

Article Info

Journal of Aviation

https://dergipark.org.tr/en/pub/jav

e-ISSN 2587-1676

Evaluating Non-Technical Skills of Airline Pilot Candidates Using an Analytic Hierarchy Process (AHP) Approach

Seda Çeken^{1*}, Aslı Beyhan Acar²

^{1*}Istanbul University, Aviation Psychology, Istanbul, Türkiye (sedaceken@istanbul.edu.tr) ²Istanbul University, Aviation Psychology, Istanbul, Türkiye (aslicar@istanbul.edu.tr)

Abstract

Received: 12 December 2024
Revised: 12 January 2025
Published Online: 25 February 2025
Keywords:
Aviation
Pilot selection
Crew resource management
Non-technical skills
Human factors
Corresponding Author: Seda Çeken
RESEARCH ARTICLE

https://doi.org/10.30518/jav.1600583

1. Introduction

Commercial aviation is one of the world's largest industries, and ensuring safe operations requires professionalism and coordination among a wide range of professionals, including pilots, who are a critical human factor. Research shows that pilot error accounts for a significant portion of these accidents (IATA, 2021; Kaya & Ates, 2023; Lenné et al., 2008; Li et al., 2001; Oster et al., 2010; Wiegmann et al., 2005). Over the last 100 years, numerous studies have been conducted on pilot selection. With a growing need for pilots (Airbus, 2023; Boeing, 2023; CAE, 2023), the emphasis on selecting pilots with both technical and nontechnical skills (NOTECHS) has increased. Aviation regulators, responsible for safety oversight worldwide, now require airlines to focus on selecting pilots who are a good 'fit' for the airline (Bor et al., 2020) and emphasize the importance of competencies for aviation professionals (Tuncal & Çınar, 2024). Pilots are chosen not only for technical flight skills but also for non-technical skills (NOTECHS), such as situational awareness, decision-making, leadership, teamwork, and stress management. Recent studies examining the relationship between pilot selection and non-technical competencies (Goeters et al., 2004; Hedge et al., 2000; Hörmann et al., 2022; Ruff-Stahl et al., 2016) highlight the importance of these skills. The European Association of Aviation Psychology (EAAP) stated in its 2022 "Selection in Aviation" report that, while pilot

This study evaluates the non-technical skills (NOTECHS) of airline pilot candidates using the Analytical Hierarchy Process (AHP) approach. It aims to determine the importance and weighting of these skills in pilot selection processes. Nine non-technical competencies used in pilot selection within a Turkish aviation company were identified and weighted based on their importance across various flight stages (preflight, take-off, cruise, approach/landing, taxi) using the AHP technique. Scenarios based on real flight operations were evaluated by experienced flight examiners. The analysis revealed that situation awareness, problem-solving, and decision-making were the most critical non-technical skills across all phases of flight. Leadership and communication also played significant roles, while planning and professional development were less critical. As a result of the analysis, theoretical and practical suggestions in the field of aviation were presented.

selection criteria align with IATA's qualifications, the measurement and weighting of these competencies vary. Institutions should clarify how they weigh these measures in selection tools (Eaglestone et al., 2022). This proposition is in line with the requirement that each qualification criterion, from the beginner pilot to the licensed pilot, be weighted, as stated in the "Pilot Aptitude Testing Guidance Material and Best Practices" report published by IATA in 2019 (International Air Transport Association, 2019). However, IATA does not provide information regarding these measurement and weighting details. A review of the literature reveals that no study has been found to determine the weighting and importance level based on non-technical skills (NOTECHS) in the direct pilot selection process. The present study aims to determine the importance of non-technical skills that affect the human factor in pilot selection processes and how these skills should be weighted. Therefore, the competency dimensions actively used in pilot selection processes in an aviation company and included in the scope of the research were weighted with the Analytical Hierarchy Process (AHP).

2. Literature Review

Pilot selection has its roots in early 20th-century military aviation, shaped by the need for skilled pilots in warfare. Modern civil aviation selection processes begin with training and licensing, followed by tests in knowledge, psychomotor

skills, group evaluations, simulator qualifications, and interviews (Zinn et al., 2019). Crew Resource Management (CRM) supports safe behaviors and now covers non-technical skills like situational awareness, decision-making, and fatigue management (IATA, 2023). CRM training expanded from its original scope to include broader human factors (Civil Aviation Authority, 2016).

Non-technical skills (NOTECHs), vital for professions requiring technical expertise, refer to cognitive and social abilities unrelated to aircraft control. Introduced by the European Joint Aviation Association (JAA), NOTECHs focus on areas like cooperation, leadership, and decision-making (Flin et al., 2008). These competencies, evaluated through the Advanced Qualifications Program (AQP) by the Federal Aviation Administration (FAA), are mandatory in the UK (Flin, 2010). ICAO defines eight core competencies, including communication, problem-solving, leadership, and workload management (Mansikka et al., 2017).

