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OZET
Bu ¢alismada, elastik zemine oturan, enine kuvvet ve momentlere maruz bir kirigin dinamik
analizi incelenmistir. Temel modelinde Winkler hipotezi baz alinmigtir. Kiris tizerindeki
tekil etkiler, diferansiyel denklemi kullanabilmek amaciyla, Dirac dagilim teorisi vasitasiyla
yayili yiiklere doniistiiriilmiistiir. Calismanin kullanigini géstermek amaciyla agiklayict bir
ornek sunulmus ve bir kisim hesaplanan degerler tablolarda ve sekillerde verilmistir.

Anahtar Kelimeler: Dinamik Analiz, Dirac Dagilim Teorisi, Enine Yiikleme, Winkler
Zemini

DYNAMIC ANALYSIS OF FOUNDATION BEAMS
SUBJECTED TO TRANSVERSE LOADING
ON WINKLER SOIL

Y. YESILCE"

ABSTRACT

In this study, the dynamic analysis of a free beam subjected to transverse forces and
moments on an elastic soil are investigated. The foundation model is based on the Winkler
hypothesis. Concentrated disturbances on beams are transformed to distributed loads in
order to be able to use the governing differential equation established for distributed loads
by using Dirac distribution theory. An illustrative example is presented in order to
demonstrate the use of the study and some of the obtained results are given in tables and
figures.
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1. Introduction

There are various methods used in the analysis of continuous foundations as a beam resting
on elastic soils. The most important two of them are the subgrade modulus method
pertaining to the theory of the first order and the method of modulus of elasticity based on a
second order theory. The former presents a model in which the soil is assumed as dense
liquid while the latter offers an elastic solid model.

In the subgrade modulus method, proposed by Winkler, it is assumed that the deflection at
any point of the beam on elastic soil is proportional to the pressure applied at that point and
is independent of pressure acting at nearby points of the beam [9]. In other words, in this
method the beam is considered as if it is resting on infinitely long independent elastic
springs with subgrade modulus. In the elastic solid model, the effects of the neighbouring
points to the point in question are taken into account by Boussinesque’s load-deformation
relation in an isotropic elastic semi-space. In this case, the soil is characterized by its elastic
properties, namely, elastic modulus and Poisson’s ratio. However, the solution of the
differential equation established for this model may present certain computational
difficulties and approximate methods may be needed to involve for the solution.

However, both models do not represent the real soil exactly. It behaves neither as a dense
liquid nor as an elastic solid. With a more realistic hypothesis, some researchers developed
two-parameter models for the elastic soil [3, 4, 6, 8, 5]. In comparison with the single
parameter model, i.e. Winkler model, these two-parameter foundation models represent the
foundation characteristics more accurately. Vallabhan and Daloglu had developed relations
in which subgrade modulus varies with depth which is equivalent to the two-parameter
Vlasov -Leontiev solution and can be used in classical Winkler model [2].

In this paper, the subgrade modulus method is used, which is also preferred in practice for
static problems due to its simplicity of mathematical formulation. One of the most
important drawbacks of this method is difficulties in determining the modulus of subgrade
reaction of the soil. The variation of contact pressure over the bearing area requires the
variation of subgrade modulus as well; subgrade modulus depends not only on the physical
characteristics of the soil but also on the foundation dimensions, the rigidity of the
foundation, the distribution of loading on the superstructure and the thickness of the
compressible layer which causes settlement. Therefore accurate determination of deflection
of the foundation and stresses on the superstructure can only be possible by using these
factors [7].

In addition to all of these, it is known that the subgrade modulus values for dynamic
loading are different from those for static loading. Based on these facts, values for subgrade
modulus should be determined by field tests conducted for different types of soils, different
loading conditions and different loading areas. However in practice, except for very
important structures, subgrade modulus values are taken from tables prepared for different
soil types. In the subgrade modulus method, the rigidity of the superstructure, the stress
distribution under the foundation base and lateral movement of the base soil are left out
from the mathematical model.
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2. MATHEMATICAL FORMULATION OF THE MODEL

(Figure 1.1-a) shows a foundation beam with flexural rigidity EI(x), coefficient of viscous
damping c(x) per unit length, base width b(x), cross-sectional area A(x), mass density p and
mass [m(x) = p.A(x)] per unit length on a soil with subgrade modulus K,. The beam is
subjected to distributed external load f(x,t) which may vary with position x and time z The
forces on a differential element of length dx are shown in (Figure 1.1-b), where V(x,t) is the
transverse shear force, M(x,t) is the bending moment, y(x,t) is the transverse displacement,

[C(X)~6y/8t] is the viscous damping force, [m(x)-@zy/ ot?]is the inertia force and
[k(x) -y =K, -b(x)-y] is the elastic response of the soil.

