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ABSTRACT
In the age of increasing data availability, there is a pressing need for fast and precise algorithms that can classify datasets.
Traditional methods like Support Vector Machines, Random Forest, and Neural Networks are commonly used, but a
novel approach known as Neurochaos Learning (NL) has demonstrated strong classification performance across various
datasets by incorporating chaos theory. However, the original NL algorithm requires tuning three hyperparameters and
involves extraction of multiple features, leading to significant training time. In this study, we propose a modified NL algorithm
with only a single hyperparameter and a single feature, using two distinct compositions of 1D chaotic maps, the Skew
Tent map with the Logistic map, and the Skew Tent map with sin(πx), thereby drastically reducing training time while
maintaining classification performance. This study also analyses the 1D chaotic properties of composition of these chaotic
maps including Lyapunov Exponent and the stability of fixed points. Testing on ten datasets including Iris, Penguin,
Haberman, and Bank Note Authentication, our method yields very competitive F1 scores. The composition of the Logistic
Map and Skew Tent Map yields an F1 score of 0.569 for the Haberman dataset and an impressive 0.968 for the Penguin
dataset using cosine similarity. Utilizing the composition of sin(πx) and Skew Tent Map, the Ionosphere dataset achieves
an F1 score of 0.876. Our method’s versatility is further demonstrated with the Random Forest Algorithm, achieving a
perfect F1 score of 1.0 on the Iris dataset with the Skew Tent and Logistic Map composition and the same score on the
Penguin dataset using the sin(πx) and Skew Tent Map composition. This streamlined approach meets the demand for
faster and more efficient classification algorithms, offering reliable performance in data-rich environments.
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INTRODUCTION

In recent years, Artificial Intelligence (AI), particularly machine
learning (ML), has seen rapid advancement, significantly improv-
ing data analysis and intelligent computing applications (Sarker
et al. 2021). The digital era is characterised by an abundance of
data from several areas, including mobile technology, commerce,
social media, and healthcare. Comprehensive analysis of this data
and the development of intelligent, automated systems require a
profound understanding of AI, especially machine learning. This
domain includes many machine learning approaches, including
supervised, unsupervised, semi-supervised, and reinforcement
learning. Furthermore, deep learning, a subset of machine learning,
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has exhibited considerable effectiveness in extensive analysis of
data (Sarker 2021). However, machine learning models frequently
require substantial training, and as the dataset size increases, the
computational resources needed for training correspondingly es-
calate (Niel 2023).

Contrary to prevalent misunderstandings, "Chaos" in mathe-
matics does not denote disorder or confusion (Faure and Korn
2001). The investigation of Deterministic Chaos (Devaney 2018) has
emerged as a prominent research domain across multiple disci-
plines. Nonlinear dynamical systems (for continuous flows) with
more than two degrees of freedom can demonstrate chaotic be-
haviour, rendering their long-term evolution uncertain in spite of
the dynamics being completely deterministic. For discrete-time
nonlinear dynamical systems, chaos is exhibited at 1-dimension
itself. Here Chaos refers to the unpredictable outcomes (often
random-like) from such simple deterministic systems. The hu-
man brain is a distinctly nonlinear system (Kowalik et al. 1996). In
contrast to other systems that often stabilise following transient
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states, the brain perpetually shifts between several states. Evi-
dence indicates that chaos exists in numerous biological systems,
especially in the brain, where chaotic dynamics are observable in
electroencephalogram (EEG) signals. Despite the seemingly ran-
dom nature of these signals, they possess intrinsic patterns (Aram
et al. 2017).