Studies conducted by Yazgan and Ustun (2011) and Yazgan and Erol (2016) classified pilot selection criteria into three main groups: technical, non-technical, and workoriented. These studies determined that the most important criteria were intelligence, decision-making and problemsolving ability, and psychomotor skills, using the Analytical Hierarchy Process (AHP) technique. In addition, Oktal and Onrat (2020) and Mızrak (2023) identified flight skills, personality traits, and English language proficiency as the most critical criteria by weighting the pilot competencies defined by IATA and the evaluation criteria in the recruitment processes of civil aviation pilots. Similarly, Şimşek et al. (2022) emphasized that safe flight operations in the aviation sector, characterized by strict regulations and intense competition, depend on employing qualified human resources who can adapt to technology. Their research, which utilized the AHP method, focused on identifying the most suitable candidates in pilot recruitment processes by consulting senior pilots from the world's top 10 airlines. Based on the recommendations of experienced captains with managerial roles, 17 criteria (3 upper and 14 sub-criteria) actively used in the sector were weighted. As a result of their analysis, "technical," "non-technical," and "occupational criteria" were ranked as the upper criteria according to their importance based on local weights. In the context of the relevant literature, the following methodological paths were designed in this research.

3. Materials and Methods

The research aims to answer the following questions:

RQ1: What are the non-technical skills used in pilot selection processes, and how are these skills weighted according to flight phases?

RQ2: How do the weights of non-technical skills used in pilot selection processes change during flight phases such as pre-flight, take-off, cruise, approach and landing, and taxi?

RQ3: What non-technical competencies are considered most important in pilot selection processes?

There are two studies in the research. In the first study, nine non-technical competencies (*situation awareness, problem solving and decision making, teamwork, leadership,* communication, controlling and managing emotions, planning, sense of duty, professional development) used in pilot selection processes were identified and defined (Table 1). Competency dimensions utilized in this study were derived from the competency framework outlined in the International Air Transport Association's (IATA) (2019) document, Competency Assessment and Evaluation for Pilots, Instructors, and Evaluators. These competencies have been adapted and structured into a set comprising nine dimensions by a collaborative team of examiner pilots and academics currently working at an aviation company operating in Türkiye. This competency set is actively employed during the selection processes for first officer candidates within the company's assessment center framework.

Non-technical	Description
Criteria	
Situation Awareness	The perception of the elements in the environment within a volume of time and space, the comprehension of their meaning and a projection of their status in the near future (Endsley, 1988).
Problem Solving and Decision Making	The personnel working in high-risk sectors, under high-stress conditions and pressures originating from the need to make quick decisions in a very short time (Ceschi et al., 2019).
Teamwork	A dynamic process involving two or more professionals with complementary background and skills contributing in the most effective way to the overall tasks and goals of the team (Civil Aviation Safety Authority, 2019).
Leadership	In the context of influence, and explains how the leader should recognise the desires of the crew, set an example and use persuasion to create an understanding of goals that need to be met (ICAO, 2013)
Communication	The exchange of information, feedback or response, ideas and feelings (Flin et al., 2008).
Controlling and Managing Emotions	Provide a framework for both individual and organisational involvement in minimising stressful events and reactions (Flin et al., 2008).
Planning	Includes the processes of prioritization, resource management, alternative creation, time management, and plan control (Gontar & Hoermann, 2016).
Sense of Duty	It is the responsibility to perform one's duties effectively and ethically, which includes competencies such as business mastery, representativeness, self-discipline, compliance with rules and procedures, error awareness, and honesty (ICAO, 2010).
Professional Development	The process of continuously improving one's knowledge and skills through competencies such as resolving deficiencies/acquiring knowledge, motivation to learn, keeping one's knowledge up to date, being open to

feedback, and learning from experiences.

Table 1. Non-technical	Criterias and Explanations
	D • 4

To determine the weight of these competencies, the flight operation was divided into five basic flight phases. Scenarios were created for each flight phase based on real flight operations together with 5 Instructor Pilots. The criteria for selecting pilots during the scenario phase included having more than 10,000 hours of flight experience, being an Instructor, and having served in the assessment center of the relevant aviation company. These pilots did not participate in the weighting process. In the Evidence-Based Training document published by the International Civil Aviation Organization (ICAO) in 2013, it is stated that developing, training, and evaluating competencies using operational scenarios (ICAO, 2013). Additionally, Helmreich et al. (1999) suggested that rating flight crew behavior by flight phase. Table 2 lists the flight phases assigned for this research and the scenarios specific to each flight phase. Three sample scenarios are provided for each flight phase in the survey.

Table 2. Non-technical	Criterias an	d Expl	lanations
------------------------	--------------	--------	-----------

Phases	Sample Scenarios
Pre-flight	The pressurization system, which should have remained in automatic mode, was left in manual mode due to an item that was missed in the checklist during ground operation checks. Shortly after takeoff, everyone on board fainted.
Takeoff &	The landing gear was forgotten to be retracted
Climb	after takeoff. (<i>There is no after-take-off checklist in Airbus procedures.</i>)
Cruise	Suddenly, while flying over the ocean during a night flight, the fire alarms went off, and the flight crew could not identify the source of this warning for a while.
Approach and Landing	During a training flight, a first officer candidate, panicking and saying 'I can't land', let go of the controls. The captain pilot then safely landed the aircraft at the last moment.
Taxi-in	By following ATC (air traffic control) instructions to enter a taxiway not suitable for the wingspan, the aircraft veered off the taxiway and struck a tower in the grass area, resulting in a broken wing.

In the second study, sample scenarios were presented to 10 Examiner Pilots employed in the relevant aviation company via an online questionnaire and face-to-face interviews, and nine non-technical competencies for each flight phase were weighted using the Analytical Hierarchy Process technique.

