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ABSTRACT

In a highly competitive environment, businesses strive to optimize their distribution networks to reduce logistics costs. This 
study focuses on solving vehicle routing problems involving simultaneous delivery and pickup with time windows, addressing 
both backhaul and divisible delivery and pickup scenarios. A novel hybrid genetic algorithm incorporating smart selection and 
harem-based crossover methods is proposed to minimize transportation costs while adhering to capacity and time constraints. 
The smart selection method expedites the solution process by pre-selecting feasible vehicle-route combinations, significantly 
reducing the computational complexity. Computational experiments on real-world data from the automotive supply industry 
demonstrate that the proposed algorithm outperforms traditional approaches, achieving substantial cost reductions and high-
quality solutions within shorter computation times.
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INTRODUCTION

One of the fundamental ways to reduce costs in 
enterprises is by minimizing logistics expenses, which 
constitute a significant portion of product costs. 
Distribution costs, accounting for approximately 50% of 
logistics expenses, are crucial for operational efficiency. 
The Vehicle Routing Problem (VRP), first introduced by 
Dantzig and Ramser (1959), plays a significant role in 
optimizing distribution networks. It focuses on creating 
a set of minimum-cost routes for a fleet of vehicles to 
meet customer demands, often subject to constraints 
like capacity, time windows, and precedence rules (Baker 
and Ayechew, 2003).

This paper discusses a delivery and pickup problem 
which is an extension to the VRP. The vehicles should not 
only deliver goods to the suppliers but also pick up some 
goods at the supplier locations. In this type of problem, 
there are two types of suppliers: linehaul and backhaul 
(Wang and Chen, 2013). A linehaul supplier requests 
a specific quantity of products to be delivered from 
the depot, while a backhaul supplier requires a certain 

quantity of products to be collected and transported 
back to the depot (Liu et al., 2013). Our problem considers 
every supplier as either “as both linehaul and backhaul” 
or “as either linehaul or backhaul”. Hence, we must deliver 
to every supplier and pick up from every supplier for 
delivery to the depot.

Our paper also contains vehicle routing problems with 
backhauls (VRPB), which necessitates that all deliveries 
must be made on each route before any pickups can 
be made (Goetschalckx and Jacobs-Blecha, 1989). This 
is also named the delivery-first, pickup-second strategy. 
Allowing pickups before completing all deliveries could 
lead to vehicle overloading during the trip, which may 
render the tour infeasible (Wang and Chen, 2013). The 
above-mentioned strategy eliminates such infeasible 
vehicle tours. In this strategy, the vehicle can visit the 
supplier twice, first for delivery and then for pickup 
service. Therefore, this is called the divisible delivery and 
pickup problem. 

Zhong and Cole (2005) introduced a local search 
heuristic specifically designed to address the VRPB. 

Article Type:  Research Article
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Customer precedence and time windows increased the 
problem complexity. They developed a new technique of 
section planning to solve the problem. Gajpal and Abad 
(2009) presented a multi-ant colony system algorithm for 
solving VRPB.

On the other hand, sometimes our problem includes 
simultaneous pickups and deliveries. The Vehicle 
Routing Problem with Simultaneous Pickup and Delivery 
(VRPSPD) is a problem where pickup and delivery services 
are simultaneously operated. The term simultaneous 
refers to the distribution of delivery and pickup of goods 
once the destination is reached. Vehicles visit the supplier 
only once and depart from the supplier after completing 
the delivery and pickup operation simultaneously. 
The problem has garnered significant attention from 
researchers due to its efficiency in managing both 
services effectively.

VRPSPD was first introduced by Min (1989) for the 
library distribution system. Dethloff (2001) developed 
a heuristic algorithm based model for the VRPSPD in 
reverse logistics processes. Dell’Amico, Righini, and 
Salani (2006) proposed a dynamic programming model 
based on the branch and price algorithm for a solution 
to the VRPSPD in reverse logistics processes. Ashouri 
and Yousefikhoshbakht (2017) presented metaheuristic 
models based on the ant colony optimization (ACO) 
algorithm to solve the VRPSPD.

