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Abstract: Biflavonoid compounds have demonstrated significant potential as anticancer agents, particularly 

as non-covalent proteasome inhibitors. However, the inhibitory mechanisms of these compounds remain 

underexplored. The 20S proteasome, a key target in cancer therapy, plays a crucial role in protein 

degradation and cell cycle regulation, making its inhibition a promising strategy for cancer treatment. This 

study employs an integrated computational approach, combining Three-Dimensional Quantitative Structure-

Activity Relationships (3D-QSAR) modelling, molecular docking, molecular dynamics (MD) simulations, 

and Molecular Mechanics-Generalized Born and Surface Area Solvation (MM/GBSA) binding energy 

calculations, to evaluate the proteasome inhibitory potential of biflavonoids from the genus Araucaria. A 

3D-QSAR model was developed using 62 flavonoid derivatives, with the Partial Least Squares (PLS) model 

highlighting electrostatic interactions and hydrogen bond donors as key determinants of proteasome 

inhibition. Concurrently, the Support Vector Machine (SVM) model exhibited superior predictive accuracy 

(with an R² of 0.98 and a predicted R² of 0.75) and was employed to screen 22 biflavonoid compounds, 

identifying five candidates with the highest predicted IC50 values: 7-O-methylagathisflavone (1), 7-O-

methylcupressuflavone (15), ochnaflavone (22), 7''-O-methylamentoflavone (11), and 7''-O-

methylagathisflavone (2). Molecular docking analysis confirmed strong binding affinities of all five 

compounds within the β5 active site of the 20S proteasome, with 22 exhibiting the highest docking score. 

However, MD simulations (100 ns) provided a more comprehensive assessment of binding stability, 

revealing that 1 showed the most stable behaviour, characterized by low RMSD fluctuations, minimal RMSF 

values, and a stable radius of gyration (Rg). Conversely, 15 and 22 demonstrated substantial conformational 

fluctuations, indicating diminished long-term stability. MM/GBSA binding energy calculations further 

substantiated the ranking observed in 3D-QSAR predictions, underscoring the preeminent potential of 

compound 1 as a promising inhibitor, as it demonstrated the best IC50 prediction, the strongest binding 

interactions, and the highest dynamic stability. The integration of 3D-QSAR modelling, docking, and MD 

simulations provides a comprehensive evaluation of biflavonoid-proteasome interactions, offering valuable 

insights for developing novel anticancer proteasome inhibitors. 
 

Keywords: Anticancer, Araucaria, Biflavonoid, Molecular docking, Molecular dynamics, MM/GBSA, 

Proteasome inhibitors, 3D-QSAR. 

 

1. Introduction 

Cancer is one of the leading causes of morbidity and 

mortality in the world, with more than 9.6 million 

deaths each year and continuing to increase. Cancer 

is caused by uncontrolled growth of abnormal cells, 

accompanied by metastasis to other body parts. 

 
1 Corresponding Authors 
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Various studies are being conducted to develop 

more effective anticancer drugs, focusing on 

specific targets. Proteasomes, multi-catalytic 

protease complexes that play a role in the 

degradation of 80% of intracellular proteins 

through three catalytic sites with different substrate 
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specificities (β1, β2, and β5), are one of the drug 

targets in cancer treatment that continue to attract 

attention [1]. Several pharmacological strategies 

have been carried out over the past few decades to 

design drugs that specifically target the proteolytic 

activity of the proteasome [2]. Proteasomes have 

significantly higher activity in cancer cells than 

normal cells, indicating their crucial role in cancer 

cell growth and survival [3-4]. Inhibition of 

proteasome activity is a promising approach in 

cancer therapy because it can inhibit cancer cell 

growth by preventing the degradation of proteins 

that regulate the cell cycle and cellular functions 

and disrupting NF-κB signalling, which plays a 

vital role in cancer development [5-6]. Therefore, 

developing proteasome inhibitors has become a 

significant focus in searching for more effective 

anticancer therapies. Some proteasome inhibitors 

currently used for cancer treatment include 

bortezomib, ixazomib, and marizomib. Most 

proteasome inhibitors, both those that have been 

approved and those in clinical trials, are peptide-

based inhibitors and inhibit the β5 site of the 

proteasome. However, peptide-based inhibitors 

have several weaknesses and limitations, especially 

related to severe side effects and drug resistance 

caused by strong covalent and irreversible 

interactions with the proteasome catalytic site. 

Therefore, developing non-peptide and reversible 

(non-covalent) proteasome inhibitors that lead to a 

natural approach is urgent to overcome the 

weaknesses and limitations of peptide-based 

proteasome inhibitors. 

Biflavonoids, a subclass of flavonoids, have 

demonstrated significant potential as non-peptide 

and non-covalent proteasome inhibitors. Several 

biflavonoid compounds have been found to exhibit 

inhibitory activity against the 20S proteasome, 

thereby presenting potential as anticancer agents. 

For example, moreloflavone and talbotaflavone, 

isolated from Garcinia lateriflora, have been 

reported to strongly inhibit the proteasome with 

IC50 values of 1.3 µM and 4.4 µM, respectively [7]. 

Additionally, biflavonoid compounds isolated from 

Ginkgo biloba, isoginkgetin, directly inhibit the 

20S proteasome through three catalytic site 

activities at once, caspase-like (β1), trypsin-like 

(β2), and chymotrypsin-like activity (β5), and 

interfere with NF-κB signalling with an IC50 value 

of 11.2 µM [8]. Isoginkgetin effectively kills 

multiple myeloma cell lines (blood cancer) in vitro, 

even showing a higher and faster level of cell death 

induction (apoptosis) than peptide-based inhibitors 

(bortezomib) [8]. This compound has also 

demonstrated inhibitory activity against MCF-7 

and HeLa cell lines, with IC50 values of 2.14 µM 

and 11.03 µM, respectively [9]. This discovery 

paves the way to explore the potential of 

biflavonoid compounds as alternative better 

anticancer drug candidates. However, to date, very 

little literature discusses the possibility of 

biflavonoids as anticancer drugs based on their 

ability to inhibit the 20S proteasome, especially 

regarding the structural features that accommodate 

their activity. 

Biflavonoids are secondary metabolites found in 

various types of plants, showing promising 

potential in drug development. One of the rich 

sources of biflavonoids is the genus Araucaria; 

however, the potential of biflavonoids from this 

genus still needs to be explored. Of the 19 species 

in the genus Araucaria, nine are known to contain 

biflavonoid compounds. This study focuses on 

evaluating the potential of 22 biflavonoid 

compounds isolated from the genus Araucaria as 

proteasome inhibitors using an in silico approach.  