Table 3. Demograph	ic Characteristics
--------------------	--------------------

The research model created is shown in the figure below (Figure 1):

Figure 1. Research Model

Flight Examiners, as defined by the General Directorate of Civil Aviation (2024), are pilots authorized to carry out the tests and checks required for the issuance, revalidation, or renewal of any pilot license or rating. In addition to their administrative and technical duties, these experts, all of whom are instructor pilots, are evaluated to have a high level of competency in terms of pilot employment. Therefore, the sample group for this study consisted of Examiner Pilots. The data obtained was analyzed using the Analytical Hierarchy Process (AHP) analysis technique using Microsoft Excel 2016. During the analyses, we collaborated with a faculty member from the Numerical Methods Department, whose area of expertise is Multiple Decision Making Methods. During the consistency analysis, a participant who could not obtain evaluation findings in line with the consistency rate was removed from the sample group based on expert opinion.

4. Results

The demographic characteristics of the participants are presented in the Table 3. According to the demographic information in the table, all participants are male with an average age of 49.3. The participants' average flight hours were found to be 13200 hours, and their average flight seniority as examiner pilots was found to be 7 years.

Р	Gender	Education	Age	Status	TFH	TFY	YSEP
P1	Male	Air Force Academy	52	Examiner Pilot	13000	20+	7
P2	Male	Masters Degree	56	Examiner Pilot	18000	20+	15 +
P3	Male	Bachelor's Degree	42	Examiner Pilot	10000	11-15	2
P4	Male	Air Force Academy	50	Examiner Pilot	15000	20+	8
P5	Male	Masters Degree	50	Examiner Pilot	15800	20+	4
P6	Male	Bachelor's Degree	55	Examiner Pilot	13000	20+	8
P7	Male	Air Force Academy	51	Examiner Pilot	9600	20+	4
P8	Male	Masters Degree	45	Examiner Pilot	13000	16-20	6
P9	Male	PhD	43	Examiner Pilot	12000	20+	10

 \mathbf{P} = Participants; **TFH** = Total Flight Hours; **TFY** = Total Flight Years; **YSEP** = Years of Seniority as Examiner Pilot

Weighting operations using the Analytic Hierarchy Process (AHP) according to upper and lower criteria were conducted through the following steps. To determine the local and global weights of each sub-criterion, (1) pair-wise comparison matrices were created, and (2) comparison matrices were normalized. Following these procedures, the priority vectors of the criteria in the hierarchical structure were determined, and their consistency was checked. This process was repeated for each flight phase.

4.1. Pre-flight Phase

The normalization process for the pre-flight phase criteria is shown in the table. Normalization was performed by dividing each element of the pair-wise comparison matrix by the total value of the column. The priority vector of each criterion was calculated by taking the average of the elements in each row of the normalized matrix (Table 4).

<i>und</i> <i>und und <i>und und und und</i></i>

	C1	C2	C3	C4	C5	C6	C7	C8	С9	PV
C1	0.056	0.076	0.055	0.055	0.089	0.06	0.053	0.025	0.057	0.058458
C2	0.104	0.142	0.191	0.158	0.158	0.159	0.172	0.173	0.182	0.160036
C3	0.154	0.112	0.151	0.217	0.184	0.115	0.139	0.123	0.143	0.148589
C4	0.164	0.143	0.111	0.159	0.158	0.215	0.168	0.185	0.173	0.164054
C5	0.041	0.059	0.054	0.066	0.065	0.077	0.083	0.088	0.052	0.064948
C6	0.053	0.05	0.075	0.042	0.048	0.057	0.06	0.079	0.047	0.056821
C7	0.179	0.139	0.184	0.161	0.134	0.159	0.169	0.189	0.162	0.163903
C8	0.161	0.059	0.088	0.062	0.053	0.051	0.064	0.072	0.096	0.078398
C9	0.087	0.221	0.092	0.081	0.11	0.106	0.092	0.066	0.088	0.104792

Criteria: C1: Sense of Duty, C2: Situation Awareness, C3: Problem Solving and Decision Making, C4: Teamwork, C5: Leadership, C6: Professional Development, C7: Communication, C8: Controlling and Managing Emotions, C9: Planning; PV: Priority Vector

In the table below, the pre-flight phase criteria are shown along with the calculated consistency index (Table 5). To ensure an acceptable consistency ratio (CR), the CR value must be 0.1 or less than 0.1.

Table 5. Consistency Ratio for Pre-flight Phase

Landa	Consistency	Random	Consistency
Max	Index (CI)	Index (RI)	Ratio (CR)
9.43295	0.054118614	1.45	0.037323182 < 0.10

While calculating the overall weight, the priority vector of the main criterion to which the sub-criterion belongs is multiplied by the sub-criterion's own (local) priority vector. The table below lists the general weights and order of importance for the pre-flight phase (Table 6).

As a result of the calculations, the most important criteria in the pre-flight phase are leadership (0.03281), sense of duty (0.03278), problem solving and decision making (0.03200), respectively. Communication has the least importance at this stage with 0.01136.