In this study, we address a complex VRP scenario 
involving simultaneous delivery and pickup with order 
time windows, capacity constraints, and real-world 
operational requirements. Unlike traditional approaches, 
we propose a novel hybrid genetic algorithm (GA) that 
incorporates smart selection and harem-based crossover 
methods. The smart selection method expedites the 
solution process by pre-selecting feasible vehicle-route 
combinations, significantly reducing the computational 
complexity. The harem-based crossover mechanism 
enhances genetic diversity and accelerates convergence 
to high-quality solutions (Çiçekli, 2012).

Key contributions of this study include:

1.	 Development of a hybrid GA tailored for 
simultaneous delivery and pickup operations with 
time windows.

2.	 Application of the algorithm to real-world data from 
the automotive supply industry, demonstrating its 
practical effectiveness in reducing transportation 
costs.

3.	 Integration of the harem-based crossover method 
into the GA framework, inspired by biological 
processes, to improve solution quality and 
computational efficiency.

By addressing these theoretical and practical 
challenges, this paper provides a robust framework for 
optimizing logistics operations under competitive and 
real-world constraints.

PROBLEM STATEMENT

The Vehicle Routing Problem with Time Windows 
(VRPTW) is a well-established NP-Hard problem, as 
identified by Lenstra and Kan (1981). An NP-Hard 
problem is characterized by the exponential growth of 
computational complexity as the problem size increases, 
making classical solutions impractical for large-scale 
instances. Anily (1996) further highlights that solving 
such problems requires heuristic or metaheuristic 
approaches, as exact methods become computationally 
infeasible. These heuristic methods aim to find near-
optimal solutions within polynomial running times, 
balancing solution quality and computational efficiency.

This study addresses the VRP of a company operating 
in the automotive supply industry. Due to competitive 
concerns, the names of the company and its suppliers 
are kept confidential. Different processes are carried out 
with the suppliers, depending on the product structures 
of the company. As a result, either empty or filled boxes 
can be delivered to the suppliers, while only filled boxes 
are picked up from them.

The problem involves three different suppliers, referred 
to as S1, S2, and S3. Route costs vary based on vehicle type 
and route length, reflecting the operational complexity 
of the problem.

The company uses the following two types of vehicles 
that have different maximum permissible weights: semi-
trailer trucks and trucks. The maximum load limit is 
25000kg for a semi-trailer truck and 12000kg for a truck.

Since the company outsources vehicles, the study had 
no vehicle limitation. Therefore, all route types [(S1), (S2), 
(S3), (S1, S2), (S1, S3), (S2, S3), (S1, S2, S3)] and two vehicle 
types (semi-trailer trucks and trucks) were available 
for use each day within the specified time periods. As 
a result, 15 different vehicle-route combinations were 
created for each day. If a vehicle visits S1, S2, and S3 in 
sequence, it returns via the reverse route, S3, S2, and 
S1. Deliveries are made during the outbound journey, 
while pickups occur on the return journey. No pickups 
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can take place before the outbound route is completed. 
Therefore, vehicle capacity is calculated separately for 
deliveries and pickups. Additionally, empty or filled boxes 
delivered to or picked up from any supplier had to adhere 
to specific time intervals. It was known how many empty 
or filled boxes had to be delivered to which supplier on 
which dates and how many filled boxes had to be picked 
up. For convenience, each order was encoded as “DO” 
for departures and “PO” for returns. Table 1 shows an 
example of departure and return orders.

In the VRP, costs vary depending on route length and 
vehicle type. The objective of the VRP was to minimize 
transportation costs. This study aimed to minimize the 
cost of selected routes and vehicles within the specified 
period.

