅⋅
β

⋅φ⋅=                   (29) 

 
It follows from this that the general differential equation for foundation beam under 
concentrated loads may be expressed as: 
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By rearranging Eqs. (5), (8) and (16), and by the method of separation of variables, Eq. (30) 
reduces to 
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The solution of the differential equation (31) is determined by Duhamel integral as follows: 
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where;  and  are parameters depending only on the initial conditions. 0nT 0nT&

 
 
 
 
3.2. Foundation Beams under Concentrated Moment Loads 
 
Since Eq. (1) is arranged for distributed loads, the concentrated moment  on any 
position s of the beam, positive in clockwise direction, may be transformed to distributed 
load by Dirac distribution as:  

)t,s(M
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and hence; 
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)x()t(M
x
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where; the moment function is of the form: 
 

)x(H)t(M)t,s(M sss0 ⋅ψ⋅=                    (35) 
 
In these equations  is the amplitude of the moment located at a point s,  is the 
time function of the force,  is Dirac distribution function centered at position s, and 

 is Heaviside function. The first derivative of Dirac distribution may be expanded 
into a series of shape functions as: 
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By taking the inner product of Eq. (36) with  and taking into consideration the modal 
orthogonality together with the solution in Eq. (25), can be obtained as: 
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The inner product of k-th derivative of Dirac distribution with any function g(x) is given as: 
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from last two equations the constant  is found as: nD
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Consequently, from Eqs. (1), (34) and (40), the general differential equation for foundation 
beam on elastic soil under concentrated moment loads is obtained as: 
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which, by the method of separation of variables reduces to: 
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The solution of the differential equation (42) is determined by Duhamel integral as follows: 
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If more than one load acts on the system the generic equation to be solved may be written 
by superposition as: 
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where; i is the number of concentrated force and j is the number of concentrated moment 
acting on the beam. 
 
 
4. INITIAL CONDITIONS AND INTERNAL FORCES 
 
The values of displacement and velocity functions for the beam at 0t =  have to be 
transformed to the time function and the first derivative of the time function with respect to 
x, namely the initial conditions for the time function. Let the displacement and velocity 
functions at initial time be and , respectively, that is )x(u )x(v
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Hence, from Eq. (20) 
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By taking the inner product of last two equations with  in view of the modal 

orthogonality and Eq. (25), and can be obtained as: 
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The inner product of shape function given in Eq. (17) with an arbitrary constant yields zero, 
namely 
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Therefore, the parameters  and  take the value of zero for constant displacement 
and velocity and shape functions do not represent the initial conditions. For this reason, in 
case of constant , this value  has to be superimposed with the values calculated 
from Eq. (20).  
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After determining the displacements caused by external loads acting on the foundation 
beam, the slope  bending moment and shear force  at any given 
position x and time t may be evaluated by the following well-known relationships           
and Eq. (20) : 
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As mentioned before, if the initial displacement function is constant, namely 
 

ttanconsu)x(u c ==                                                                                                        (55) 
 
because of the property given in Eq. (51), it follows that 
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For constant displacement and velocity functions 
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therefore, the values found in Eqs. (52), (53) and (54) would not change. 
 
 
5. NUMERICAL STUDY 
 
As an application of the method, the foundation beam shown in (Figure 5.1) is considered. 
The beam is prismatic and has the following properties: the flexural rigidity EI = 3000 
MNm2, mass per unit length m = 2 kNs2/m2, base width b = 1.2 m. The subgrade modulus 
of the soil, K0 on which the foundation rests is 50 MN/m3. All the excitation frequencies, Ω 
are taken as 100 rad/sn. The problem is solved without damping, i.e., the damping ratio         
ζ = 0. The solution of the problem under this data set is referred to as base. 
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Figure 5.1 The foundation beam on elastic soil subjected to dynamic loading 
 
 

In order to compare the behaviour of the foundation for different cases, the problem is 
solved for various data sets. In each set, one parameter is changed only. These parameters 
are the flexural rigidity, the subgrade modulus, the excitation frequencies and the damping 
ratio. Three different values of each parameter used are shown in  (Table 5.1) 
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Table 5.1 Values Of The Parameters Used In The Different Solutions 
 