Table 6.	The	Order	of	Importance	of	the	Pre-flight Phase	
Factors								

Pre-flight Phase	Leadership	0.03281
	Sense of Duty	0.03278
	Problem Solving and Decision Making	0.03200
	Teamwork	0.02971
	Planning	0.02095
	Controlling and Managing Emotions	0.01567
	Professional Development	0.01298
	Situation Awareness	0.01169
	Communication	0.01136

4.2. Take-off/Climb Phase

The priority vector of each criterion was calculated by taking the average of the elements in each row of the normalized matrix (Table 7).

Fable 7. Normalized Matrix and Prior	ty Vector Values	for the Takeoff/Climb Phase
---	------------------	-----------------------------

I upic /	• I tormanz	ou munin	und i morn	<i>j</i> , cetor ,	ulues for th	lie Tukeon	Cinno i ne				
	C1	C2	C3	C4	C5	C6	C7	C8	С9	PV	
C1	0.054	0.054	0.033	0.033	0.051	0.04	0.08	0.083	0.105	0.059143	
C2	0.201	0.201	0.328	0.228	0.225	0.134	0.199	0.197	0.189	0.211268	
C3	0.182	0.069	0.112	0.092	0.198	0.17	0.122	0.099	0.16	0.133746	
C4	0.181	0.096	0.133	0.109	0.068	0.115	0.098	0.128	0.105	0.11466	
C5	0.096	0.08	0.051	0.144	0.089	0.062	0.105	0.11	0.093	0.092126	
C6	0.076	0.083	0.036	0.053	0.079	0.055	0.061	0.035	0.035	0.057076	
C7	0.103	0.153	0.139	0.168	0.129	0.137	0.151	0.15	0.148	0.141991	
C8	0.061	0.095	0.105	0.079	0.075	0.149	0.094	0.093	0.077	0.091882	
С9	0.046	0.17	0.062	0.093	0.086	0.139	0.091	0.107	0.089	0.098108	

Criteria: C1: Sense of Duty, C2: Situation Awareness, C3: Problem Solving and Decision Making, C4: Teamwork, C5: Leadership, C6: Professional Development, C7: Communication, C8: Controlling and Managing Emotions, C9: Planning; PV: Priority Vector

In the table below, the take-off/climb phase criteria are shown along with the calculated consistency index (Table 8).

Table 8. Consistency Ratio for Takeoff/Climb Pha
--

Landa	Consistency	Random	Consistency
Max	Index (CI)	Index (RI)	Ratio (CR)
9.46203	0.057754588	1.45	0.039831 < 0.10

The table below lists the general weights and order of importance for the take-off/climb phase (Table 9).

In the calculations made in the take-off/climb phase, problem solving and decision making (0.04225) and sense of duty (0.02839) are the most important criteria. Situation awareness 0.01182 and communication 0.01141 have the least importance at this stage.

 Table 9. The Order of Importance of the Take-off/Climb

 Phase Factors

Take-off/Climb	Problem Solving and	0.04225
Phase	Decision Making	
	Sense of Duty	0.02839
	Teamwork	0.02674
	Leadership	0.02293
	Planning	0.01962
	Professional	0.01842
	Development	0.01012
	Controlling and	0.01937
	Managing Emotions	0.01057
	Situation Awareness	0.01182
	Communication	0.01141

4.3. Cruise Phase

The priority vector of each criterion was calculated by taking the average of the elements in each row of the normalized matrix (Table 10).

Table 10. Normalized Matrix and Priority Vector Values for the Cruise Phase

	C1	C2	С3	C4	C5	C6	C7	C8	С9	PV
C1	0.064	0.068	0.033	0.069	0.072	0.049	0.068	0.094	0.072	0.065467
C2	0.217	0.227	0.45	0.363	0.218	0.21	0.217	0.236	0.195	0.259303
C3	0.245	0.064	0.126	0.162	0.222	0.153	0.165	0.165	0.14	0.160237
C4	0.08	0.053	0.067	0.085	0.104	0.138	0.102	0.127	0.124	0.097811
C5	0.06	0.07	0.038	0.055	0.067	0.092	0.071	0.072	0.086	0.067989
C6	0.064	0.053	0.041	0.03	0.036	0.049	0.047	0.051	0.05	0.046915
C7	0.157	0.175	0.128	0.139	0.158	0.173	0.167	0.137	0.154	0.154147
C8	0.049	0.069	0.055	0.048	0.067	0.068	0.087	0.072	0.11	0.069415
С9	0.063	0.221	0.063	0.048	0.055	0.068	0.076	0.046	0.07	0.078716

Criteria: C1: Sense of Duty, C2: Situation Awareness, C3: Problem Solving and Decision Making, C4: Teamwork, C5: Leadership, C6: Professional Development, C7: Communication, C8: Controlling and Managing Emotions, C9: Planning; PV: Priority Vector

In the Table 11, cruise phase criteria are shown along with the calculated consistency index.

Table 11. Consistency Ratio for Cruise Phase

Landa	Consistency	Random	Consistency
Max	Index (CI)	Index (RI)	Ratio (CR)
9.52060	0.065075962	1.45	0.044879974 < 0.10

The table below lists the general weights and order of importance for the cruise phase (Table 12).

In the calculations made for the cruise phase, situation awareness 0.05186 is identified as the most important criterion. Professional Development has the least importance rating at this stage, with a value of 0.00938.