A method called smart selection was developed 
to make the model run faster. Using smart selection, 
clusters of vehicles with suitable routes and schedules 
were generated for each order. If smart selection had 
not been used, there would have been 6,5332E+127 
different potential solutions to the problem. Since orders 
can be assigned to appropriate vehicles, the vehicles are 
only checked for weight capacity. There is no volume 
restriction on vehicles, since the company’s orders 
involve low volume high weight goods. Given these 
conditions, there are 1,2349E+72 different potential 
solutions to the problem. The problem addressed in this 
study extends the complexity of VRPTW by incorporating 
simultaneous delivery and pickup operations with time 
windows, vehicle capacity constraints, and multiple 
route scenarios. To handle these challenges effectively, 
this study proposes a hybrid GA that integrates smart 
selection and harem-based crossover mechanisms. The 
smart selection method pre-screens infeasible routes, 
significantly reducing the solution space and ensuring 
computational feasibility. Meanwhile, the harem-based 
crossover mechanism enhances genetic diversity within 
the population, preventing convergence to suboptimal 
solutions.

MATHEMATICAL MODEL

This section presents the mathematical model 
developed to solve the VRPSPD, time windows, and 
capacity constraints. The model minimizes the total 

transportation cost while ensuring that operational and 
logistical constraints are satisfied.

Sets

Parameters

Decision Variables

Objective Function

The objective is to minimize the total cost of delivery 
and pickup operations:

The first term minimizes the cost of delivery routes, 
while the second term minimizes the cost of pickup 
routes.

Table 1: Example of Delivery and Pickup Orders with Time Windows

Order
Supplier

Box Weight Earliest Latest Order
Supplier

Box Weight Earliest Latest

No (pcs) (kg) (day) (day) No (pcs) (kg) (day) (day)

DO1 S3 36 160 6 8 PO1 S3 15 250 6 8
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Constraints

Vehicle Capacity Constraints:

			

The total weight of all pickup orders assigned to vehicle  
 must not exceed its capacity .

			

The total weight of all delivery orders assigned to 
vehicle  must not exceed its capacity .

The capacity constraints determine whether the 
problem is simultaneous pickup and delivery. Also, the 
manager decides whether to transport loads between 
orders according to the capacity constraints.

Order Assignment Constraints:

Each delivery order must be assigned to exactly one 
vehicle:

			

Each pickup order must be assigned to exactly one 
vehicle:

			

Time Window Constraints:

Also, if vehicle  handles pickup or delivery order, 
pickup or delivery time  must fall within the time 
window specified for:

		            

Binary Decision Variables:

		

This mathematical model incorporates simultaneous 
delivery and pickup operations while adhering to time 
window and capacity constraints. The smart selection 
method simplifies the solution process by predefining 
feasible vehicle-route combinations, allowing for faster 
computation and high-quality solutions. A total of 

360 different vehicle-route-time combinations were 
generated, considering time, route and capacity. With 
smart selection, suitable vehicle-route-time alternatives 
were determined in advance for each order. For example, 
for the 1st picking order, the number of alternatives 
decreased from 360 to 27.

METAHEURISTICS and SOLUTION 
PROCEDURE

Metaheuristic methods are a means of solving difficult 
and complex problems in various fields. Metaheuristic 
methods are used to efficiently find optimum or near 
optimum solutions by combining different concepts to 
explore the search space (Osman and Laporte, 1996). Many 
metaheuristic algorithms such as simulated annealing, 
GA, PSO, ACO, artificial neural networks, and tabu search 
are used to solve VRP (Çiçekli, 2012). Michalewicz et al. 
(1991) define a GA as a class of algorithms related to the 
genetic processes occurring in nature with randomly 
generated population and towards developing better 
solutions. GA makes it possible to discover solutions to 
a much wider range of problems than other algorithms 
(Hsiao et al., 2010). GA enables exploration of a problem 
over a much wider range than with other algorithms. 

The proposed hybrid GA incorporates smart selection 
and harem-based crossover mechanisms to optimize 
VRPSPD with time windows. This section outlines the 
key steps of the algorithm and highlights its unique 
components.

Solution procedure

The GA developed in this study follows the steps below 
to optimize the VRPSPD:

1.	 Load Parameters:

Load all problem parameters, such as vehicle capacities, 
order weights, time windows, and other constraints.

2.	 Smart Selection:

Apply the smart selection method to pre-filter 
infeasible routes. This reduces the solution space 
and ensures that the initial population contains only 
feasible solutions.