Conventional machine learning and deep neural network frame-
works are only marginally influenced by the internal workings of
the human brain (Harikrishnan and Nagaraj 2020). In (Harikr-
ishnan and Nagaraj 2020), a novel brain-inspired learning system
called Neurochaos Learning (NL) is proposed for classification tasks.
NL basically utilizes chaos at the level of individual neurons, un-
like artificial neural networks (ANNs). The proposed learning
paradigm comprises of two distinct architectures: (a) ChaosNet,
and (b) Chaos-based features or ChaosFEX (CFX) combined with
classical machine learning (ML) models. Input data is transmitted
to the Feature Extraction block, where properties derived from
the chaotic firing of 1-dimensional chaotic Generalized Lüroth
Series (GLS) neurons, specifically firing rate, energy, firing time,
and entropy, are retrieved and classified either using cosine sim-
ilarity (ChaosNet) or via machine learning classifiers (CFX+ML).
ChaosNet and CFX+ML (Sethi et al. 2023) are designed to harness
the advantageous characteristics of biological neural networks,
stemming from the complex chaotic behaviour of individual neu-
rons, and have demonstrated the ability to perform challenging
classification tasks on par with or superior to traditional artificial
neural networks, while necessitating significantly fewer training
samples. However, a limitation of the proposed algorithm is the
presence of hyperparameters, which require significant time for
tuning. Additionally, another drawback is that the transformed
features in ChaosNet and ChaosFEX exhibit dependency.

The research presented here aims to improve the current Neu-
rochaos Learning architectures by employing compositions of
chaotic maps (as neurons in the input layer of NL) rather than one
specific map, thus minimising the number of features and hyperpa-
rameters while preserving method efficacy. We propose employing
four distinct combinations of chaotic maps: (i) Skew Tent (Harikr-
ishnan and Nagaraj 2020) and Logistic Map (AS et al. 2023), (ii)
Logistic and Skew Tent Map, (iii) Skew Tent and sin(πx) (Palacios-
Luengas et al. 2021), and (iv) sin(πx) and Skew Tent Map for
feature extraction. The efficacy of the proposed approach is as-
sessed on classification tasks for 10 different datasets: Iris (Fisher
1936), Haberman (Haberman 1973), Seeds (Dua et al. 2017), Stat-
log (Dua et al. 2017), Bank (Gillich and Lohweg 2010), Cancer (Street
et al. 1993), Ionosphere (Sigillito et al. 1989), Wine (Forina et al. 1988),
Sonar (Horst et al. 2020), and Penguin (Gorman and Sejnowski
1988).

The subsequent sections of the paper are organised as follows:
Section 2 presents the properties of the 1D chaotic maps and their
compositions used in this study. Section 3 delineates the suggested
algorithm. Section 4 presents the findings from the algorithm using
various compositions of chaotic maps. Section 5 compares the F1
scores of the proposed algorithm to those of ChaosNet. Ultimately,
Section 6 concludes with prospective avenues for further research.

1D CHAOTIC MAPS AND THEIR COMPOSITIONS

Chaotic maps are iterative mathematical functions that exhibit
highly sensitive dependence on initial conditions, leading to seem-
ingly random behavior despite being deterministic in nature. In
this work, we focus on three well-known 1D chaotic maps: Logistic
map, Skew Tent map, and sin(πx) map. Each map has distinct
characteristics that make it suitable for various applications in

chaos theory and feature extraction for machine learning.
In the following subsections, we briefly define these chaotic

maps and subsequently introduce the composition of chaotic
maps, which plays a crucial role in the algorithm proposed in
this study. The Skew Tent Map, sin(πx), and Logistic Map are
one-dimensional nonlinear dynamic systems characterised by a
single degree of freedom. They are extensively examined in chaos
theory and have been previously delineated in many studies
(Palacios-Luengas et al. 2021; AS et al. 2023; Nagaraj 2022).

A skew tent map Tskew−tent(x) : [0, 1) → [0, 1) is defined
as:

Tskew-tent(x) =

 x
b , 0 ≤ x < b,
1−x
1−b , b ≤ x < 1,

where x ∈ [0, 1) and 0 < b < 1. In this work, we consider
b = 0.499. The graph of Tskew-tent(x) for b = 0.499 is illustrated
in Figure 1a. It intersects the line y = x at two distinct positions.
Consequently, the fixed points are 0 and 0.666 (Kuijpers 2021).
Both the fixed points are unstable. If we start with a value
slightly greater than zero, the map will push the trajectory away
from zero, making x = 0 an unstable fixed point. Likewise,
the other fixed point, 0.666, is also unstable. Generalised
Luröth Series (GLS) maps preserve the Lebesgue measure
and exhibit uniform distribution on the interval [0, 1) as the
invariant distribution (Nagaraj 2022). Every GLS map on the
interval [0,1) exhibits ergodicity. Therefore, the skew tent map
is also ergodic (Dajani and Kraaikamp 2002). The Lyapunov Ex-
ponent for this skew tent map, with a skew value of 0.499, is 0.6931.