Table 12. The Order of Importance of the Cruise Phase Factors

Cruise Phase	Situation Awareness	0.05186	
	Problem Solving and	0.03204	
	Decision Making		
	Communication	0.03082	
	Teamwork	0.01956	
	Planning	0.01574	
	Controlling and	0.01388	
	Managing Emotions		
	Leadership	0.01359	
	Sense of Duty	0.01309	
	Professional	0.05186	
	Development		

4.4. Approach/Landing Phase

The priority vector of each criterion was calculated by taking the average of the elements in each row of the normalized matrix (Table 13).

	C1	C2	C3	C4	C5	C6	C7	C8	С9	PV
C1	0.052	0.049	0.031	0.038	0.047	0.101	0.065	0.072	0.058	0.056874
C2	0.262	0.248	0.384	0.337	0.309	0.214	0.348	0.239	0.253	0.288149
C3	0.253	0.096	0.149	0.159	0.212	0.102	0.165	0.127	0.215	0.164237
C4	0.131	0.07	0.089	0.095	0.112	0.131	0.068	0.137	0.101	0.103672
C5	0.07	0.051	0.044	0.053	0.063	0.071	0.068	0.086	0.084	0.065747
C6	0.026	0.059	0.075	0.037	0.045	0.051	0.052	0.027	0.036	0.045528
C7	0.105	0.093	0.117	0.181	0.121	0.129	0.131	0.182	0.137	0.132924
C8	0.042	0.061	0.068	0.04	0.043	0.11	0.042	0.058	0.052	0.057268
C9	0.057	0.273	0.044	0.06	0.048	0.091	0.061	0.072	0.064	0.085602

Criteria: C1: Sense of Duty, C2: Situation Awareness, C3: Problem Solving and Decision Making, C4: Teamwork, C5: Leadership, C6: Professional Development, C7: Communication, C8: Controlling and Managing Emotions, C9: Planning; PV: Priority Vector

In the table below, approach/landing phase criteria are shown along with the calculated consistency index (Table 14).

	a .	D (• •	1 7	11 101
Table 14.	Consistency	Ratio f	tor Approa	ach/Lano	ding Phase

Landa	Consistency	Random	Consistency
Max	Index (CI)	Index (RI)	Ratio (CR)
9.69169	0.086461943	1.45	

The table below lists the general weights and order of importance for the approach/landing phase (Table 15).

In the weighting calculations for the approach/landing phase, situation awareness (0.06228) is the most important criterion. This importance is followed by problem solving and decision making (0.02896) and teamwork (0.01993). Professional Development has the least importance rating at this stage, with a value of 0.00899

9 (1): 207-215 (2025)

Table 15. The Order of Importance of the Approach/Landing

 Phase Factors

Approach/Landing Phase	Situation Awareness	0.06228
	Communication	0.02966
	Problem Solving and Decision Making	0.02896
	Teamwork	0.01993
	Planning	0.01594
	Leadership	0.01322
	Sense of Duty	0.01069
	Controlling and Managing Emotions	0.01029
	Communication	0.01141

4.5. Taxi-in Phase

The priority vector of each criterion was calculated by taking the average of the elements in each row of the normalized matrix (Table 16).

Table 16. Normalized Matrix and Priority Vector Values for the Taxi-in Phase

	C1	C2	C3	C4	C5	C6	C7	C8	С9	PV
C1	0.054	0.054	0.033	0.033	0.051	0.04	0.08	0.083	0.105	0.059143
C2	0.201	0.201	0.328	0.228	0.225	0.134	0.199	0.197	0.189	0.211268
C3	0.182	0.069	0.112	0.092	0.198	0.17	0.122	0.099	0.16	0.133746
C4	0.181	0.096	0.133	0.109	0.068	0.115	0.098	0.128	0.105	0.11466
C5	0.096	0.08	0.051	0.144	0.089	0.062	0.105	0.11	0.093	0.092126
C6	0.076	0.083	0.036	0.053	0.079	0.055	0.061	0.035	0.035	0.057076
C7	0.103	0.153	0.139	0.168	0.129	0.137	0.151	0.15	0.148	0.141991
C8	0.061	0.095	0.105	0.079	0.075	0.149	0.094	0.093	0.077	0.091882
C9	0.046	0.17	0.062	0.093	0.086	0.139	0.091	0.107	0.089	0.098108

Criteria: C1: Sense of Duty, C2: Situation Awareness, C3: Problem Solving and Decision Making, C4: Teamwork, C5: Leadership, C6: Professional Development, C7: Communication, C8: Controlling and Managing Emotions, C9: Planning; PV: Priority Vector

In the table below, taxi-in phase criteria are shown along with the calculated consistency index (Table 17).

Table 17.	Consistency	Ratio for	Taxi-in	Phase
-----------	-------------	-----------	---------	-------

Landa	Consistency	Random	Consistency
Max	Index (CI)	Index (RI)	Ratio (CR)
9.46203	0.057754588	1.45	0.039831 < 0.10

The table below lists the general weights and order of importance for the approach/landing phase (Table 18).

 Table 18. The Order of Importance of the Taxi-in Phase
 Factors

uctors		
Taxi-in Phase	Situation Awareness	0.05763
	Problem Solving and	0.03284
	Decision Making	
	Communication	0.02658
	Teamwork	0.02073
	Planning	0.01712
	Leadership	0.01314
	Controlling and	0.01145
	Managing Emotions	
	Sense of Duty	0.01137
	Professional	0.00910
	Development	

In the weighting calculations for taxi-in phase, situation awareness (0.05763) is identified as the most important criterion. This is followed by problem solving and decision making 0.03284. Professional Development (0.00899) and sense of duty (0.01137) have the least importance at this stage.