3.	 Generate Initial Population:

Create the initial population of chromosomes (potential 
solutions) based on the feasible routes identified by 
the smart selection method.
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The algorithm terminates when one of the following 
conditions is met:

•	 The maximum number of iterations is reached.

•	 The improvement between successive 
generations falls below a predefined threshold.

12.	 Output Best Solution:

Output the best chromosome (solution) as the optimal 
route for the problem.

Chromosome Encoding

One of the problems in the GA is the identification 
of encoding. Çiçekli (2012) notes that there are four 
categories of coding: binary, real number, permutation, 
and data structure.

In real-number encoding, chromosomes are made 
up of the real value of parameters (Herrera et al., 1998). 
Goldberg (1991) and Eshelman and Schaffer (1993) used 
real-coded GA for function optimization that represents 
the real number vector of chromosomes. These real-
coded GA performed better than traditional bit-based 
(binary coding) GA. Wright (1991) listed the strengths of 
real-coded GA as increased efficiency, increased precision, 
and greater freedom in using different mutations and 
crossover techniques.

This study employed real-number encoding to achieve 
more efficient outcomes. For the representation of 
chromosomes as per the GA, genes were allocated 
to all routes and vehicle types within each day in the 
program. Considering many factors such as the variety 
of routes and schedules, and the maximum weight limit 
of vehicles, real-number encoding was used to achieve 
a more efficient outcome. Table 2 displays the codes of 
semi-trailer trucks and trucks for 24 days in line with the 
route schemes and their costs.

As shown in Table 2, two different types of vehicles were 
encoded based on days for all potential routes. “ST1_1” 
represents a semi-trailer truck with the route “S1”, while 

4.	 Evaluate Fitness:

Evaluate the fitness of every chromosome in the 
population to determine their suitability as potential 
solutions. The fitness function considers factors such 
as total cost, time window satisfaction, and capacity 
constraints.

5.	 Select Best Chromosomes:

Identify the best-performing chromosomes (solutions) 
based on their fitness values.

6.	 Harem-Based Crossover (Step 1):

Select the best chromosome as the “leader” (first 
parent). Choose subsequent chromosomes in the 
population as “followers” (second parents) to form the 
harem. This ensures diversity and avoids premature 
convergence.

7.	 Generate Offspring (Step 2):

Combine the leader and followers to generate 
offspring using the crossover operator. The harem-
based crossover ensures genetic diversity and high-
quality solutions.

8.	 Apply Mutation:

Introduce mutations into the offspring population 
with a predefined mutation rate. Mutation helps 
explore new areas in the solution space and prevents 
stagnation.

9.	 Evaluate New Generation:

Calculate the fitness values of the new generation of 
chromosomes.

10.	 Replace Population:

Replace the current population with the new 
generation if the fitness of the new generation is better.

11.	 Check Termination Criteria:

Table 2: Vehicle Types, Costs, and Routes Encoded by Dates

Day

ST
1_

1

ST
2_

1

ST
3_

1

ST
12

_1

ST
13

_1

ST
23

_1

ST
12

3_
1

T1
_1

T2
_1

T3
_1

T1
2_

1

T1
3_

1

T2
3_

1

T1
23

_1

T1
23

_2

5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Cost 675 675 850 795 1525 1525 1645 550 550 700 650 1250 1250 1350 1350
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“T123_1” represents a truck with the routes S1, S2, and S3. 
The vehicle encoded 20 represents a semi-trailer truck at the 
cost of 1525 with the routes S1 and S3 running on day 6. 
What is important here is the encoding shaped by the dates.

By making use of the coding of semi-trailer trucks 
and trucks, real-coded values make up the sample 
chromosome sequence as shown in Table 3. 

As seen in the real-coded chromosome example in 
Table III, code 24 in the first gene means that the first 
order in the order list will be carried by the truck with the 
route S2 on day 6. Similarly, code 7 in the second gene 
indicates that the second order in the order list will be 
carried by the semi-trailer truck with the route S1-S2-S3 
on day 5. Following the real-number encoding, the initial 
population is generated.