The logistic map is defined by the following equation:

xn+1 = rxn(1 − xn),

where xn takes the value in the interval (0, 1) and r is the bifur-
cation parameter which lies in the interval (0, 4]. For the Logistic
Map, we consider the parameter r = 4, which results in fully
chaotic behavior (Chen et al. 2021). The corresponding graph for
the Logistic Map with r = 4 is shown in Figure 1b. The logistic
map with r = 4 intersect the line y = x at two distinct points,
resulting in two fixed points are 0 and 3

4 . Both the fixed points are
unstable. The logistic map with r = 4 has an invariant distribution
given by: (Ayers and Radunskaya 2024)

f (x) =

 1
x(1−x) for 0 < x < 1,

0 otherwise.

Also the map is ergodic with a Lyapunov exponent of
0.6724 (Machicao et al. 2019; Naanaa 2015).

The sin(πx) map on (0, 1) is shown in the Figure 1c. It is a
simple dynamical system, similar to logistic map, exhibiting
complex chaotic behaviour with a lyapunov exponent of 0.6889.
Here the fixed points are x = 0 and x = 0.7365, both of which are
unstable (Griffin 2013; Alzaidi et al. 2018).

Composition of 1D Chaotic Maps
Let f and g be two functions. Then, by definition, the composi-
tion (Muthuvel et al. 2000; Suryadi et al. 2020) of two functions f
and g defined by f og(x) = f (g(x)) where g is applied first fol-
lowed by f . In this work, we study the following compositions of
maps:
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(a) Skew-tent map (b) Logistic map (c) sin(πx) map

Figure 1 1D Chaotic Maps: Skew Tent Map T(x), Logistic Map L(x), sin(πx) Map S(x).

• Skew Tent map and Logistic map (T ◦ L map)
• Logistic map and Skew Tent map (L ◦ T map)
• Skew Tent map and sin(πx) (T ◦ S map)
• sin(πx) and Skew Tent map (S ◦ T map)

The composition of these maps are continuous, non-commutative,
indicating that the sequence of compositions is distinct. The
sequence of applying the Skew Tent Map followed by the Logistic
Map yields different outcomes/trajectories when compared to
the reverse sequence (Logistic Map followed by the Skew Tent
Map). This significantly influences the algorithm’s performance
across the ten analysed datasets. The sin(πx) map exhibits certain
similarities to the Logistic Map (Zhu et al. 2019). The composition
of the Skew Tent Map followed by the sin(πx) map also differs
from the reverse order (sin(πx) map followed by the Skew Tent
Map). This distinction is essential for evaluating the impact of
various map combinations on the algorithm’s efficacy.

The Figure 2 illustrate the compositions of the maps and shows
that each composition has four distinct fixed points. To deter-
mine the approximate values of fixed points of composition of
chaotic maps f ◦ g, it is enough to compute the values of x such
that ( f ◦ g)(x)− x = 0 using fsolve function in Python with ten
equally spaced guesses in (0, 1) within an error of 10−5. Table 1
summarizes the fixed points, their stability, and Lyapunov expo-
nent values of the composition of chaotic maps. A point x0 is said
to be stable if | f ′(x0)| < 1 (Alligood et al. 1998). Thus, to evaluate
the stability of fixed points, the condition

| f (x + h)− f (x − h)|
2h

< 1,

where h = 10−5 is verified.

The Lyapunov exponent h(x1) (Alligood et al. 1998) for a given
orbit x1, x2, ... is defined by:

h(x1) = lim
n→∞

ln| f ′(x1)|+ ln| f ′(x2)|+ . . . + ln| f ′(xn)|
n

.