Advancements in computer-aided drug design 

(CADD) have significantly improved the efficiency 

of drug discovery, reducing the time and cost 

required for experimental screening. One such 

computational technique, quantitative structure-

activity relationship (QSAR) modelling, allows for 

the identification of structural features that 

influence biological activity. The QSAR approach 

allows researchers to gain deeper insights into the 

structural parameters that influence the proteasome 

inhibitory activity of biflavonoids. This study 

employs the 3D-QSAR technique, a significant 

advancement over the traditional 2D-QSAR 

approach, which is limited to the consideration of 

physicochemical parameters such as 

hydrophobicity, electrostatic and steric effects 

(classical Hans analysis) [10]. 3D-QSAR 

comprehensively accounts for all atomic properties 

within a compound, particularly those associated 

with the spatial representation of a molecule. This 

capability is enabled by a range of descriptor 

methods, including CoMFA (Comparative 

Molecular Field Analysis), CoMSIA (Comparative 

Molecular Similarity Indices Analysis), CoMBINE 
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(Comparative Binding Energy Analysis), COMMA 

(Comparative Molecular Moment Analysis) [10]. 

The 3D-QSAR approach offers a more rational and 

in-depth method to identify and predict the activity 

of potential proteasome 20S inhibitors. The 

potential of this technique to provide a 

comprehensive understanding of the structural 

parameters that influence the proteasome inhibitory 

activity of biflavonoids instills confidence in the 

robustness of our research methods. In tandem with 

the advancement of cheminformatics technology, 

QSAR has undergone a progressive evolution, 

leading to the development of increasingly 

sophisticated methods, such as 4D-QSAR, 5D-

QSAR, 6D-QSAR, 7D-QSAR and Holo-QSAR. A 

thorough examination of the diverse QSAR 

methodologies has been comprehensively 

documented in numerous review articles [10-12]. 

The objective of this study is to examine the 

capacity of biflavonoids to function as 

chymotrypsin-like (β5) proteasome inhibitors, 

taking into account their encouraging non-covalent 

interactions with the catalytic site of the 20S 

proteasome. To this end, a 3D-QSAR model was 

developed, employing a curated dataset of 

flavonoid derivatives for which proteasome 

inhibitory activities have been empirically 

documented. This model is designed to serve as a 

predictive tool for identifying structural features 

that contribute to enhanced activity. Utilizing the 

developed 3D-QSAR model, we conducted a 

virtual screening of 22 biflavonoids from the genus 

Araucaria, identifying the five most promising 

candidates with the highest predicted inhibitory 

potency. To further evaluate their binding affinity 

and molecular interactions, molecular docking 

simulations were performed. The docking analysis 

yielded insights into the key binding interactions 

within the proteasome's β5 subunit and served as an 

essential preparatory step for the subsequent 

molecular dynamics (MD) simulations. The MD 

simulations were conducted to assess the stability 

of the ligand-proteasome complexes over time. To 

validate the predicted top-ranked biflavonoids from 

the 3D-QSAR model, structural fluctuations, 

protein-ligand interactions, and dynamic binding 

stability were analyzed to ascertain whether they 

retain their favourable binding conformations under 

physiological conditions. Furthermore, a series of 

molecular mechanics-generalized Born and surface 

area solvation (MM/GBSA) calculations were 

conducted to assess the free binding energy of these 

biflavonoids. This approach served to provide 

additional verification that the ranking observed in 

the 3D-QSAR model is consistent with their 

dynamic binding affinity. This study offers a 

comprehensive evaluation of biflavonoid-

proteasome interactions by integrating 3D-QSAR 

modelling, molecular docking, MD simulations, 

and MM/GBSA calculations. The findings 

contribute to a deeper understanding of the 

structural requirements for effective proteasome 

inhibition and highlight biflavonoids as promising 

candidates for future anticancer drug development. 

 

2. Computational Method 

2.1 Dataset 

A total of 62 compound and activity data used as 

datasets in this study were obtained through 

literature studies [7, 8, 13-28]. The inhibitory 

activity data in IC50 were converted to pIC50 

(decadic logarithm of IC50). The pIC50 value was 

then used as the dependent variable for modelling. 

The dataset was then divided into a training set (50 

compounds, 80%) and a test set (12 compounds, 

20%).  

 

2.2 3D-QSAR Modelling Using the PLS 

Algorithm on the OPEN3DQSAR Tool 

Molecular alignment was performed in the 

Open3DAlign program using atom-based and 

pharmacophore alignment methods by setting the 

MG132 structure as an alignment template [29]. 

MG132 is a potent proteasome inhibitor with an 

IC50 value of 0.04 µM. The MG132 structure used 

as the alignment format is the conformational form 

of MG132 when bound to the β5 site of the 

proteasome (Figure 1). 

In the modelling process employing 

Open3DQSAR, the molecular descriptor utilized is 

known as Molecular Interaction Fields (MIFs), a 

three-dimensional (3D) potential map that 

describes the interaction energy formed around the 

molecule [30-31]. The MIF descriptor is derived 

from the calculation of the interaction energy 

between each molecule aligned with the probe atom 

placed at grid points around the target molecule in 

a 3D lattice [30]. This study calculated the steric 

(van der Waals) and electrostatic (Coulombic) 

interaction energies using a sp3 carbon atom probe 
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with a charge of +1. The energy was calculated 

using the MMFF94 force field in a 3D cubic lattice 

with a grid spacing of 1 Å. After the MIFs 

descriptor is calculated, the following standard data 

pre-treatment is performed to exclude less 

informative variables [31]. 

 

 

 

O
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O

NH

O

 
(A)                                                                                      (B) 

Figure 1. 2D structure of MG132 (A) dan conformation when bound to the β5 site of the proteasome (B) 

 

• Exclusion of grid points that exceed the 

cut-off in a specific MIF (excludes grid 

points that are very close to the atomic 

nucleus because they can produce very 

high steric energy values. The steric 

energy threshold is set at 104 kcal/mol). 

• Max and min cut-off (set grid points that 

lie above or below these thresholds, 

respectively, to a user-defined 

maximum/minimum threshold value. In 

this case, the threshold was set from -30 to 

30 kcal/mol to avoid extreme values in the 

data that could cause the model to be 

highly biased). 

• Zeroing (sets to zero grid values which are 

close to zero). 

• Standard deviation cut-off (removes 

variables that have a standard deviation 

between objects that is lower than a user-

defined threshold, to improve the signal-

to-noise ratio. The standard deviation 

threshold was set to 0.1). 

• N-level variable elimination (removes 

variables that have only a few different 

values across the different objects to 

prevent them from biasing the model). 

Also, the following clustering and variable 

selection procedures are implemented in 

Open3DQSAR to enhance the predictive 

performance of the 3D-QSAR model. 