Finally, within the scope of the third research question, examiners scored non-technical skills with the AHP technique according to their importance in the pilot selection process, regardless of the flight phases. The global weights of the data were calculated, and the importance levels are listed below (Table 19). In the weighting calculations, situation awareness 0.13365 is identified as the most important criterion among all criteria, including non-technical skills. Planning has the least important level, with an overall severity level of 0.10206.

Table 19. The Order of Importance of the Non-technical Criteria for Pilot Selection Process

Interna for Fliot Selection Flocess			
Criteria	Situation Awareness	0.13365	
	Problem Solving and	0.11497	
	Decision Making		
	Sense of Duty	0.11240	
	Communication	0.11223	
	Professional	0.11095	
	Development		
	Controlling and	0.10907	
	Managing Emotions		
	Leadership	0.10233	
	Teamwork	0.10231	
	Planning	0.10206	

5. Discussion

Weightings were determined using the Analytical Hierarchy Method (AHP) within the context of sample scenarios presented to 10 Examiner Pilots working in human resources, personnel selection, and pilot licensing duties in an aviation company. As a result of consistency ratio calculations, the importance levels of non-technical criteria for each flight phase were determined based on the general and local weights obtained by considering the scoring scores of nine participants. Situation awareness competency, which is predominant in three of the evaluated phases and in the overall weighting, is recognized as one of the most critical and essential skills for flight missions and flight crews. This finding aligns with the finding that situation awareness is the most critical skill during the approach, landing, and taxi phases (Shook et al., 2000). When examining general aviation accidents, the primary causes are largely attributed to the loss of situation awareness (Hunter, 1995; National Transportation Safety Board, 1989). This is particularly evident in the pre-flight phase, where gathering information and planning related to the flight it conditions (such as weather, air traffic control, airport location) are crucial. It is assumed that improving these evaluation behaviors (Prince and Salas, 1993) will enhance overall safety. Situation awareness, recognized as a critical competency in pilot selection processes (Helmreich and Foushee, 2019; Goeters et al., 2004; Gontar and Hoermann, 2014; Ruff-Stahl et al., 2016), directly impacts flight operation efficiency and performance today. Problem-solving and decision-making skill, which rank as the second most important in the weightings, represent a systematic approach to the cognitive process by which pilots select the best course of action in response to a given set of situations. In-flight decision-making was a contributing factor in 10% of all accidents (62) between 2012 and 2021 (International Air Transport Association, 2020). In addition to these two competencies, communication skills, which are highly ranked and considered fundamental for pilots by authorities, can also lead to a loss of situational awareness among team members and harm teamwork, as 60-70% of aviation accidents are attributed to communication failures (Federal Aviation Administration, 2004; International Air Transport Association, 2020). The Sully Accident, which is prominently discussed in the literature and based on decision-making skills and communication skills, serves as a prime example of this. In this incident, the pilots had to make a forced landing in the Hudson River after both engines failed. The effective application of CRM and efficient communication between cockpit-cockpit and cockpit-air traffic control (ATC) resulted in a safe landing with no fatalities (National Transportation Safety Board, 2010). Research findings (Salas et al., 2008; Sexton et al., 2000) in the literature indicate that teamwork and collaboration, which are other prominent competencies, are associated with the performance of pilots. Airline pilots are trained in high levels of collaboration and team building. (Goeters, 2004). The reason for this emphasis is that effective intervention strategies to prevent conflicts are closely related to teamwork. Overall, research conducted by Ruff-Stahl et al. (2016) shows that it is possible to score entry-level student pilots on non-technical skills (NOTECHS), which was initially designed as a renewal assessment tool for trained airline pilots.

6. Conclusion

NOTECHS method provides clear and individually discernible results for each candidate, which can serve as an assessment of the individual's CRM ability. The clarity and transparency of the results regarding CRM capability make NOTECHS an easily understandable tool, even for nonpsychologists. Therefore, this framework offers great usability to Human Resources personnel and airline pilots in the selection of their future colleagues. As a result of this research, a new model for personnel selection processes has been proposed for the aviation industry, one of the most risky and competitive sectors. This proposed model can be used in the pilot candidate selection processes of an aviation company operating in the aviation company and is also considered an important reference for flight schools and airline company managers. Furthermore, the model has the potential to be effectively utilized during Crew Resource Management (CRM) interview stages, providing a structured framework for assessing non-technical skills critical to aviation safety and operational efficiency.

7. Limitations and Future Directions for Research and Practice

This study evaluated the effectiveness of the Analytical Hierarchy Process (AHP) method in the selection process of pilot candidates. However, the study was limited to the pilot examiners in the assessment center of a specific airline company, which restricts the generalizability of the results. Future research should be conducted across different airlines and cultural contexts to enhance generalizability and should utilize more objective data collection methods such as observation and experimentation to mitigate participant bias. Given the AHP method relies on subjective judgments, combining it with other decision-making methods can reduce its limitations. Future studies should focus on evaluating both technical and non-technical skills in pilot selection processes and on assessing the long-term performance of selected candidates to compare the effectiveness of the selection processes. Research on the use of simulation technologies and artificial intelligence in pilot selection processes will help discover innovative and effective methods. Finally, investigating the effects of different cultural and psychological factors on the performance of pilot candidates will help optimize selection processes with cultural sensitivity. Future with these limitations research conducted and recommendations will contribute to a more scientific and effective selection process for airline pilot candidates.