The values of the Lyapunov exponent for T ◦ L, L ◦ T, S ◦ T and
T ◦ S are all greater than one, implying that the divergence of
nearby trajectories happens at an exponentially fast rate. Here
the limiting value for Lyapunov exponent is approximated after
100, 000 iterations. These compositions are highly chaotic and
its sensitivity to initial conditions is extreme. The distributions
of points in the trajectory generated by the composition of maps
(in each of the four cases) with an initial point 0.01 are shown in

(a) Skew-tent composition Logistic
map (T ◦ L map).

(b) Logistic map composition Skew
Tent Map (L ◦ T map).

(c) sin(πx) map composition Skew
Tent Map (S ◦ T map).

(d) Skew Tent map composition
sin(πx) map (T ◦ S map).

Figure 2 First return maps and fixed points for the composition
of 1D chaotic maps (Skew Tent map, Logistic Map and sin(πx)).

Figure 3.

The following section introduces the modified Neurochaos
Learning Algorithm using the composition of chaotic maps - T ◦ L,
L ◦ T, S ◦ T, T ◦ S.

■ Table 1 Fixed Points, Stability and Lyapunov Exponents of
1D Chaotic Map Compositions

Composition Fixed Points (approx.) Stability Lyap. Exp.

ToL 0.0, 0.3046, 0.8206, 0.8752 Unstable 1.2840

LoT 0.0, 0.4367, 0.5889, 0.8470 Unstable 1.2838

ToS 0.0, 0.3179, 0.8590, 0.7944 Unstable 1.2957

SoT 0.0, 0.6020, 0.4286, 0.8407 Unstable 1.2961
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(a) Skew-tent composition Logistic
map (T ◦ L map).

(b) Logistic map composition Skew
Tent Map (L ◦ T map).

(c) sin(πx) map composition Skew
Tent Map (S ◦ T map).

(d) Skew Tent map composition
sin(πx) map (T ◦ S map).

Figure 3 Distribution of points from the trajectories generated by
T ◦ L, L ◦ T, S ◦ T and T ◦ S maps.

PROPOSED ALGORITHM

The proposed algorithm in Figure 4 leverages the composition of
chaotic maps to enhance the feature extraction process in Neu-
rochaos Learning (Sethi et al. 2023; Balakrishnan et al. 2019). The
motivation behind this approach is to improve the classification
performance by reducing the number of hyperparameters and
utilising a single feature – the mean of the neural trace, which is
computationally efficient and robust across various datasets. This
section outlines the key steps involved in the algorithm.

Figure 4 Block diagram depicting the proposed algorithm in this
study.

• Step 1 : Normalisation
Consider a dataset of m samples, each with n features, repre-
sented as:

{(x11, x12, . . . , x1n), (x21, x22, . . . , x2n), . . . , (xm1, xm2, . . . , xmn)}.

Each feature attribute xij can be normalised using min-max
normalisation technique. Specifically, the normalised value
zij can be computed as:

zij =
xij − min{xij : 1 ≤ i ≤ m}

max{xij : 1 ≤ i ≤ m} − min{xij : 1 ≤ i ≤ m}

for 1 ≤ j ≤ n. Thus the resulting normalised dataset is:

{(z11, z12, . . . , z1n), (z21, z22, . . . , z2n), . . . , (zm1, zm2, . . . , zmn)}.

This transformation ensures that all features are scaled within
the range [0, 1], thereby making them suitable for subsequent
steps in the algorithm.

• Step 2 : Neural Trace Generation
For each normalised feature value zij, a corresponding neural
trace is generated by applying a composition of chaotic maps.
The generation process begins with an initial neural activity,
denoted as q. Here, q serves as a hyperparameter, and its
value is tuned between 0.01 to 0.99 with a step value 0.01 dur-
ing training to optimise performance. The dataset was split
with 20% allocated for testing and remaining 80% for training.
The chaotic maps are iteratively composed, transforming the
initial neural activity based on the value of zij, to produce a
unique neural trace for each feature. Suppose f and g are the
chaotic maps and using f ◦ g for generating neural trace, the
neural trace can be mathematically represented as

N = {q, f ◦ g(q), ( f ◦ g)2(q) = f ◦ g ◦ f ◦ g(q), . . . , ( f ◦ g)T(q)}.