In the analysis the effects of shear and axial deformations and rotational inertia are ignored.
The governing differential equation for the transverse vibration of a beam on elastic soil
shown in (Figure 1.1) can be written as :

2 2 2
o - (EIx)- LY Z)+m(x)-—a 2y+c(x)-a—y+k(x)-y=f(x,t) (1)
ox ox ot ot

The solution of this partial differential equation under the boundary and initial conditions
yields the response [y(x, t)]of the beam in position x and at time t. Once the deflection is
determined, the slope, bending moment and the shear can be calculated by taking the first,

second and third derivative of the solution (response) function with respect to x,
respectively.

PN f(x,t)dx
''''''''''''''' i S Sy 2 b aM
RNLANANLANLARLARLANLANKANK M ft M +—dx

l A(X)’ EI(X), m(x), b(X), C(X), K() ( | : l )
Y c(x) -% -dx
| L ol v N V+ N dx
" o N Ox
1
T k(x)ydx
(a) (b)

Figure 1.1-a The foundation beam on Winkler soil
-b The forces on a differential element
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2.1. Natural Frequencies and Mode Shapes

For free vibration, [f (x,t) = 0], and with the assumption that the damping coefficient and

the section characteristics are constant along the beam, the natural frequencies and modes
can be obtained by the solution of the following homogeneous partial differential equation
with constant coefficients.

4 2
B0 m O o Yy @)
ox* at? ot

The solution function of Eq. (2) can be written by the method of separation of variables as:
y(x, 1) = X(x)- T(t) 3

where; X(x) is the characteristic shape function and T(t) is a time function. The
substitution of Eq. (3) into Eq. (2) leads to:

EI- X"V m-T+c-T+k-T
- 4)
X T

where; Roman indices denote derivatives with respect to x and over dots indicate
derivatives with respect to time. Since the left hand side of Eq. (4) is a function only of x
while the right hand side is a function of t only, Eq. (4) is true only if each side is equal to
the same constant. Designating this constant by p and setting both sides equal to it yields

EI. X" —p-X=0 (5)
and
m-T+c-T+(k+p)-T=0 (6)

The solution of Eq. (5) is can be written as:

X(x) = C, -sin(Ax)+C, -cos(Ax)+ C; -sinh(ix )+ C, -cosh(Ax) (7)
where;
p
Ao=42 8
o ()

The four integration constants in Eq. (7) are determined via the boundary conditions.
In the case of under damped motion, the solution of Eq. (6) is can be written as:
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Ty+C o T

T(t)=e | T, - cos(mpt) + — 0 sin(wpt) )
®p

where; T, and T, are parameters which depend on initial conditions and ®, is the
damped natural frequency of the system which is given by:

Op =0- 1—C2 (10)

where; o is the undamped natural frequency, namely

L (11)
m
and
c
= 12
6 2mom (12)

which is called as damping ratio.

2.2 Shape Function of the Free Beam

The four integration constants in the general solution of the characteristic shape function
given in Eq. (7) are determined by the boundary conditions of the free beam shown in
(Figure 1.1). The boundary conditions for such a beam are as follows:

{ M@©0,t)=0 or  X"(0)=0
atx=0
V(0,t)=0 or  X"(0)=0
(13)
{ M(L,t)=0 or  X"(L)=0
atx =L
V(L,t)=0 or X"(L)=0

Egs. (13) gives a set of equations with constant coefficients. The determinant of the
coefficients must be equal to zero for nontrivial solution. The expansion of this determinant
leads to:

cosh(LL)-cos(AL)=1 (14)

which is the frequency equation for the free beam. The numerical solution of this
transcendental equation gives with a good approximation the following relationship.
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AL=(n+1/2)-=n n=123,... (15)