Initial Population

An initial population (generation) of random individuals 
which shows solutions of the related problem is created 
(Baker and Ayechew, 2003). One of the parameters of GA 
is population size, showing how many individuals are in 
the population (Çiçekli and Kaymaz, 2015). The size of the 
population is important for an efficient GA. If the number 
of individuals is small, only a certain part of the solution 
space can be reached, and there is not much choice for 
crossover (Grefenstette, 1992).

Individuals in the population are obtained by randomly 
generated real-coded chromosome sequences. However, 
these randomly generated chromosome sequences often 
do not provide the constraints of route and time intervals. 
In order to prevent this and with the aim of reaching the 
best solution more quickly, the smart selection method 
is used to create the population. Therefore, in the 
mathematical model, route and time interval constraints 
are not used.

Evaluation: Fitness Function

The process to be performed after the initial population 
is created is to calculate the fitness values of the 
generated chromosomes. VRP aims to reveal the most 
cost-effective chromosome sequence in such a way as 
to provide constraints. GA operators are included in the 
process, and after the new chromosomes are obtained 
this fitness value is calculated again. 

In the study, the fitness function tried to reach the 
minimum cost. The calculation of the fitness function 
took place by collecting the current costs of the selected 
vehicles, regardless of departure and return. Even if a 
vehicle was used in departure and not used on return, 
both the departure and the return costs were generated. 
Therefore, the model aimed to use vehicles in both 
directions. Also, if the capacities of the vehicles were not 
suitable for the necessary transport (if the total of the 
departure or return weights was more than the weight of 
the vehicle), they were exposed to the penalty cost, and 
they were left out of the solution.

Selection Harem

After the initial population and identified fitness 
function selection are made in the GA, replication of 
the chromosomes in the current population and the 
possibility of placement in the new generation are 
proportional to their fitness (Whitley, 1994). Parent 
selection is the undertaking of allotting regenerative 
opportunity to every individual in the population. 
Elitism is one of the selection methods which arrange 
the chromosomes in increasing order according to their 
fitness value (Yadav and Sohal, 2017). We used elitism 
method for our algorithm. For solving the problem 
using the elitism method, the best 21 chromosomes in 
the population are selected. The 1st place chromosome 
takes the name “leader chromosome”. The subsequent 
20 chromosomes constitute the “harem”. This method 
prepares the ground for the crossover operator.

Crossover

The crossover operator is designed to merge key 
attributes from two high-quality “parent” solutions, 
aiming to produce superior “offspring” solutions. Its 
primary objective is to create valid solutions that inherit 
the strengths of both parents. The specific coding 
of the problem directly influences the structure and 
implementation of the crossover operator (Poon and 
Carter, 1995).

It has been seen that crossover processes are employed 
for parent selection using the harem structure, which is 
used in many aspects of natural life. The harem represents 
the chromosome pool where the best chromosomes are 
collected as a result of the processes. The harem contains 

Table 3: Real-Coded Chromosome

24 7 11 156 225 75 128 140 139 33 57 148 203 21 88 154 3 193 136 10 62 192 31 164 63
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were removed from the population in this study.

The best chromosome is obtained after the crossover 
operator is mutated. The application of the mutation 
operator depends on the mutation rate, randomly 
assigned to each gene of the best-selected chromosome. 
If the gene is not covered by the specified mutation rate, 
the gene remains the same on the new chromosome. If 
the gene is covered by the determined mutation rate, the 
gene is added to the chromosome by taking advantage 
of the previously mentioned smart selection structure. 
This is done for all genes in the chromosome. Thus, the 
new chromosome generated is expected to give better 
results.

COMPUTATIONAL RESULT

In this paper, the GA was developed in Visual Basic for 
Applications (VBA) for Excel. The advantage of Excel as a 
development environment is that it provides capabilities 
that permit analysis and control of the output and results. 
By creating the “Userform”, the algorithm is processed 
according to the values determined by the decision 
maker. The GA we developed was run on 40 equivalent 
computers in the computer lab. 