PARAMETER I II III 

EI (MNm2) 1000 10000 50000 
K0 (MN/m3) 10 100 500 
Ω (rad/sn.) 150 200 250 

ζ (-) 5 % 10 % 20 % 
 
 
The damping ratios in (Table 5.1) may be defined from Eq. (12) as: 
 

1m2
c
ω

=ζ                                                                                                                           (58) 

 
where;  is the first natural frequency of the beam and is equal to 222.587 rad/sn. in the 
studied case. 

1ω

 
The problem is solved by taking into account 200 modes for the interval of time 
corresponding to a duration of four periods which is approximately 0.1 sn. The first natural 
period and the first five natural frequencies obtained for different values of parameters are 
set out in (Table 5.2) 
 
 
Table 5.2 The First Natural Period (sn.) And The First Five Natural Frequencies (rad/sn.)   
                 For Different Values Of Parameters 
 

 T1 
 (sn.) 

ω1 
(rad/sn.) 

ω2
(rad/sn.) 

ω3
(rad/sn.) 

ω4
(rad/sn.) 

ω5 
(rad/sn.) 

BASE 0.02823 222.587 422.509 775.089 1260.815 1873.607 

EI1 

EI2 

EI3

0.03288 

0.02037 

0.01053 

191.089 

308.465 

596.450 

281.966 

724.600 

1582.792 

469.313 

1390.160 

3089.130 

741.542 

2286.668 

5101.397 

1090.933 

3410.475 

7618.182 

K0,1 

K0,2 

K0,3

0.03931 

0.02228 

0.01112 

159.828 

282.037 

565.283 

393.082 

456.633 

669.712 

759.449 

794.206 

933.147 

1251.261 

1272.657 

1363.692 

1867.191 

1881.596 

1944.326 
D1 

D2 

D3

0.02826 

0.02837 

0.02881 

222.309 

221.472 

218.090 

422.362 

421.922 

420.157 

775.009 

774.770 

773.810 

1260.766 

1260.619 

1260.029 

1873.574 

1873.474 

1873.078 
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(Table 5.3) gives the extremum values of displacements and bending moments of the 
foundation beam for different values of parameters. In this table, the positions and the time 
of occurrences of these extrama are shown, too. Also relative changes (RC) which give 
comparisons between the results obtained from the base solution and the results obtained by 
changing the parameters are presented in the table. 
 
 
Table 5.3 The Extremum Values Of Displacements And Bending Moments Of The  
                 Foundation Beam For Different Values Of Parameters 
 

ymax
* (mm) ymin

† (mm) Mmax (kNm) Mmin (kNm)  

Mag. 
(mm) 

RC
(%) 

Time 
(10-2s) 

Mag 
(mm)

RC
(%)

Time
(10-2s)

Mag. 
(kNm)

RC
(%)

Pos 
(m) 

Time
(10-2s)

Mag. 
(kNm) 

RC 
(%) 

Pos 
(m) 

Time
(10-2s)