This neural trace (with firing time T) serves as the foundation
for the feature extraction process in the subsequent steps of
the algorithm.

• Step 3 : Feature Extraction
In the next phase, feature extraction is performed by analysing
the generated neural trace corresponding to each zij. Given
n features, we require n instances of the composition of
chaotic maps f and g, denoted as f1 ◦ g1, f2 ◦ g2 . . . , fn ◦ gn,
corresponding to each zi1, zi2, . . . , zin.

The neural trace

Nj = {q, f j ◦ gj(q), ( f j ◦ gj)
2(q) = f j ◦ gj ◦ f j ◦ gj(q), . . .}

where j = 1, 2, . . . , n, evolves under the influence of
the chaotic map composition f j ◦ gj until it reaches an ϵ-
neighborhood of the corresponding stimulus, zij. For this
algorithm, the noise ϵ is set to a value of 0.25, meaning the
neural trace halts when its trajectory comes within 0.25 units
of the feature zij. Once this condition is met, the mean value
of the neural trace up to this point, tij is computed. This mean
serves as a summary statistic for the chaotic behavior of the
neural trace, capturing essential information about the feature
zij. The resulting mean value for each trajectory

{(ti1, ti2, . . . , tin) : i = 1, 2, . . . , m}

will be utilised in the subsequent classification step. This
computation of mean is performed for each feature of each
training instance of each class.

• Step 4 : Classification
Once the mean of the neural trace is computed for each
zij, they can be either classified using cosine similarity or
Random Forest Algorithm (Breiman 2001).

1. Cosine Similarity(Cos) classifier: In this approach, the trans-
formed features are classified by computing the cosine similar-
ity between the feature vectors and the mean representation
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vectors of each class.
Let the given m data samples belongs to k classes.

{(xl11, xl12, . . . , xl1n), (xl21, xl22, . . . , xl2n), . . . , (xlr1, xlr2, . . . , xlrn)}

be the r samples in class l. After normalisation, the extracted
data be:

{(tl11, tl12, . . . , tl1n), (tl21, tl22, . . . , tl2n), . . . , (tlr1, tlr2, . . . , tlrn)}.

Then the mean representation vector corresponding to the
class l can be defined as:

M(l) =


lr

∑
i=l1

ti1

r
,

lr

∑
i=l1

ti2

r
, . . . ,

lr

∑
i=l1

tin

r

 .

In order to classify a particular test data instance
Xi = (xi1, xi2, . . . , xin), calculate the cosine similar-
ity of extracted feature vector of the data instance
Ti = (ti1, ti2, . . . , tin) with the mean representation vec-
tors of each class {M(1), M(2), . . . , M(l), . . . , M(k)}. Cosine
similarity is defined as follows :

cos θ =
M(j) · Ti

||M(j)|| ||Ti||
where j = 1, 2, . . . , l, . . . k. The data instance will belong to the
class with least value.

2. Random Forest (RF) classifier: Random Forest (Breiman 2001)
is a powerful machine learning algorithm that employs tech-
nique of bagging with numerous decision trees and consoli-
dates their predictions to attain a high degree of classification
accuracy. The RF classifier can adeptly manage the non-linear
interactions inherent in the chaotic dynamics of the neural
trace by utilising the diversity of decision trees. Instead of
classifying using cosine similarity, the transformed dataset

{(tl11, tl12, . . . , tl1n), (tl21, tl22, . . . , tl2n), . . . , (tlr1, tlr2, . . . , tlrn)}

is classified using Random Forest Algorithm. The number
of estimators for Random Forest Algorithm was optimised
through 5-fold cross-validation selecting from the values
1, 10, 100, 1000, 10000.

While extracting features for classification using Random Forest
Algorithm, instead of tuning q value again for neural trace, the
value of q tuned for each dataset in Cos Classifier is reused. Thus
both Cos and RF classifiers used same values of q, which is indi-
cated in Table 3, Table 4, Table 5 and Table 6. The flowchart (Figure
4) depicts the proposed algorithm. Both methods offer distinct
advantages, and the choice between them depends on the specific
characteristics of the dataset and the performance requirements of
the task.