For the first mode, that is n = 1, Eq. (15) yields a value of 4.71 for (XL) while the exact
value is appr. 4.73. For upper modes the difference is getting smaller. In the computations,
the exact solutions of Eq. (14) must be used for the first several modes (say 5 modes), while
Eq. (15) may be utilized for higher modes. After finding the values of (XL), the natural

frequencies can be obtained from Egs. (8) and (11) as follows:

A% EL+k
o, = |t ELYK (16)
m

The solution to the set of homogeneous equations (13) is parameter-dependent. However,
normal modes are determined to a relative magnitude, therefore the constant arose in the
solution may be taken unity. Hence, the characteristic shape function for the n-th mode is
obtained as:

X, (x) =sin(k,x)+sinh(r,x)-B, -[cos(r,x)+cosh(r,x)] (17)
where;

_ sinh(1,L)-sin(A,L)
Po = cosh(r,,L)—cos(A,L) (18)

From Eq. (3) the displacement function for the n-th mode is given by:

Ya (6,1 =X, (%) T, (1) (19)

The general solution to the equation of motion, namely the total deflection is obtained by
superimposing all modes as follows:

y(x.1) = %[Xn(xm ®)] (20)

3. FORCED VIBRATION

This paper deals with the transverse vibration of continuous beams on elastic soils
subjected to dynamic disturbances due to concentrated loads and moments. However, the
right hand side of Eq. (1) has been established for distributed loads. For this reason,
concentrated loads will be transformed to distributed loads by the theory of generalized
functions (distributions). The technique used in this study is to expand the Dirac
distribution into a series of an orthogonal function family.

3.1. Foundation Beams under Concentrated Forces
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The concentrated force F(s,t) on any position s of the beam may be transformed to distributed

load by Dirac distribution as:
f(x,t) = Fos - 05 (1) -85 (x) @n

where; the load function is of the form:

F(s, t) = Fos - ¢4 (0) (22)
and
8, (x)=8(x—-s)=Y[A, X, (x)] (23)

In these equations F, is the amplitude of the force located at a point s, ¢,(t) is the time
function of the force, §,(x) is Dirac distribution function centered at position s. This

distribution is expanded into a series of shape functions. By taking the inner product of Eq. (23)
with X, , and utilizing the properties of distributivity, homogeneity and orthogonality, A, can
be obtained as:

A, =7tk (24)

The inner product of shape function of free beam for the same mode is :

(XusXa)=[Xal” =L-B2 (25)
and from the definition of Dirac distribution [1].

(84, X, ) =X, (s) =X, (26)
the constant A, is obtained as:

X
Aomps 27)

Substituting A, into Eq. (23) yields:

5.(x) =¥ 22X (x) 28)
" LB

n
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From Egs. (21) and (28), the concentrated load F(s,t) located at position s is transformed
to distributed load as:

Fo, 1
E '¢s(t)'§B_2'an 'Xn(x) (29)

n

f(x,t)=

It follows from this that the general differential equation for foundation beam under
concentrated loads may be expressed as:

El-y"Y +m-y+c-y+k-y=

Fos 1
E -mm-gﬁ—z-xm X, (x) (30)

n

By rearranging Egs. (5), (8) and (16), and by the method of separation of variables, Eq. (30)
reduces to

. Foo -9, (1)- X
+£'Tn+®121'Tn — 0s (I)S() ns

T 2
m mLBn

€2))

n

The solution of the differential equation (31) is determined by Duhamel integral as follows:

T.o+C-®-T
T, (1) = e T, -cos(op, ) + 20050 gy o)
(DDn
X_-F . (32)
E— [, (1) e sin(@p, (t—1))- dt
L'm'an 'Bn 0

ns

+

where; T,, and Tno are parameters depending only on the initial conditions.