Base 2.57 - 8.32 -1.67 - 4.16 1022 - 6.86 4.47 -1014 - 10.04 2.17

EI1 
EI2 
EI3

3.77 
1.07 
0.25 

47
-58
-90

2.96 
2.04 
2.14 

-3.21 
-1.10 
-0.26 

92
-34
-84

5.37
4.90
5.73

866 
1433 
1654 

-15
40
62

6.99
6.86
7.10

4.81
4.72
4.74

-805 
-1235 
-1296 

-21 
24 
28 

12.01 
10.04 
10.04 

9.77
2.11
2.18

K0,1 
K0,2 
K0,3

4.72 
1.77 
0.62 

84
-31
-76

7.71 
2.03 
2.26 

-6.00 
-1.29 
-0.47 

259
-23
-72

5.27
5.17
6.02

2136 
927 
649 

109
-10
-36

7.00
7.04
1.09

5.24
5.16
0.16

-1396 
-905 
-686 

38 
-10 
-32 

9.79 
11.58 
11.80 

7.23
9.06
9.05

Ω 1 
Ω 2 
Ω 3

3.72 
7.54 
7.69 

45
193
199

5.31 
7.70 
9.48 

-3.55 
-8.45 
-7.41 

113
406
343

3.78
9.20
8.17

1441 
2827 
2405 

41
177
135

6.97
7.09
7.04

3.55
9.20
8.20

-1191 
-1795 
-2102 

18 
77 
107 

9.98 
4.87 
8.69 

5.20
7.63
9.53

D1 
D2 
D3

2.24 
2.06 
1.79 

-13
-20
-30

2.29 
2.30 
2.33 

-1.34 
-1.36 
-1.46 

-20
-19
-13

4.19
5.17
5.47

893 
810 
722 

-13
-21
-29

7.04
7.03
6.97

4.56
4.56
5.23

-906 
-821 
-706 

-11 
-19 
-30 

10.04 
10.20 
11.58 

2.17
2.16
2.32

* maximum displacements occur at x = 14 m in each case;  †  minimum displacements   
   occur at x = 0 m in each case 
 
 
The deflection and bending moment responses of the foundation beam at x = L / 2 obtained 
for different parameter values mentioned before are presented in (Figure 5.2) and       
(Figure 5.3), respectively. 
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Figure 5.2 Deflection versus time of the beam shown in (Figure 1.1) at x = L / 2 for  
                        different parameters: 
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                      -a Flexural rigidity                       
                      -b Subgrade modulus 
                      -c Excitation frequencies 
                      -d Damping ratio 
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Figure 5.3 Bending moment versus time of the beam shown in (Figure 1.1) at x = L / 2 for  

                   different parameters: 
                   -a Flexural rigidity                       
                   -b Subgrade modulus 
                   -c Excitation frequencies 
                   -d Damping ratio 
 
 
(Figure 5.4) shows the elastic curves of the beam at the time in which the maximum 
positive deflection occurs for different parameter values. The instances given in         
(Figure 5.4) can also be seen in (Table 5.3)  
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Figure 5.4 Elastic curve of the beam shown in (Figure 1.1) at the time in which the 
                         maximum positive deflection occurs for different parameters: 
                        -a Flexural rigidity                       
                        -b Subgrade modulus 
                        -c Excitation frequencies 
                        -d Damping ratio 
 
 
With the variation of parameters such as flexural rigidity, subgrade modulus, excitation 
frequency and damping ratio, it is clear from (Table 5.3) and (Figure 5.4) that not only the 
magnitudes of the maximum deflections and bending moments but also their time of 
occurrences and their positions change. When (Table 5.3) and (Figure 5.2) through    
(Figure 5.4) are perused, it can be observed that the influences of the variation of subgrade 
modulus and flexural rigidity on the dynamic responses are more pronounced compared to 
the variation of damping ratio and excitation frequency. The damping ratios used in this 
study are practical values. If higher damping ratios are considered, their influence on 
responses would be more distinguishable. As the excitation frequencies approach to the 
natural frequency of the system it is obvious that their responses increase sharply. 
 
6. CONCLUSION 
 
The dynamic responses of a free beam subjected to transverse forces and moments on a 
Winkler foundation are presented. Since the governing differential equation is established 
for distributed loads, the concentrated forces and moments on beams have been transformed 
to distributed loads using Dirac distribution theory. Even though in theory this method is 
elegant, it turns out to be impractical in some cases. While the method yields reliable 
results for all dynamic responses (deflection, slope, bending moment and shear force) for 
concentrated forces, in the case of concentrated moment action, some inconsistencies may 
appear in shear forces due to the property of distribution functions. For the same reason, it 
is needed to involve a large number of modes to calculate shear forces for concentrated 
force and bending moments for concentrated moment loading. Since the distribution 
functions are expanded into a series of continuous shape functions, the discontinuities in the 
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related internal forces at the points of application of the loads can be noticed only when 
higher modes are used. 
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