• Smart Region Definition (SRD), as 

introduced by Pastor and co-workers [32], 

organizes variables based on their original 

spatial distribution in three-dimensional 

space. This approach minimizes 

redundancy by clustering nearby 

descriptors that convey essentially the 

same type of information. 

• Fractional Factorial Design (FFD) 

variable selection, as initially proposed by 

Baroni and co-workers [33] is designed to 

identify variables with the greatest impact 

on predictive performance. This method 

can be applied to individual variables or to 

groups of variables identified through a 

prior SRD analysis. 

 

The regression analysis employed in 

Open3DQSAR is Partial Least Squares (PLS), a 

methodology that has been selected in this study 

due to its ability to handle multicollinearity and 

high-dimensional datasets [34], which are 

commonplace in QSAR modelling. In contrast to 

Multiple Linear Regression (MLR), a conventional 

linear regression method that directly models the 

relationship between multiple independent 

variables and a dependent variable, PLS extracts 

principal components (PC) that maximize the 

variance between molecular descriptors and 

biological activity, thereby effectively mitigating 
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multicollinearity issues. Additionally, while MLR 

becomes impractical when the number of molecular 

descriptors exceeds the number of compounds, PLS 

overcomes this limitation by employing a 

projection-based approach. This characteristic 

renders PLS particularly well-suited for 3D-QSAR 

studies, ensuring the development of a more stable, 

generalizable, and predictive model. 

The determination of the optimal number of 

principal components (PC) in constructing the PLS 

model is achieved through the use of internal and 

external validation. The external validation is the 

primary focus of this study, as it utilizes all 

available biflavonoid compound data with IC50 

values (only three compounds) as a test set. This 

approach ensures the model's capacity to accurately 

predict the activity of biflavonoid compounds. 

 

2.3  3D-QSAR Modelling Using Machine 

Learning Algorithms on the Orange Device 

In the framework of machine learning-based 

modelling, molecular alignment was executed 

through the use of Discovery Studio Visualizer 

software, employing the identical compound 

template as PLS modelling. This alignment process 

incorporates steric and electrostatic factors, 

allocating a proportion of 50% to each factor (by 

default). Concurrently, three-dimensional (3D) 

molecular descriptors were computed utilizing the 

Mordred program. Mordred is a descriptor 

calculation program that is notable for its 

accessibility, ease of installation, expeditious 

calculation performance, and extensive flexibility 

of use [35]. In this study, we calculated 215 3D 

descriptors, which were categorized into several 

modules, including CPSA (Charged Partial Surface 

Area), Geometrical Index, Gravitational Index, 

MoRSE (Molecular Representation of Structures 

based on Electron diffraction), Moment of Inertia, 

and PBF (Polarizability Based Field). Each 

descriptor plays an indispensable role in the 

description of complex molecular characteristics 

and the prediction of biological activity. 

Various machine learning algorithms were used in 

the modelling, including neural network, gradient 

boosting, support vector machine (SVM), random 

forest, decision tree, AdaBoost, and K-nearest 

neighbours (kNN). The modelling process used 

Orange software, an open-source data analysis and 

visualization tool [36]. The best model was selected 

based on internal, external, and cross-validation. 

Cross-validation was performed using the leave-

one-out (LOO) method and 10-fold cross-

validation. In addition, other parameters such as 

Root Mean Squared Error (RMSE), Mean Squared 

Error (MSE), Mean Absolute Error (MAE) and 

standardized residual distribution were also 

considered. The selected model was then used to 

predict the IC50 of 22 biflavonoid compounds 

successfully isolated from the genus Araucaria 

(Table 1) [37-38]. 

 
Table 1. Biflavonoids from the genus Araucaria [37-38] 

Structure Biflavonoid Compounds 

Substituents 

R1 

(7) 

R2 

(4') 

R3 

(7'') 

R4 

(4''') 

(1) 7-O-methylagathisflavone -CH3 -H -H -H 

(2) 7''-O-methylagathisflavone -H -H -CH3 -H 

(3) 7,7''-di-O- 

methylagathisflavone 
-CH3 -H -CH3 -H 

(4) 7,4'''-di-O- 

methylagathisflavone 
-CH3 -H -H -CH3 

(5) 7,7'', 4'''-tri-O- 

methylagathisflavone -CH3 -H -CH3 -CH3 
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Table 1. Biflavonoids from the genus Araucaria [37-38] 

Structure Biflavonoid Compounds 

Substituents 

R1 

(7) 

R2 

(4') 

R3 

(7'') 

R4 

(4''') 

 

(6) 7,4',7''-tri-O- 

methylagathisflavone -CH3 -CH3 -CH3 -H 

(7) 7,4',7'',4'''-tetra-O- 

methylagathisflavone 
-CH3 -CH3 -CH3 -CH3 

(8) 4′,7''-di-O- 

methylagathisflavone 

-H -CH3 -CH3 -H 

 

(9) 7,4′,7′′-tri-O- 

methylamentoflavone 
-CH3 -CH3 -CH3 -H 

(10) 7,4′,4′′′-tri-O- 

methylamentoflavone 
-CH3 -CH3 -H -CH3 

(11) 7′′-O- 

methylamentoflavone 
-H -H -CH3 -H 

(12) 7,7′′-di-O 

methylamentoflavone 
-CH3 -H -CH3 -H 

(13) 7,4',7′′,4′′′-tetra-O-

methylamentoflavone 
-CH3 -CH3 -CH3 -CH3 

(14) 7,4'-di-O- 

methylamentoflavone 
-CH3 -CH3 -H -H 

 

 

(15) 7-O- 

methylcupressuflavone 
-CH3 -H -H -H 

(16) 7,7″-di-O- 

methylcupressuflavone 
-CH3 -H -CH3 -H 

(17) 7,4′,7′′-tri-O- 

methylcupressuflavone 
-CH3 -CH3 -CH3 -H 

(18) 4′,4′′′-di-O- 

methylcupressuflavone 
-H -CH3 -H -CH3 

(19) 7,4′,7′′,4′′′-tetra-O-

methylcupressuflavone 
-CH3 -CH3 -CH3 -CH3 

(20) 7,7′′,4′′′-tri-O- 

methylcupressuflavone 
-CH3 -H -CH3 -CH3 

(21) 7,4′′′-di-O- 

methylcupressuflavone 

-CH3 -H -H -CH3 

 R4

   

 R2

R3  

R1 

 

  

 

8''

4'

7

4'' '

7''

 

 

 

  
R3 

 R2

 R4
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Table 1. Biflavonoids from the genus Araucaria [37-38] 

Structure Biflavonoid Compounds 

Substituents 

R1 

(7) 

R2 

(4') 

R3 

(7'') 

R4 

(4''') 

O

OOH

OH

O

O

OH

OH

O

OH

 

(22) Ochnaflavon 

    

2.4 Molecular Docking 

Molecular docking simulations were conducted 

using AutoDock Vina v1.2.6 to obtain the initial 

binding conformations of selected biflavonoids 

within the chymotrypsin-like (β5) active site of the 

20S proteasome. The crystal structure of the 20S 

proteasome complexed with MG132 (PDB ID: 

8CVR) was retrieved from the Research 

Collaboratory for Structural Bioinformatics Protein 

Data Bank (RCSB PDB). Protein preparation 

involved removing water molecules and non-

essential ions, followed by the addition of polar 

hydrogens and Gasteiger charges using 

AutoDockTools [39]. The binding site was defined 

based on the co-crystallized ligand MG132 (LDZ). 