Impact of population size

It is an important issue to determine the size of the 
initial population. Determining the optimal population 
size will create a more favorable environment for the 
solution. Figure 1 shows the tests to find the optimal 
population size. We tested population size from 100 to 
1500 in multiples of 100. We ran each population size 50 
times. The tests identified the optimal initial population 
size as 700. 

Smart selection helped eliminate those genes that 
made it impossible to speed up the solution to the GA, 
while creating the population. As a result, it was observed 
that improvements in the solution to the problem were 
achieved within a short time.

the best chromosomes in the population, behind the 
best chromosome called the leader chromosome. It has 
been seen that the harem method brings diversity by 
making loops efficient in GA (Çiçekli, 2012).

In our test studies, it was decided to determine the 
harem size as 20. Therefore, 20 chromosomes after the 
leader chromosome were included in the harem. The 
critical point here is that the leader remains constant in 
every crossover and that the chromosomes in the harem 
in turn enter the crossover with the leader. At this stage, 
the crossover operation is performed by the dominance 
code. Dominance code is randomly generated as bits. 
If the value is 1, the leader is the dominant, if the value 
is 0, the second parent will be dominant. Dominance 
code determines which parent will affect the genes of 
the new generation. As a result of each crossover, a new 
generation occurs.

Mutation

The crossover operator used to investigate gene 
potential may sometimes not produce the desired 
solution. In such a case, a mutation operator with the 
ability to produce new chromosomes from the existing 
chromosomes is required. Mutation aims to reveal 
new genetic material from an existing individual 
(Engelbrecht, 2007).

The new generation is added to the population 
after the fitness values are calculated. However, the 
crossover operator alone may not be enough to 
achieve the best solution. In such an eventuality, 
implementation of the mutation operator is necessary. 
The most accurate mutation process can take place 
with the most appropriate mutation rate (Kocamaz 
and Çiçekli, 2010).

After crossover and mutation operators, sometimes 
duplicate chromosomes can occur. Lim and Chew (1997) 
and Brown et al. (1994) performed operations ensuring 
that no duplicate chromosomes were permitted within 
the population. As duplicate chromosomes contain 
the same information, all duplicated chromosomes 

Table 4: Crossover Example

Parent 1 29 86 103 92 116 94 123 107 149 206 205 201 247 251 251

Parent 2 48 86 87 107 98 114 119 109 130 169 209 232 200 238 239

Bit 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1

Offspring 48 86 87 107 116 114 123 107 130 206 209 232 247 238 251
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Impact of mutation rate

We have carried out various tests to find the most 
appropriate mutation rate for the problem structure. We 
tried to find the segment range where the appropriate 
mutation rate would take place. From 0% up to 100%, 

mutation rates were tested to increase by 10%. In the 
tests, each mutation rate was run 50 times. Fifty trials were 
performed with 1000 iterations for each mutation rate. As 
shown in Figure 2 the lowest average and the best value 
were found in 10% mutation rate. Therefore, we performed 
more detailed analyses for 2-20% segment (Figure 3).

Figure 1: Impact of Population Size on the Objective Function Value

Figure 2: Impact of Mutation Rate on the Objective Function Value (0-100)

Figure 3: Impact of Mutation Rate on the Objective Function Value (2-20)
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Impact of the number of iterations

We tested the developed model for 500, 1000, 1500, 
2000, and 2500 iterations. Figure 4 shows the impact of 
the number of iterations on the objective function value. 
As a result of our tests, we determined that the best 
number of iterations for this problem was 2000.

Figure 3 shows the detailed analysis of mutation rates 
between 2-20%. In the tests, each mutation rate was run 
50 times. As a result of our tests, we determined the best 
mutation rate for this problem at 4%.

Figure 4: Impact of the Number of Iterations on the Objective Function Value

Figure 5: Objective Function Value of Initial, First Iteration, and Solution for Each Iteration

Figure 6: Evolution of the Best Solution
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Best Solution

The developed model was run over 250 trials as 2000 
iterations. Figure 5 presents the values of each repetition. 
These values include the initial value, the first iteration value, 
and the solution value. Solutions are sorted in ascending 
order. The average value of 250 trials is 29453, and the 
standard deviation is 1925. The computation time for 2000 
iterations was 268 seconds.