3.2. Foundation Beams under Concentrated Moment Loads

Since Eq. (1) is arranged for distributed loads, the concentrated moment M(s,t) on any

position s of the beam, positive in clockwise direction, may be transformed to distributed
load by Dirac distribution as:

_ OM(x, 1)

V(x, 1) =M ()-8,(x) (33)

and hence;
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oV(x,t) ,
f(X,t)Z— ox :_MOs Ws(t)ss(x) (34)

where; the moment function is of the form:
M(s, t) = M, - (1) -Hg (x) (35)

In these equations M, is the amplitude of the moment located at a point s, y(t) is the
time function of the force, d,(x) is Dirac distribution function centered at position s, and
H,(x) is Heaviside function. The first derivative of Dirac distribution may be expanded
into a series of shape functions as:

8.(x) =8, (x—s)=2[D, -X, (x)] (36)

By taking the inner product of Eq. (36) with X, and taking into consideration the modal
orthogonality together with the solution in Eq. (25), D, can be obtained as:

D, _{5Xy) (37)

Lp;

The inner product of -tk derivative of Dirac distribution with any function g(x) is given as:
Lok Lok k(k

[80(x =3)-g(x) =] 8 (x) - g(x +5) =(-D" g™ (5) (38)
0 0

from last two equations the constant D, is found as:

XI
D= (39)

which leads to:

’

5.(x) =% X[‘; X, (0 (40)

n “‘Pn

Consequently, from Eqgs. (1), (34) and (40), the general differential equation for foundation
beam on elastic soil under concentrated moment loads is obtained as:

. . M 1
El.yY +m-y+c-y+k-y= L"S-ws(t)-zﬁ—z-x;s-xn<x) (41)

n
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which, by the method of separation of variables reduces to:

.. . M W, (1)- X!
Tn +£'Tn+03121'Tn — 0s \Vs() ns

. “2)
m mLBn

The solution of the differential equation (42) is determined by Duhamel integral as follows:

T, +C-o T
T, () = e [T, -cos(op, ) 42050150 gy )
®Dn 43
X Mgy )
B [y (1) e sin(op, (t-1)) - dt

Lm-op, B 0

If more than one load acts on the system the generic equation to be solved may be written
by superposition as:

Tn +£'Tn +(Dﬁ 'Tn =;2|:5(F0s 'an 'd)s (t))+ i(MOS 'X;ls \Vs(t)):| (44)
m n’l-L-Bn s=1 s=1

where; 1 is the number of concentrated force and j is the number of concentrated moment
acting on the beam.

4. INITIAL CONDITIONS AND INTERNAL FORCES
The values of displacement and velocity functions for the beam at t=0 have to be
transformed to the time function and the first derivative of the time function with respect to

x, namely the initial conditions for the time function. Let the displacement and velocity
functions at initial time be u(x) and v(x), respectively, that is

y(x,0) = u(x) (45)

¥(x,0) = v(x) (46)

Hence, from Eq. (20)

u(x) =% [X, (x) T, (0)] 47)
and
v(x) =3 [X, (0)-T, (0)] (48)
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By taking the inner product of last two equations with X, in view of the modal

orthogonality and Eq. (25), T, (0) and T (O)can be obtained as:

<u,Xn>

T,0)=T,, = 49

n() n0 LBIZI ( )

T, (0=, = %) (50)
L'Bn

The inner product of shape function given in Eq. (17) with an arbitrary constant yields zero,
namely

(1,Xn)=?xn(x)-dx=0 (51)
0

Therefore, the parameters T,, and T,, take the value of zero for constant displacement

and velocity and shape functions do not represent the initial conditions. For this reason, in
case of constant u(x), this value has to be superimposed with the values y(x,t) calculated

from Eq. (20).

After determining the displacements caused by external loads acting on the foundation
beam, the slope 0(x,t), bending moment M(x,t)and shear force V(x,t) at any given

position x and time t may be evaluated by the following well-known relationships
and Eq. (20) :

00x, 1) = y(x,0) = XX, (- T, (0] (52)
62
M(x, 1) = —El-— y(x, ) = —EL- X [X} (x)- T, (1] (53)
ox n
3
V(x,t) = —EI -;—3 y(x,t) =—EI- ¥ [X"(x)-T, (t)] (54)
X n

As mentioned before, if the initial displacement function is constant, namely
u(x)=u, =constant (55)

because of the property given in Eq. (51), it follows that
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yx, 0= [X, ®)- T, (0]+u, (56)
n

For constant displacement and velocity functions

8(x,0)=0
M(x,0) =0 (57)
V(x,0)=0

therefore, the values found in Egs. (52), (53) and (54) would not change.