Ligand structures, including five selected 

biflavonoids, were optimized using the MMFF94 

force field and converted into PDBQT format to 

allow flexible torsion handling. It is important to 

emphasize that docking was performed primarily as 

a preparatory step for molecular dynamics (MD) 

simulations rather than as the main research 

objective. The top-ranked docking conformations 

were selected based on their binding affinity 

(kcal/mol) and stability, serving as the starting 

structures for subsequent MD simulations. 

2.5  Molecular Dynamics Simulation 

Molecular dynamics (MD) simulations were 

performed to assess the binding stability and 

dynamic behaviour of the biflavonoid-proteasome 

complexes. The simulations were conducted using 

Google Colab Pro+, which provides a cloud-based 

computational environment equipped with the 

necessary libraries and packages for MD 

simulations, including AmberTools, OpenMM, 

PyTraj, py3Dmol, NumPy, ProLIF, Matplotlib and 

Anaconda. These tools facilitated system 

preparation, trajectory analysis, and visualization, 

ensuring an efficient and reproducible simulation 

workflow. 

The ff19SB force field was used for the protein, 

while the GAFF2 force field was applied to 

generate ligand topology. The system was solvated 

using the TIP3P water model in a 12 Å periodic 

box, with 0.15 M NaCl. Energy minimization was 

conducted with 20,000 steps before equilibration. 

The equilibration phase was performed for 5 ns 

with an integration step of 2 fs, maintaining a 

temperature of 298 K and pressure of 1 bar with a 

force constant of 700 kJ/mol. The production MD 

simulations were carried out for 100 ns under the 

same conditions. Post-simulation analysis included 

root-mean-square deviation (RMSD), root-mean-

square fluctuation (RMSF), and radius of gyration 

(Rg) to evaluate system stability. The MM/GBSA 

(Molecular Mechanics/Generalized Born Surface 

Area) method was used to estimate the binding free 

energy of the protein-ligand complexes over the 

final 10 ns of the molecular dynamics trajectory. 

 

3. Results and discussion 

3.1 3D-QSAR Model with PLS Algorithm 

The 3D-QSAR model with the Comparative 

Molecular Field Analysis (CoMFA) approach was 

developed using 50 compounds as training sets and 

12 test sets on the Open3DQSAR tool. CoMFA 

uses MIFs as molecular descriptors built using 

steric probes and electrostatic probes. The 
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contributions of steric and electrostatic fields in the 

model were 14.4% and 85.6%, respectively.  

Principal component (PC) extraction and Partial 

Least Squares (PLS) modelling were performed to 

reduce the complexity of the variables in this study. 

Initially, 15 PCs were calculated. The results of PC 

extraction, as shown in Figure 2, show that an 

increase in the number of extracted PCs correlates 

with an increase in the variance of the independent 

and dependent variables that the PLS model can 

explain. In addition, an increase in the number of 

PCs is also followed by the rise in the coefficient of 

determination (R²) from internal validation, 

indicating a direct relationship between the number 

of PCs and the model's ability to explain data 

variability. However, when the number of PCs used 

becomes too large, there is a negative effect on the 

predictive ability of the PLS model, indicated by 

the decrease in the coefficient of determination of 

external validation (R²pred) as the number of PCs 

used increases. This phenomenon indicates that 

although adding PCs can increase the explanation 

of variance in independent variables and increase 

R², it can also reduce the model's ability to predict 

pIC50 values of new compounds not included in the 

training data. This decrease in predictive ability 

indicates overfitting in the PLS model. Overfitting 

occurs when the model fits the training data well 

but fails to generalize to new data (test set). An 

excessive number of PCs causes the model to 

capture noise or random fluctuations in the training 

data as part of the pattern, making the model appear 

more accurate than it is. Therefore, finding the 

optimal number of PCs to balance the model's 

ability to explain the training data and its reliability 

in predicting new data is crucial. The PLS model 

with 7 PCs was chosen based on the evaluation 

because it produced the most satisfactory external 

and internal validation determination coefficients, 

0.75 and 0.98, respectively (Figure 3A). The model 

is also evaluated based on the distribution of its 

standardized residuals, as shown in Figure 3B. The 

residuals of the model are randomly and normally 

distributed, indicating good model performance and 

not ignoring important interactions between the 

variables used in the model. 

 

 

Figure 2. Cumulative variance curve of variables and coefficient of determination against the number 

of PCs 

 

External validation, which is the main focus of this 

study, was carried out using all available IC50 

values for biflavonoid compounds as a test set. This 

approach ensures that the model can accurately 

predict the activity of biflavonoid compounds, 

which is the primary goal of this research. The 3D 

quantitative structure-activity relationship (3D-

QSAR) model, developed using Partial Least 

Squares (PLS), is represented as a 3D isocontour 

map of the PLS coefficients, as illustrated in Figure 

4. 

In this map, the green contour indicates regions 

where larger substituents (steric effects) enhance 

biological activity, while the yellow contour shows 

areas where larger substituents diminish biological 

activity. The blue contours highlight areas where 

positively charged substituents and hydrogen bond 

donors contribute to increased activity. Conversely, 

the red contour indicates that negatively charged 

substituents and hydrogen bond acceptors are 

positively correlated with biological activity.  The 

isocontour map is further analyzed about three 
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biflavonoid compounds included in the test set: 

isoginkgetin, moreloflavone, and talbotaflavone, as 

shown in Figure 4. 

3.2 3D-QSAR Model with Machine 

Learning Algorithm 

The statistical parameters of modelling results 

using several machine learning algorithms with 3D 

descriptors from Mordred as independent variables 

are presented in Table 2. Among the models built, 

the Support Vector Machine (SVM) model showed 

the best predictive performance based on the results 

of external validation and cross-validation (10-fold 

cross-validation and leave-one-out cross-

validation), with R²pred, Q²10-fold, and Q²loo values of 

0.890, 0.422, and 0.416, respectively (Table 2). 