RESULTS AND ANALYSIS

In this section, we present the F1 Score (Christen et al. 2023) results
for the proposed algorithm using four different compositions of
chaotic maps. The classification was performed on 10 different
datasets, and we report the F1 scores for two classification methods:
Cosine Similarity and Random Forest (RF). The F1 Score, which
balances precision and recall, provides a robust measure of the
classifier’s performance across varying data characteristics.

■ Table 2 Description of datasets used in this study.

Dataset Features Classes Samples

Iris 4 3 150

Haberman’s Survival 3 2 306

Seeds 7 3 210

Statlog (Heart) 13 2 270

Ionosphere 34 2 351

Bank Note Auth. 4 2 1372

Breast Cancer Wis. 31 2 569

Wine 13 3 178

Penguin 4 3 342

Sonar 60 2 208

The datasets used in this evaluation are as follows: Iris, Haber-
man, Seeds, Statlog, Ionosphere, Bank, Breast Cancer, Wine, Penguin,
and Sonar. Table 2 shows the number of features and samples in
each dataset used in this study. For each dataset, the F1 scores for
both Cosine Similarity and Random Forest classifiers are presented,
allowing for a comprehensive comparison of the algorithm’s effec-
tiveness across different domains (Sethi et al. 2023).

Tables 3 and 4 display the training and testing F1 scores of the
proposed Neurochaos Learning algorithm utilising the composi-
tion of the Skew Tent Map and the Logistic Map. These tables
illustrate the algorithm’s performance over the chosen ten unique
datasets. Similarly, tables 5 and 6 substitute the Logistic Map with
the sin(πx) map, which possesses certain dynamical characteris-
tics akin to those of the Logistic Map. The performance of the
Neurochaos Learning algorithm is rigorously analysed and com-
pared utilising these compositions of chaotic maps across identical
datasets.

The performance of custom Random Forest (RF) algorithms,
where features are extracted using various compositions of 1D
chaotic maps and subsequently passed to the Random Forest al-
gorithm, was compared against standalone RF algorithm across
multiple datasets:

• Iris: The composition of the Skew Tent and Logistic Maps
(denoted as ToL and LoT) followed by classification using
Random Forest resulted in a perfect F1 Score of 1.0, achieving
100% classification accuracy. This demonstrates the power-
ful synergy between chaotic feature extraction and the RF
classifier for this dataset.

• Penguin: A similar performance boost was observed when
using features from the composition of the sin(πx) and Skew
Tent Maps (denoted as ToS and SoT) with RF classification,
also reaching an F1 Score of 1.0, marking complete accuracy
in classifying the Penguin dataset.

• Cancer: The combination of the Skew Tent and sin(πx) maps
(ToS) followed by RF classification delivered a notable im-
provement of 4.79% over standalone RF. Additionally, the
composition of the Skew Tent and Logistic Maps (ToL) with
RF also exhibited a 3.81% increase in performance.

• Wine: Minor yet consistent improvements were observed,
with the LoT RF and ToS RF algorithms outperforming stan-
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■ Table 3 Training & Testing F1 scores: L ◦ T Map -Based NL Algorithm.

Sl No Dataset Initial Neural Activity(q) F1 Score using Cosine Similarity F1 Score using Random Forest

Training Testing Training Testing

1 Iris 0.98 0.912 0.916 0.948 1.000

2 Haberman 0.27 0.584 0.569 0.559 0.456

3 Seeds 0.78 0.831 0.652 0.889 0.926

4 Statlog 0.78 0.810 0.792 0.843 0.774

5 Bank Note Authentication 0.28 0.858 0.774 0.938 0.911

6 Breast Cancer Wisconsin 0.74 0.931 0.903 0.949 0.918

7 Ionosphere 0.75 0.803 0.727 0.923 0.893

8 Wine 0.63 0.950 0.862 0.977 0.976

9 Sonar 0.45 0.757 0.703 0.818 0.775

10 Penguin 0.98 0.957 0.968 0.918 0.920

■ Table 4 Training & Testing F1 scores: T ◦ L Map -Based NL Algorithm.