5. NUMERICAL STUDY

As an application of the method, the foundation beam shown in (Figure 5.1) is considered.
The beam is prismatic and has the following properties: the flexural rigidity EI = 3000
MNm’, mass per unit length m = 2 kNs*/m’, base width b = 1.2 m. The subgrade modulus
of the soil, K, on which the foundation rests is 50 MN/m’. All the excitation frequencies, Q
are taken as 100 rad/sn. The problem is solved without damping, i.e., the damping ratio
€= 0. The solution of the problem under this data set is referred to as base.

{300 + 200sin Qt} kN 750 kN {250 + 250sin Qt} kN

//lﬁ\{ZOOFZSOCOSSM} l {300 - 200cos Qt} ,,Lﬁ\

I m 6m 6m 1m

le »le »le >le >

< ¢ e

Figure 5.1 The foundation beam on elastic soil subjected to dynamic loading
In order to compare the behaviour of the foundation for different cases, the problem is
solved for various data sets. In each set, one parameter is changed only. These parameters

are the flexural rigidity, the subgrade modulus, the excitation frequencies and the damping
ratio. Three different values of each parameter used are shown in (Table 5.1)
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Table 5.1 Values Of The Parameters Used In The Different Solutions
PARAMETER 1 11 111
EI (MNm?) 1000 10000 50000
Ko (MN/m®) 10 100 500
Q (rad/sn.) 150 200 250
10) 5% 10 % 20 %
The damping ratios in (Table 5.1) may be defined from Eq. (12) as:
c
¢ (58)

2mo,

where; o, is the first natural frequency of the beam and is equal to 222.587 rad/sn. in the
studied case.

The problem is solved by taking into account 200 modes for the interval of time
corresponding to a duration of four periods which is approximately 0.1 sn. The first natural
period and the first five natural frequencies obtained for different values of parameters are
set out in (Table 5.2)

Table 5.2 The First Natural Period (sn.) And The First Five Natural Frequencies (rad/sn.)
For Different Values Of Parameters

T, (O] (0)) 03 (O] (O
(sn.) (rad/sn.) | (rad/sn.) | (rad/sn.) | (rad/sn.) | (rad/sn.)
BASE 0.02823 222.587 422.509 775.089 1260.815 1873.607
EL 0.03288 191.089 281.966 469.313 741.542 1090.933
EL 0.02037 308.465 724.600 1390.160 | 2286.668 | 3410.475
El, 0.01053 596.450 1582.792 | 3089.130 | 5101.397 | 7618.182
K. 0.03931 159.828 393.082 759.449 1251.261 1867.191
Ko, 0.02228 282.037 456.633 794.206 1272.657 | 1881.596
Ko 0.01112 565.283 669.712 933.147 1363.692 | 1944.326
D, 0.02826 222.309 422.362 775.009 1260.766 | 1873.574
D 0.02837 221.472 421.922 774.770 1260.619 | 1873.474
Ds 0.02881 218.090 420.157 773.810 1260.029 | 1873.078
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(Table 5.3) gives the extremum values of displacements and bending moments of the
foundation beam for different values of parameters. In this table, the positions and the time
of occurrences of these extrama are shown, too. Also relative changes (RC) which give
comparisons between the results obtained from the base solution and the results obtained by
changing the parameters are presented in the table.

Table 5.3 The Extremum Values Of Displacements And Bending Moments Of The
Foundation Beam For Different Values Of Parameters

ym“* (mm) yminT (mm) Mipnax (kNm) Myin (kNm)

Mag.|RC| Time | Mag [RC|Time| Mag. |RC| Pos [Time| Mag. |RC| Pos |Time
(mm)|(%)| (10”s) [(mm)|(%)|(10”s)| (kNm) [(%)| (m) |(107s)] (kNm) [(%)[ (m) [(10s)

Base | 2.57| - | 832 [-1.67]| - |4.16] 1022 | - | 6.86 |4.47 | -1014 | - |10.04] 2.17

EL, |3.77 (47| 296 |-3.21(92]537| 866 |-15]6.99|4.81 | -805 |-21]12.01|9.77
ElL, | 1.07 [-58] 2.04 |-1.10{-34]4.90 | 1433 |40 6.86 | 4.72 | -1235 |24 110.04{ 2.11
El; | 0.25(-90| 2.14 |-0.26|-84]5.73 | 1654 |62|7.10 | 4.74 | -1296 |28 |10.04] 2.18