Ethical approval

The studies involving human participants were reviewed and approved by the Istanbul University Research Ethics Committee (IUREC 356/2022). The participants provided their written informed consent to participate in this study.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Acknowledgement

This paper was derived from Seda Ceken's doctoral research titled "Analytic Hierarchy Process-Based Selection Method for Airline Pilot Candidates: A Focus on Non-Technical Skills (NOTECHS)" conducted at Istanbul University, Business School, Department of Organizational Behavior. The authors gratefully acknowledge the invaluable contributions of Turkish Airlines Company Assessment Center throughout the doctoral research process.

References

- Airbus (2023). Airbus Global Services Forecast 2023 2042. Airbus.https://aircraft.airbus.com/sites/g/files/jlcbta126/ files/202311/airbus_global_services_forecast_2023_-_2042_i_press_briefing_gsf_nov_29th_0.pdf
- Boeing (2023). Pilot and Technician Outlook 2023-2042. Boeing.https://www.boeing.com/content/dam/boeing/bo eingdotcom/market/assets/downloads/2023-pto.pdf
- Bor, R., Eriksen, C., Hubbard, T., and King, R. (2020). Pilot selection: Psychological principles and practice (1st ed.). CRC Press.
- CAE (2023). CAE Aviation Talent Forecast 2023. CAE. https://www.cae.com/aviation-talent-forecast-2023/en/pilot.html
- Civil Aviation Authority (2016). Flight-crew human factors handbook. Civil Aviation Authority. https://skybrary.aero/sites/default/files/bookshelf/3199. pdf
- Eaglestone, J., Hörmann, H.-J., Stadler, K., and Wium, J. (2022). Selection in aviation: A European Association for Aviation Psychology report. European Association for Aviation Psychology. https://www.eaap.net/get/files/10022.pdf
- Federal Aviation Administration (FAA). (2004). Crew resource management training. U.S. Department of Transportation Advisory Circular. Retrieved from https://www.faa.gov/documentlibrary/media/advisory_c ircular/ac120-51e.pdf
- Flin, R. (2010). CRM (Non-Technical) skills Applications for and beyond the flight deck. In B. G. Kanki, R. L. Helmreich, & J. Anca (Eds.), Crew resource management (pp. 181-202). Academic Press.
- Flin, R., O'Connor, P., and Crichton, M. (2008). Safety at the sharp end: A guide to non-technical skills. CRC Press.
- General Directorate of Civil Aviation (2024). Flight Examiner (FE). DGCA. https://web.shgm.gov.tr/en/preview/2107flight-examiner-fe
- Goeters, K. M., Maschke, P., and Eißfeldt, H. (2004). Ability requirements in core aviation professions: Job analysis of airline pilots and air traffic controllers. Aviation psychology: Practice and research, 99-119.
- Gontar, P., Hoermann, H., and Haslbeck, A. (2014). How pilots assess their non-technical performance - A flight simulator study. In Proceedings of the 5th International Conference on Applied Human Factors and Ergonomics (AHFE), Krakow, Poland.
- Hedge, P., and Kriwoken, L. K. (2000). Evidence for effects of Spartina anglica invasion on benthic macrofauna in Little Swanport estuary, Tasmania. Austral Ecology, 25(2), 150-159.
- Helmreich, R. L., Merritt, A. C., and Wilhelm, J. A. (1999). The evolution of crew resource management training in commercial aviation. International Journal of Aviation Psychology, 9(1), 19-32.
- Helmreich, R., and Foushee, C. (2019). Why CRM? Empirical and theoretical bases of human factors training. In B. G.

Kanki, J. Anca, & T. R. Chidester (Eds.), Crew resource management (pp. 3-52). Academic Press.