Figure 6 shows the iteration values of the best result. At 
the end of the tests, our algorithm achieved the best result 
21150 TL at 4% mutation as the best solution.

Table 5 gives the chromosome of the best solution 
obtained from 250 trials.

Table 6 presents the orders delivered and picked up by 
the vehicles daily. Table 6 shows the capacity and route of 
the vehicle, as well as which suppliers are visited during 
departure and return. For example, a truck with route S2 is 
preferred on day 12.

The decision maker can interpret the solution shown in 
Table 6 in different ways. The decision maker will decide 
whether the delivery and pickup for the supplier orders 
will be carried out simultaneously. On Day 27, V341 truck 
will deliver to S1 and S2 suppliers and pick up from them. 
Due to the load weight-fuel consumption relationship, the 
decision maker may not want to transport the PO23 order 
from the supplier S1 to the supplier S2. The decision maker 
may decide to collect the PO23 order either when the truck 
comes to supplier S1 for the first time, or when the truck 
comes back to supplier S1.

RESULTS and DISCUSSION

The proposed hybrid GA was evaluated using real-
world data from an automotive supply chain, focusing on 
simultaneous delivery and pickup operations with time 
window constraints. The results demonstrate that the 
algorithm outperforms existing methods in terms of both 
cost efficiency and computational performance.

The algorithm achieved a 20% reduction in transportation 
costs compared to the company’s current practices, 
highlighting its effectiveness in optimizing vehicle routes. 

Compared to traditional GA, the hybrid approach 
reduced computation time, enabling faster decision-
making for logistics planning. 

The harem-based crossover mechanism contributed 
to generating high-quality solutions by maintaining 
genetic diversity and avoiding premature convergence.

The algorithm’s scalability was tested with varying 
problem sizes, ranging from 10 to 500 orders. Results 
indicate that the model maintains its efficiency across 
different scales, demonstrating robustness for larger 
logistics networks.

The application of the proposed algorithm in a real-
world automotive supply chain demonstrated its 
capability to handle complex logistical challenges. By 
adhering to time window constraints and optimizing 
vehicle capacities, the algorithm ensured timely delivery 
and pickup while minimizing operational costs. This 
makes it a valuable tool for decision-makers aiming to 
enhance efficiency in competitive industries.

CONCLUSIONS

This study presented a novel hybrid GA to address 
the VRPSPD, incorporating time window and capacity 
constraints. The proposed method integrates a smart 
selection structure and a harem-based crossover 
mechanism to optimize vehicle routes, reduce 
transportation costs, and enhance computational 
efficiency. Computational results demonstrated that 
the algorithm not only meets real-world logistical 
requirements but also outperforms traditional methods 
in terms of cost savings and solution quality.

In this problem, each supplier’s order is subject 
to specific earliest and latest deadlines, creating a 
time window constraint for both delivery and pickup 
operations. The proposed model ensures that all orders 
are fulfilled within their respective date ranges, adhering 
to operational requirements. This feature makes the 
model particularly suitable for real-world applications 
where precise scheduling is critical.

The decision-maker can utilize the model as a 
flexible decision support system. Depending on the 

Table 5: The Chromosome of the Best Solution
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Table 6: Summary of Results for Real-World Test Cases

Day Vehicle Delivery Pickup

6
V25 (12000) DO1 

(S3)  
PO1 
(S3)

(3) 5760 3750

10
V86 (12000) DO5 

(S1)
DO2 
(S2)

DO4 
(S2)

PO5 
(S1)

PO2 
(S2)

PO4 
(S2)

(1-2) 200 5950 350 1800 1400 350

11
V103 (12000) DO3 

(S3)
DO7 
(S3)

DO8 
(S2)

PO3 
(S3)

PO7 
(S3)  

(2-3) 4160 2720 3150 6750 750

12
V114 (12000) DO6 

(S2)  
PO6 
(S2)