Koy [4.72 |84 7.71 [-6.00]259( 5.27 | 2136 [109] 7.00 | 5.24 | -1396 |38 9.79 | 7.23

Ko, | 1.77 [-31| 2.03 |-1.29]-23[5.17| 927 |[-10]7.04 |5.16 [ -905 |-10(11.58| 9.06
Koz [ 0.62 [-76] 2.26 |-0.47]-72(6.02| 649 |[-36]1.09|0.16 | -686 |-32(11.80{ 9.05

Q, 372145 531 [-3.55|113|3.78 | 1441 [41(6.97|3.55| -1191 [ 18[9.98 | 5.20
Q, | 7.54 |1193] 7.70 [-8.45]406| 9.20 | 2827 [177[7.09 | 9.20 | -1795 |77 | 4.87 | 7.63
Q; | 7.69 |199] 9.48 [-7.41(343| 8.17 | 2405 [135[7.04 | 8.20 | -2102 |107| 8.69 | 9.53

D, |2.24|-13] 229 |-1.34]-20|4.19| 893 |-13|7.04|4.56 | -906 |-11110.04] 2.17
D, | 2.06 |-20] 2.30 [-1.36]-19]|5.17| 810 |-21|7.03 ]4.56| -821 |-19]10.20] 2.16
D; | 1.79|-30] 2.33 |-1.46]-13|547| 722 |-2916.97]5.23 | -706 |-30|11.58]2.32

* . . . Y.
maximum displacements occur at x = 14 m in each case;

occur at x = 0 m in each case

minimum displacements

The deflection and bending moment responses of the foundation beam at x = L / 2 obtained
for different parameter values mentioned before are presented in (Figure 5.2) and
(Figure 5.3), respectively.
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——Base - Ely —Base K,
25{ ~—El, ----El Ky Ky

Deflection (mm)

0 0.02 0.04 0.06 0.08

Deflection (mm)

0.02 0.04 0.06 0.08 0.1
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<
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-
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Time (s)
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Figure 5.2 Deflection versus time of the beam shown in (Figure 1.1) at x =L/ 2 for

different parameters:
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Figure 5.3 Bending moment versus time of the beam shown in (Figure 1.1) atx =L/ 2 for
different parameters:
-a Flexural rigidity
-b Subgrade modulus
-¢ Excitation frequencies
-d Damping ratio

(Figure 5.4) shows the elastic curves of the beam at the time in which the maximum
positive deflection occurs for different parameter values. The instances given in
(Figure 5.4) can also be seen in (Table 5.3)
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Figure 5.4 Elastic curve of the beam shown in (Figure 1.1) at the time in which the
maximum positive deflection occurs for different parameters:
-a Flexural rigidity
-b Subgrade modulus
-c¢ Excitation frequencies
-d Damping ratio

With the variation of parameters such as flexural rigidity, subgrade modulus, excitation
frequency and damping ratio, it is clear from (Table 5.3) and (Figure 5.4) that not only the
magnitudes of the maximum deflections and bending moments but also their time of
occurrences and their positions change. When (Table 5.3) and (Figure 5.2) through
(Figure 5.4) are perused, it can be observed that the influences of the variation of subgrade
modulus and flexural rigidity on the dynamic responses are more pronounced compared to
the variation of damping ratio and excitation frequency. The damping ratios used in this
study are practical values. If higher damping ratios are considered, their influence on
responses would be more distinguishable. As the excitation frequencies approach to the
natural frequency of the system it is obvious that their responses increase sharply.

6. CONCLUSION

The dynamic responses of a free beam subjected to transverse forces and moments on a
Winkler foundation are presented. Since the governing differential equation is established
for distributed loads, the concentrated forces and moments on beams have been transformed
to distributed loads using Dirac distribution theory. Even though in theory this method is
elegant, it turns out to be impractical in some cases. While the method yields reliable
results for all dynamic responses (deflection, slope, bending moment and shear force) for
concentrated forces, in the case of concentrated moment action, some inconsistencies may
appear in shear forces due to the property of distribution functions. For the same reason, it
is needed to involve a large number of modes to calculate shear forces for concentrated
force and bending moments for concentrated moment loading. Since the distribution
functions are expanded into a series of continuous shape functions, the discontinuities in the
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related internal forces at the points of application of the loads can be noticed only when
higher modes are used.
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