- Hoermann, H. J., and Goerke, P. (2014). Assessment of social competence for pilot selection. The International Journal of Aviation Psychology, 24(1), 6-28.
- Hörmann, H. J., Stadler, K., and Wium, J. (2022). Common practices of psychological selection of aviation personnel in Europe. Transportation research procedia, 66, 8-15.
- Hunter, D. R. (1995). Airman research questionnaire: Methodology and overall results (Final Report). Retrieved from https://www.researchgate.net/ publication/235173778_Airman_Research_Questionnai re_Methodology_and_Overall_Results
- ICAO (2013). Manual of Evidence-based Training. ICAO Doc 9995. https://store.icao.int/en/manual-of-evidencebased-training-doc-9995
- International Air Transport Association (IATA) (2021). Loss of Control In-flight (LOC-I). IATA. https://www.iata.org/en/programs/safety/operationalsafety/loss-of-control-inflight/
- International Air Transport Association (IATA) (2023). Competency Assessment and Evaluation for Pilots, Instructors and Evaluators. IATA Guidance Material. https://www.iata.org/contentassets/c0f61fc821dc4f62bb 6441d7abedb076/competency-assessment-andevaluation-for-pilots-instructors-and-evaluators-gm.pdf
- International Air Transport Association (IATA) (2020). Cabin operations safety best practices guide (6th ed.). International Air Transport Association. ISBN 978-92-9264-035-4.
- International Air Transport Association (IATA) (2019, December 20). Pilot aptitude testing guidance material and best practices. International Air Transport Association. https://www.iata.org/contentassets/ 19f9168ecf584fc7b4af8d6d1e35c769/pilot-aptitudetesting-guide.pdf
- Kaya, M., and Ateş, S. S. (2023). The Share of Communication Errors in Aircraft Accidents and Artificial Intelligences That Can Be Developed Based on Communication in Aviation. International Journal of Entrepreneurship and Management Inquiries, 7(12), 82-95.
- Lenné, M. G., Ashby, K., and Fitzharris, M. (2008). Analysis of general aviation crashes in Australia using the human factors analysis and classification system. The International Journal of Aviation Psychology, 18(4), 340-352.
- Li, G., Baker, S. P., Grabowski, J. G., and Rebok, G. W. (2001). Factors associated with pilot error in aviation crashes. Aviation, space, and environmental medicine, 72(1), 52-58.
- Mansikka, H., Harris, D., and Virtanen, K. (2017). An input process-output model of pilot core competencies. Aviation Psychology and Applied Human Factors, 11(2), 78-85.
- Mızrak, F. (2023). Evaluation of non-type rated pilot selection criteria in the civil aviation industry with AHP and TOPSIS methods. Research Journal of Business and Management, 10(1), 1-11.
- National Transportation Safety Board (NTSB). (1989). General aviation accidents involving visual flight rules flight into instrument meteorological conditions (NTSB/SR-89/01). Retrieved from

http://libraryonline.erau.edu/online-full-text/ntsb/safety-reports/SR89-01.pdf

- National Transportation Safety Board (NTSB). (2010). Loss of thrust in both engines after encountering a flock of birds and subsequent ditching on the Hudson River, US Airways Flight 1549, Airbus A320-214, N106US, Weehawken, New Jersey (Aircraft Accident Report). Retrieved from https://www.ntsb.gov/investigations/ Accident Reports/AAR1003.pdf
- Oktal, H., and Onrat, A. (2020). Analytic hierarchy process– based selection method for airline pilot candidates. The International Journal of Aerospace Psychology, 30(3-4), 268-281.
- Oster, C. V., Strong, J. S., and Zorn, K. (2010, March 11-13). Why airplanes crash: causes of accidents worldwide. [Conference presentation]. 51st Annual Transportation Research Forum, Arlington, Virginia.
- Prince, C., and Salas, E. (1993). Training and research for teamwork in the military aircrew. In E. L. Wiener, B. G. Kanki, & R. L. Helmreich (Eds.), Cockpit resource management (pp. 337-366).
- Ruff-Stahl, H. J. K., Vogel, D., Dmoch, N., Krause, A., Strobl, A., Farsch, D., and Stehr, R. (2016). Measuring CRM aptitude: is NOTECHS a suitable tool for pilot selection? International Journal of Aviation, Aeronautics, and Aerospace, 3(3), 4.
- Salas, E., DiazGranados, D., Weaver, S. J., and King, H. (2008). Does team training work? Principles for health care. Academic Emergency Medicine, 15(11), 1002-1009.
- Sexton, J. B., Thomas, E. J., and Helmreich, R. L. (2000). Error, stress, and teamwork in medicine and aviation: cross sectional surveys. Bmj, 320(7237), 745-749.
- Shook, R., Bandiero, M., Coello, J. P., Garland, D. J., and Endsley, M. R. (2000). Situation awareness problems in general aviation. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 44(1), 185-188.
- Şimşek, H., Özaslan, İ. H., and Eryılmaz, İ. (2022). Pilot selection in airline organizations with the analytical hierarchy process. Journal of Aviation, 6(2), 218-227.
- Tuncal, A., & Çinar, E. (2024). A Scale Development Study For Evaluating The Competency Perception of Air Traffic Controllers. International Journal of Aviation, Aeronautics, and Aerospace, 11(3).
- Wiegmann, D., Faaborg, T., Boquet, A., Detwiler, C., Holcomb, K., and Shappell, S. (2005). Human error and general aviation accidents: A comprehensive, finegrained analysis using HFACS.
- Yazgan, E., and Erol, D. (2016). Sivil Pilot Adayları İçin Seçim Kriterlerinin Belirlenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 5(2), 97-104.
- Yazgan, E., and Üstün, A. K. (2011). Application of analytic network process: weighting of selection criteria for civil pilots. Journal of Aeronautics and Space Technologies, 5(2), 1-12.
- Zinn, F., Goerke, P., and Marggraf-Micheel, C. (2019). Selecting for cockpit crew. In R. Bor, C. Eriksen, T. P. Hubbard, & R. King (Eds.), Pilot selection: Psychological principles and practice (pp. 21-34). CRC Press.

Hierarchy Process (AHP) Approach. Journal of Aviation, 9(1), 207-215.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Licence

Copyright © 2025 Journal of Aviation <u>https://javsci.com</u> - <u>http://dergipark.gov.tr/jav</u>

Cite this article: Ceken, S., Acar, A.B. (2025). Evaluating Non-Technical Skills of Airline Pilot Candidates Using an Analytic