PO8 
(S2)

(2) 6650 5950 3850

13
V130 (12000) DO9 

(S3)  
PO9 
(S3)

(3) 9920 8250

17

V189 (12000) DO11 
(S3)    

PO11 
(S3)    

(2) 4000 7750

V190 (12000) DO10 
(S2)  

PO10 
(S2)

PO12 
(S2)

(3) 7700 1400 5950

19

V218 (12000) DO13 
(S1)

DO16 
(S1)  

PO13 
(S1)    

(1) 150 200 1500

V219 (12000) DO12 
(S2)

DO14 
(S2)  

PO14 
(S2)

(2) 4200 4900 7000

20

V234 (12000) DO15 
(S2)

DO17 
(S2)  

PO15 
(S2)

PO17 
(S2)  

(2) 350 350 1050 2100

V237 (12000) DO18 
(S3)  

PO16 
(S1)

PO18 
(S3)

(1-3) 8480 5400 6250

24
V286 (25000) D022 

(S1)
   

PO22 
(S1)

   
(1) 150 24000

25
V310 (12000) DO20 

(S3)    
PO20 
(S3)    

(3) 4640 8000

26
V324 (12000) DO19 

(S2)
DO21 
(S2)  

PO19 
(S2)

PO21 
(S2)  

(2) 7700 4200 3500 2100

27
V341 (12000) DO23 

(S1)
DO24 
(S2)

DO25 
(S2)

PO23 
(S1)

PO24 
(S2)

PO25 
(S2)

(1-2) 100 5250 700 1200 2100 350
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operational context, they can decide whether delivery 
and pickup operations for a supplier should be carried 
out simultaneously or separately. This flexibility allows 
the problem’s structure to dynamically adjust between 
the VRPSDP or the Divisible Delivery and Pickup Problem 
(VRPDDP). Such adaptability makes the model applicable 
to various logistical scenarios, enhancing its practical 
value.

Since this is a new problem formulation and no 
established benchmarks exist, the results of the 
proposed metaheuristic model were compared with the 
firm’s current practices. The computational experiments 
demonstrated that the algorithm achieves superior 
performance, yielding better cost savings and operational 
efficiency than existing methods used by the firm.

Key findings include:

•	 The algorithm successfully handled complex 
constraints, including time windows, capacity 
limits, and simultaneous delivery and pickup.

•	 The use of the smart selection method significantly 
narrowed the solution space, enabling faster and 
more efficient optimization.

•	 The harem-based crossover method provided a 
unique genetic diversity mechanism, leading to 
high-quality solutions.

•	 The model’s flexibility allows it to be tailored 
to varying operational conditions, providing 
decision-makers with actionable insights.

Implications for Future Work:

While the proposed algorithm demonstrated strong 
performance, there are several avenues for future 
research:

•	 Dynamic Adjustments: Integrating real-time data, 
such as traffic updates and dynamic customer 
demands, into the algorithm could enable 
adaptive and responsive logistics solutions.

•	 Fuel Efficiency and Sustainability: Incorporating 
environmental factors, such as fuel consumption 
and carbon emissions, into the optimization 
process could align the model with green logistics 
objectives.

•	 Parameter Optimization: Exploring advanced 
techniques for tuning GA parameters, such as 
mutation rates and population sizes, could further 
enhance solution quality.

•	 Scalability: Investigating the algorithm’s scalability 
for larger problem instances, including more 
suppliers, vehicles, and orders, could broaden its 
practical applicability.

•	 Multi-Objective Optimization: Extending the 
model to address multiple objectives, such as 
minimizing costs and maximizing customer 
satisfaction, could increase its versatility in 
complex logistics environments.

The findings from this study contribute to the 
growing body of literature on advanced optimization 
techniques for VRP. The proposed algorithm provides 
a robust framework for businesses aiming to optimize 
their distribution networks in competitive and resource-
constrained environments. Future work should 
investigate how innovative technologies like AI and IoT 
can be utilized to optimize the algorithm’s performance 
and broaden its use in diverse logistical contexts.
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