 

 
(A)                                                                   (B) 

Figure 3. The plot of the predicted pIC50 values of the PLS model against the experimental values (A) 

and Distribution of residuals from the predicted pIC50 PLS model (B) 

 

The SVM model also showed excellent 

performance in internal validation with an R² value 

of 0.952 (Figure 5A). SVM is a prevalent machine 

learning technique because it handles high-

dimensional data effectively and often produces 

higher predictive performance than other models 

[40-41]. In contrast, other models, such as gradient 

boosting, AdaBoost, and neural networks, showed 

signs of overfitting, with very high R² values but 

low R2
pred, Q²10-fold, and Q²loo values (Table 

2).  External validation is the main parameter for 

selecting machine learning-based models for the 

same reasons as in PLS modelling.  

The performance of the SVM model is evaluated 

based on various parameters. These include the 

Root Mean Square Error (RMSE), Mean Absolute 

Error (MAE), and Mean Absolute Percentage Error 

(MAPE), with values of 0.194, 0.148, and 0.032 

respectively. Lower values of these parameters 

indicate better predictive accuracy. Additionally, 

the distribution of residuals is important in 

evaluating the model's performance. The residual 

plot in Figure 5B shows a relatively random 

distribution with a shape close to normal, indicating 

that the SVM model can predict data accurately and 

without significant systematic tendencies. 

As the best model, the SVM model was then used 

to predict the proteasome inhibitory activity of 22 

biflavonoid compounds successfully isolated from 

the genus Araucaria (Table 1) [37-38]. The 

prediction results obtained from the SVM model 

are shown in Table 3. Compounds are classified as 

highly active proteasome inhibitors if IC50 <1 µM, 

active if 1 µM <IC50<4 µM, and weak if IC50 >4 µM 

[42]. 

Based on the IC50 prediction results of biflavonoid 

compounds tested using the SVM model, we have 

identified five active compounds with the potential 

to be proteasome inhibitors. Each compound has 

IC50 prediction values below 4 μM (Table 3), 

indicating their promising potential. Compound 1, 

in particular, has emerged as the most promising, 

with an IC50 value of 1.7 4 μM. The next best 

sequences were 15, 22, 11, and 2, with IC50 values 
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of 2.083; 2.207; 2.437; and 2.948 μM, respectively. 

These five best compounds exhibited a higher 

prevalence of dominant −   substituents than 

other compounds with lower IC50 predictions 

(Figure 6). 

 

 
(A)                                                              (B) 

 
(C)                                                             (D) 

 
(E)                                                             (F) 

Figure 4. Isocontour of PLS coefficients. Isoginkgetin compounds with steric (A) and electrostatic (B) field 

isocontours, moreloflavon with steric (C) and electrostatic (D) field isocontours, talbotaflavone with steric 

(E) and electrostatic (F) field isocontours 

 

Table 2. Statistical parameter values of machine learning-based models 

Model RMSE MAE MAPE R2 R2pred Q210-fold Q2loo 

SVM 0,194 0,148 0,032 0,952 0,890 0,422 0,41  

kNN 0, 01 0,419 0,103 0,542 0,718 0,321 0,310 

Gradient Boosting 0,002 0,002 0,000 1,000 0, 94 0,0 2 0,110 

Random Forest 0,315 0,217 0,052 0,874 0,454 0,0 9 0,191 

AdaBoost 0,042 0,011 0,002 0,998 0,400 0,0 7 0,180 

IC50 = 4,4 µM 

IC50 = 1,3 µM 

IC50 = 11,2 µM 
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Tree 0,253 0,12  0,035 0,919 -0, 84 -0,752 -0, 10 

Neural Network 0,079 0,048 0,010 0,992 -5,045 -3,407 -4,018 

 

 
(A)                                                                      (B) 

Figure 5. The plot of the predicted pIC50 values of the PLS model against the experimental values (A) 

and distribution of residuals from the predicted pIC50 PLS model (B) 

 

Table 3. IC50 predicted results of biflavonoid compounds 

Biflavonoid Compounds 
Predicted 

IC50 (µM) 

IC50 against 

MCF-7 

(µM) [9] 

IC50 against 

 eLa 

(µM) [9] 

7-O-methylagathisflavone (1) 1,7 4 - - 

7-O-methylcupressuflavone (15) 2,083 3,40 1,42 

 chnaflavon (22) 2,207 - - 

7′′-O-methylamentoflavone (11) 2,437 - - 

7′′-O-methylagathisflavone (2) 2,948 - - 

7,7″-di-O-methylcupressuflavone (16) 4,798 - - 

4′,4″′-di-O-methylcupressuflavone (18) 5,090 - - 

7,4′′′-di-O-methylagathisflavone (4) 5,539 - - 

7,4′′′-di-O-methylcupressuflavone (21)  ,441 11,54 35,59 

7,4′-di-O-methylamentoflavone (14)  ,922 - - 

7,7′′-di-O-methylamentoflavone (12) 8,521 - - 

7,7″-di-O-methylagathisflavone (3) 9,033 115,39 107, 3 

7,7′′,4′′′-tri-O-methylcupressuflavone (20) 10,458 - - 

4′,7′′-di-O-methylagathisflavone (5) 10, 29 - - 

7,4′,7′′-tri-O-methylamentoflavone (9) 11,792 - - 

7,4′,7′′-tri-O-methylcupressuflavone (17) 13,144 91,74 - 

7,4′,7″-tri-O-methylagathisflavone (6) 13,39  - - 

7,7′′,4′′′-tri-O-methylagathisflavone (7) 1 ,802 314,44 337,05 

7,4′,4′′′-tri-O-methylamentoflavone (10) 25,002 - - 

7,4′,7′′,4′′′-tetra-O-methylcupressuflavone (19) 2 ,758 397,89 528,78 

7,4′,7′′,4′′′-tetra-O-methylamentoflavone (13) 34,78  - - 

4′,4′′′,7,7′′-tetra-O-methylagathisflavone (8) 5 ,554 - - 

 

Four of the five compounds had only one − C 3 

substituent, all located at position 7 or 7′′, except for 

ochnaflavone, which had all its substituents as −   

groups. The trend indicates that the more −   

substituents (the fewer − C 3 substituents), the 

higher the proteasome inhibitory activity of the 

compound (Figure 7). This underscores the crucial 

role of the −   group in enhancing proteasome 

inhibitory activity. These findings align with the 

results of the PLS model interpretation, which 
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suggests that substituents acting as hydrogen bond 

donors (such as −   groups) have a more 

significant effect in increasing proteasome 

inhibitory activity than hydrogen bond acceptors 

and bulk substituents (such as − C 3 groups). 

Furthermore, these results are consistent with the 

findings of Piwowar and coworkers [43], who 

demonstrated that methylated flavonoids do not act 

as effective proteasome inhibitors in both in vitro 

and in vivo systems and only weakly induce 

apoptosis. In contrast, non-methylated flavonoids 

effectively inhibit proteasome activity in HL60 

cells, leading to the accumulation of proteasomal 

target proteins and the activation of caspase-

dependent apoptosis. More specifically, their study 

showed that the failure of methylated flavonoids to 

induce apoptosis was due to their inability to inhibit 

the chymotrypsin-like activity of the cellular 

proteasome, the same target site investigated in this 

study. 

The IC50 prediction results were also compared with 

the in vitro studies of compounds 3, 7, 15, 17, 19, 

and 21 against MCF-7 and HeLa cells [9]. As a 

result, there was agreement in ranking the most 

active compounds even though the IC50 values were 

quite different (Table 3). 

 

Figure 6. Structure of the 5 best compounds based on the SVM model prediction results 

 

 
Figure 7. Structure of the 5 best compounds based on the SVM model prediction results. 
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Table 4. The docking-based binding affinity of the top five biflavonoid compounds 

Biflavonoid Compounds Binding Affinity (kcal/mol) 

7-O-methylagathisflavone (1) -9.319 

7-O-methylcupressuflavone (15) -9.041 

 chnaflavon (22) -10.2  

7′′-O-methylamentoflavone (11) -9.430 

7′′-O-methylagathisflavone (2) -9.234 
 

 
Figure 8. 2D view of the interactions of compounds 1 (A), 15 (B), 22 (C), 11 (D), and 2 (E) within the 

chymotrypsin-like (β5) active site of the 20S proteasome 

 

3.3 The Analysis of Molecular Docking 

Molecular docking was conducted to predict the 

binding interactions of the selected biflavonoids 

with the chymotrypsin-like (β5) active site of the 

20S proteasome, providing an initial assessment of 

binding affinity and ligand orientation before 

molecular dynamics (MD) simulations. The results 

indicate that all five biflavonoids exhibit strong 

binding affinities, suggesting favourable 

interactions within the active site (Table 4).  

Ochnaflavone (22) exhibited the strongest binding 

affinity of -10.26 kcal/mol, suggesting a robust 

interaction with key residues. The remaining 

compounds also demonstrated notable binding 

potential, exhibiting only minor variations in 

docking scores. These findings collectively indicate 

that the selected biflavonoids can effectively 

interact with the proteasome active site, supporting 

their potential role as competitive inhibitors. 

A molecular docking interaction analysis was 

conducted to investigate the binding interactions 

between the selected biflavonoids and the 

chymotrypsin-like (β5) active site of the 20S 

proteasome. The docking interactions were then 

visualized in Figure 8, in which hydrogen bonds 

are represented as blue dashed lines, while 

hydrophobic interactions are depicted as green 

dashed lines. Hydrogen bonding plays a crucial role 

in stabilizing ligand binding by enhancing 

specificity and affinity, thereby strengthening 

proteasome inhibition. Meanwhile, hydrophobic 

interactions contribute significantly to ligand 

positioning within the active site, reinforcing 
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ligand-protein stability and facilitating favourable 

binding conformations [44]. 

The docking results revealed a consistent pattern of 

hydrophobic interactions among the five 

biflavonoid compounds, suggesting a shared 

binding mode within the β5 active site of the 20S 

proteasome. Compounds 1, 2, and 11 did not form 

hydrogen bonds, however, they engaged in multiple 

hydrophobic interactions with TYR306, TYR169, 

ALA20, ALA49, ASP324, VAL326, and PRO325 

(Figure 8A, 8D, 8E). This finding suggests that 

these compounds rely predominantly on 

hydrophobic forces to stabilize their binding within 

the active site. In contrast, Compound 15 exhibited 

three hydrogen bonds with ALA50 and ALA49, in 

addition to hydrophobic interactions with VAL326, 

PRO325, ALA22, and ASP324, which may 

contribute to a stronger binding affinity (Figure 

8B). Compound 22 formed two hydrogen bonds 

with THR1 and SER341 (Figure 8C). Of particular 

note is the significance of THR1, a pivotal catalytic 

residue in the proteolytic mechanism of the β5 

active site, which plays a crucial role in peptide 

cleavage via nucleophilic attack [45]. Interaction 

with this residue is of particular relevance, as it may 

significantly impact proteasome inhibition. 

Furthermore, hydrophobic interactions with 

TYR306, ALA49, ASP324, and PRO325 appear to 

be a common feature across all five ligands, 

highlighting their role in stabilizing ligand binding 

within the β5 active site. 

 

3.4 The Analysis of Molecular Dynamics 

Simulations 

To further investigate the dynamic behaviour and 

stability of the five best-performing biflavonoid 

derivatives identified through 3D-QSAR modeling, 

molecular dynamics (MD) simulations were 

conducted. While molecular docking provides a 

static representation of ligand binding affinity, it 

does not account for the conformational flexibility 

of the protein-ligand complex under physiological 

conditions [46]. MD simulations, therefore, serve 

as an essential approach to evaluating the stability 

of these interactions over time. 

In this study, MD simulations were performed for 

100 ns using the docked conformations of each 

compound as the initial input structures. This 

approach ensures that the simulations reflect the 

most favourable binding orientations predicted by 

molecular docking. Key structural and energetic 

parameters, including root mean square deviation 

(RMSD), root mean square fluctuation (RMSF), 

radius of gyration (Rg), MM/GBSA binding free 

energy, and interaction energy, were systematically 

analyzed to assess the stability and binding 

characteristics of each complex [47]. 

Root mean square deviation (RMSD) is a 

fundamental parameter used to evaluate the overall 

stability of a protein-ligand complex during 

molecular dynamics simulations. It measures the 

conformational changes of the complex over time 

by calculating the deviation of atomic positions 

from the initial structure. A lower and more stable 

RMSD value indicates that the complex maintains 

its structural integrity throughout the simulation, 

suggesting a strong and stable binding interaction 

between the ligand and the protein. Conversely, 

significant fluctuations in RMSD may signify 

structural instability, conformational 

rearrangements, or potential dissociation of the 

ligand from the binding site.  

The RMSD profiles of the five selected biflavonoid 

derivatives revealed distinct stability patterns 

(Figure 9). Compounds 1, 2, and 11 exhibited 

relatively stable RMSD values, maintaining 

fluctuations within the range of 2–3 Å. These 

complexes reached equilibrium after the first 10 ns 

and remained stable throughout the remaining 

simulation time. Such behaviour suggests that these 

compounds form stable interactions with the 

protein, experiencing only minimal conformational 

shifts. The observation of relatively low RMSD 

values indicates that the binding of these ligands 

does not induce significant perturbations in the 

protein structure, thereby reinforcing their potential 

as strong inhibitors. Among these three compounds, 

compound 1 displayed the highest stability, as 

evidenced by its minimal fluctuations, further 

emphasizing its strong affinity and compatibility 

with the binding site. 

In contrast, compounds 15 and 22 exhibited more 

pronounced RMSD fluctuations, suggesting greater 

conformational flexibility or instability within the 

protein-ligand complex. Compound 22 fluctuated 

significantly around   Å and only began to stabilize 

after approximately 40 ns. This behaviour implies 

that the ligand required a longer equilibration 

period to achieve a relatively stable binding mode, 

possibly due to initial repositioning or 
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rearrangement within the binding pocket. 

Conversely, compound 15 exhibited a continuous 

increase in RMSD, reaching up to 8 Å by the 

conclusion of the 100 ns simulation, which 

illustrates that its interaction with the protein is 

unstable. 

 

 
Figure 9. The RMSD values of ligands at the active site of 20S proteasome during 100 ns MD 

simulation 

 

 
Figure 10. The RMSF values of five protein-ligand complexes 

 

Root mean square fluctuation (RMSF) is a pivotal 

parameter employed to assess the flexibility of 

individual residues in a protein-ligand complex 

during molecular dynamics (MD) simulations. 

Lower RMSF values indicate residues that are more 

rigid and stable, whereas higher RMSF values 

suggest increased flexibility or potential structural 

rearrangements [48]. The RMSF plot, presented in 

Figure 10, illustrates the fluctuation of each residue 

over the 100 ns simulation period.  

The majority of residues exhibit RMSF values 

below 4 Å, indicating that most of the protein 

remains structurally stable throughout the 

simulation. However, a few residues show 

significantly higher fluctuations. These peaks may 

correspond to loop regions, terminal ends, or 

flexible binding sites that contribute to the dynamic 

behaviour of the protein. 

The analysis reveals that among the five 

compounds that were examined, compound 1 

exhibits the lowest overall RMSF values, followed 

by compounds 2 and 11. This observation suggests 

that these complexes maintain a relatively stable 

protein-ligand interaction with minimal disruption 

to the protein's structural integrity. In contrast, 

compounds 15 and 22 exhibit higher RMSF values 

across multiple residues, reflecting greater 

structural flexibility. This increased fluctuation 

may indicate a less stable binding mode or a 

tendency for the ligand to induce conformational 

changes in the protein, which could potentially 

impact binding affinity and functional stability. 

The radius of gyration (Rg) is a measure of the 

spatial distribution of atoms concerning the centre 

of mass. It has emerged as a critical metric for 

assessing the compactness of proteins. Lower and 

more stable Rg values are indicative of well-folded 
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and structurally stable complexes, while significant 

fluctuations are suggestive of potential 

conformational changes or loss of structural 

integrity.  

The results indicate that compounds 1 and 2 exhibit 

the most stable Rg values, fluctuating consistently 

around 22–23 Å throughout the simulation (Figure 

11), suggesting that the protein-ligand complex 

maintains a compact structure. These results align 

with the findings from RMSD and RMSF, 

indicating that these ligands contribute to a more 

stable interaction within the binding pocket. In 

addition, compound 11 initially exhibited higher 

and more variable Rg values during the first 20 ns, 

suggesting an early conformational adjustment 

phase. However, after this initial fluctuation, the 

complex stabilized, displaying a pattern similar to 

compounds 1 and 2.  

 
Figure 11. The radius of gyration values in five protein-ligan complexes 

 

 
Figure 12. 2D view of the interactions of compounds 1 (A), 15 (B), 22 (C), 11 (D), and 2 (E) within 

the chymotrypsin-like (β5) active site of the 20S proteasome 
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This finding indicates that the ligand eventually 

adopts a more stable binding mode over time. 

Conversely, compounds 15 and 22 displayed 

greater fluctuations in Rg, reflecting a tendency 

toward structural instability. This observation is 

consistent with the higher RMSD and RMSF 

values, suggesting that these ligands may induce 

more substantial conformational changes in the 

protein or bind in a less stable manner.In order to 

gain deeper insights into the molecular interactions 

stabilizing the biflavonoid-proteasome complexes, 

an analysis of the interactions that occurred 

throughout the MD simulations was conducted. The 

2D interaction diagram presented in Figure 12 

illustrates the interactions that appeared with a 

frequency exceeding 30% of the total simulation 

frames. Interactions above this threshold are 

considered relatively stable, indicating their 

potential significance in maintaining ligand binding 

within the active site. 

The interaction diagram employs various dashed 

lines to denote distinct interaction types, blue 

dashed lines indicate hydrogen bonds, green dashed 

lines represent hydrophobic interactions, and purple 

dashed lines denote π-π stacking interactions. The 

thickness of these lines is proportional to the 

frequency of the interactions, with thicker lines 

signifying more persistent and stable interactions 

over the simulation period. This analysis 

enables a direct comparison between the molecular 

docking results and the MD-derived interaction 

patterns, providing a critical evaluation of whether 

the initially predicted docking interactions remain 

stable under dynamic conditions. Residues 

highlighted in red correspond to those that were 

also involved in key interactions observed during 

molecular docking, reinforcing their importance in 

ligand binding. 

In general, the MD simulations revealed a greater 

number of interactions than those initially observed 

in molecular docking. Notably, several significant 

interactions, including hydrogen bonds and π-π 

stacking interactions, were formed during MD but 

were not predicted in docking calculations. This 

underscores the importance of incorporating 

protein flexibility in evaluating binding stability. In 

contrast, certain hydrogen bonds initially identified 

in docking, particularly for compounds 15 (Figure 

8B) and 22 (Figure 8C), were absent in the MD 

interaction analysis, indicating that these 

interactions were not stable over time. This 

suggests that some hydrogen bonds predicted in 

docking might be transient rather than persistent, 

emphasizing the necessity of MD simulations in 

validating ligand stability. 

The present comparative analysis between docking 

and MD interactions provides crucial insights into 

the binding stability and adaptability of biflavonoid 

inhibitors within the proteasome active site. The 

findings reinforce the role of MD simulations in 

refining docking predictions and identifying key 

interactions essential for ligand stabilization, 

thereby contributing to a more comprehensive 

evaluation of potential proteasome inhibitors. 

Molecular Mechanics/Generalized Born Surface 

Area (MM/GBSA) is a widely used computational 

approach for estimating the binding free energy of 

protein-ligand complexes in molecular dynamics 

simulations. Unlike molecular docking, which 

provides a static representation of binding affinity, 

MM/GBSA accounts for the solvent effects and 

dynamic nature of ligand binding by averaging 

energy contributions over multiple simulation 

frames [49]. The binding free energy (∆Gbind) 

calculated using MM/GBSA is derived from the 

difference between the total energy of the complex 

and the sum of the energies of the individual protein 

and ligand components. A more negative ∆Gbind 

value indicates a stronger and more stable 

interaction. In addition to MM/GBSA, non-bonded 

interaction energy (∆Gnon-bond) provides further 

insights into the stability and strength of ligand 

binding. Non-bonded interaction energy is chiefly 

constituted of van der Waals and electrostatic 

forces, which influence the extent to which a ligand 

remains associated with its target throughout the 

simulation. While MM/GBSA evaluates the overall 

thermodynamic favorability of binding, non-

bonded interaction energy directly measures the 

physical interactions between the ligand and the 

protein. By analyzing both MM/GBSA binding free 

energy and interaction energy, we can better 

understand the relative stability and binding 

strength of the selected biflavonoid compounds 

within the proteasome active site. These results 

complement molecular docking scores and MD-

based stability analyses (RMSD, RMSF, and Rg), 

offering a comprehensive evaluation of ligand-

protein interactions. 
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The MM/GBSA binding free energy (∆Gbind) and 

non-bonded interaction energy (∆Gnon-bond) were 

evaluated for the five top-ranked compounds based 

on the predicted IC50 from the 3D-QSAR/SVM 

model (Table 5). The comparison between the 

ranking obtained from the MM/GBSA analysis and 

the initial IC50-based ranking indicates an overall 

similarity, with a notable exception for compound 

22 (Ochnaflavone). 

Compound 22, which ranked third in the 3D-

QSAR-based IC50 predictions, exhibited the most 

favourable binding free energy of -34.9873 

kcal/mol and the highest non-bonded interaction 

energy of -60.20 kcal/mol. This suggests that 22 

forms the strongest interaction with the proteasome 

active site among the tested compounds. However, 

despite its favourable energetics, previous 

discussions on MD-derived parameters, including 

RMSD, RMSF, and radius of gyration (Rg), 

indicate that the complex formed by 22 is relatively 

unstable. This discrepancy highlights that strong 

binding energy alone does not necessarily 

guarantee structural stability during MD 

simulations.

 
Table 5. The binding free energy (MM/GBSA) and non-bonded interaction energy of biflavonoid-proteasome complexes 

Biflavonoid Compounds 
Predicted IC50 of  

3D-QSAR model (µM) 

MM/GBSA  

∆Gbind (kcal/mol) 

Interaction Energy  

∆Gnon-bond (kcal/mol) 

7-O-methylagathisflavone (1) 1,7 4 -31.4897 -58.32 

7-O-methylcupressuflavone (15) 2,083 -27.4875 -45.87 

 chnaflavon (22) 2,207 -34.9873 - 0.20 

7′′-O-methylamentoflavone (11) 2,437 -24.8338 -54.00 

7′′-O-methylagathisflavone (2) 2,948 -20.90 1 -4 .32 

Interestingly, structural analysis of these 

biflavonoids suggests a possible explanation for the 

unique behaviour of 22. Unlike the other four 

compounds, which possess a direct C-C linkage 

between their flavonoid monomers, 22 is 

characterized by a C-O-C ether linkage. This 

difference in connectivity may contribute to greater 

conformational flexibility, potentially reducing the 

overall stability of its complex with the proteasome. 

Additionally, among the five candidate compounds, 

only 22 has hydroxyl (−OH) groups as its sole 

substituents, whereas the others all contain at least 

one methoxy (− C ₃) group. The presence of 

multiple hydroxyl groups could enhance hydrogen 

bonding interactions but might also introduce 

additional solvent interactions that influence the 

ligand’s dynamic stability within the binding 

pocket. 

Overall, while 22 exhibits the most favourable 

binding energetics, its dynamic instability observed 

in MD simulations suggests that structural factors 

such as linkage type and substituent effects play a 

crucial role in modulating ligand behaviour. These 

findings underscore the importance of integrating 

both energetic and dynamic stability assessments 

when evaluating potential proteasome inhibitors. 

 

 

4. Conclusions 

The 3D-QSAR model was successfully constructed 

using 62 compounds as the data set, with the PLS 

model indicating that electrostatic factors play a 

dominant role in the proteasome inhibitory activity 

of biflavonoid compounds. Meanwhile, the 

machine learning-based 3D-QSAR model 

identified the SVM model as the most predictive, 

allowing for the selection of five active biflavonoid 

compounds from the genus Araucaria as potential 

proteasome inhibitors: 7-O-methylagathisflavone 

(1), 7-O-methylcupressuflavone (15), 

Ochnaflavone (22), 7′′-O-methylamentoflavone 

(11), 7′′-O-methylagathisflavone (2). These 

compounds exhibited higher numbers of hydroxyl 

substituents, further confirming the PLS model's 

findings that electrostatic interactions, particularly 

hydrogen bond donors, significantly contribute to 

proteasome inhibition. To further evaluate their 

binding interactions and stability, molecular 

docking and molecular dynamics (MD) simulations 

were conducted. The molecular docking results 

indicated that all five compounds exhibited strong 

binding affinities with the chymotrypsin-like (β5) 

active site of the 20S proteasome, with 

Ochnaflavone (22) demonstrating the highest 

docking score. However, molecular dynamics 

simulations provided a more comprehensive 

assessment of the stability of ligand-protein 
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complexes. The results demonstrated that 

compounds 1, 2, and 11 formed stable complexes 

with the proteasome active site, as evidenced by 

their low RMSD fluctuations, minimal RMSF 

values, and stable radius of gyration (Rg) over 100 

ns of MD simulation. Among these, 1 demonstrated 

the most robust stability. In contrast, 15 and 22 

exhibited increased conformational flexibility, 

indicating that their interactions with the 

proteasome were less stable. 

Furthermore, MM/GBSA binding free energy 

calculations validated the ranking observed in 3D-

QSAR predictions, with 1 and 22 demonstrating the 

strongest binding free energies. However, the 

dynamic instability of 22, as observed in MD 

simulations, suggests that its strong initial binding 

may not translate into sustained inhibition under 

physiological conditions. A subsequent analysis of 

protein-ligand interactions during docking and 

molecular dynamics simulations revealed that all 

five compounds consistently interacted with key 

residues within the β5 active site, primarily through 

hydrophobic interactions and hydrogen bonds. The 

2D interaction diagrams indicated that some 

hydrogen bonds observed in docking, particularly 

in compounds 15 and 22, were not retained in MD 

simulations, suggesting that these interactions were 

transient rather than stable. Conversely, several 

novel interactions emerged during MD, including 

additional hydrogen bonds and π-π stacking 

interactions, underscoring the significance of 

protein flexibility in ligand binding. These findings 

underscore the necessity of MD simulations for 

validating the stability of interactions over time 

while acknowledging the value of docking in 

providing preliminary insights into potential 

interactions. 
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