Sl No Dataset Initial Neural Activity (q) F1 Score using Cosine Similarity F1 Score using Random Forest

Training Testing Training Testing

1 Iris 0.98 0.920 0.910 0.946 1.000

2 Haberman 0.27 0.594 0.557 0.573 0.483

3 Seeds 0.03 0.876 0.783 0.893 0.822

4 Statlog 0.23 0.807 0.710 0.842 0.797

5 Bank Note Authentication 0.95 0.858 0.836 0.863 0.843

6 Breast Cancer Wisconsin 0.54 0.930 0.849 0.952 0.954

7 Ionosphere 0.50 0.808 0.691 0.917 0.909

8 Wine 0.63 0.957 0.943 0.973 0.968

9 Sonar 0.46 0.750 0.734 0.813 0.798

10 Penguin 0.25 0.959 0.960 0.911 0.917

dalone RF by 1.04% and 3.73%, respectively. This highlights
the advantage of feature extraction using chaotic maps for
this dataset.

The custom algorithms using Cosine Similarity classifier (Cos)
for classification, after feature extraction from 1D chaotic maps,
were also compared against the original ChaosNet algorithm (Sethi
et al. 2023):

• Sonar: ToL Cos and SoT Cos significantly outperformed Chaos-
Net, showing improvements of 14.15% and 12.80%, respec-

tively. Additionally, ToS Cos exhibited a solid 10.08% increase,
underscoring the effectiveness of these map compositions in
enhancing classification accuracy for the Sonar dataset.

• Cancer: The LoT Cos and SoT Cos algorithms outperformed
ChaosNet by 6.86% and 9.41%, respectively, indicating their
superior performance for this dataset, especially in capturing
complex patterns.

• Penguin: The performance of LoT Cos and SoT Cos were
nearly equivalent to ChaosNet, with only marginal improve-
ments.
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■ Table 5 Training & Testing F1 scores: T ◦ S Map -Based NL Algorithm.

Sl No Dataset Initial Neural Activity (q) F1 Score using Cosine Similarity F1 Score using Random Forest

Training Testing Training Testing

1 Iris 0.98 0.884 0.916 0.966 0.889

2 Haberman 0.28 0.594 0.557 0.546 0.431

3 Seeds 0.04 0.898 0.783 0.931 0.902

4 Statlog 0.56 0.806 0.671 0.837 0.791

5 Bank Note Authentication 0.95 0.852 0.850 0.941 0.911

6 Breast Cancer Wisconsin 0.54 0.928 0.849 0.946 0.963

7 Ionosphere 0.50 0.808 0.691 0.899 0.876

8 Wine 0.63 0.957 0.943 0.973 0.968

9 Sonar 0.46 0.755 0.708 0.808 0.798

10 Penguin 0.04 0.950 0.965 0.949 1.000

■ Table 6 Training & Testing F1 scores: S ◦ T Map -Based NL Algorithm.

Sl No Dataset Initial Neural Activity (q) F1 Score using Cosine Similarity F1 Score using Random Forest

Training Testing Training Testing

1 Iris 0.98 0.894 0.917 0.948 0.928

2 Haberman 0.95 0.591 0.490 0.540 0.447

3 Seeds 0.04 0.878 0.749 0.915 0.897

4 Statlog 0.01 0.811 0.735 0.824 0.810

5 Bank Note Authentication 0.28 0.858 0.771 0.924 0.904

6 Breast Cancer Wisconsin 0.70 0.927 0.924 0.961 0.901

7 Ionosphere 0.76 0.803 0.876 0.873 0.807

8 Wine 0.63 0.949 0.888 0.971 0.918

9 Sonar 0.46 0.761 0.725 0.813 0.775

10 Penguin 0.76 0.954 0.964 0.946 1.000

• Statlog: LoT Cos demonstrated superiority over ChaosNet,
with a 7.32% improvement. This further emphasizes the
strength of the proposed algorithm in specific datasets where
chaotic features provide additional discriminative power.

• Haberman: In this dataset, LoT Cos showed a modest improve-
ment of 1.61% over ChaosNet, indicating enhanced classifica-
tion performance even in more challenging datasets.

Table 7 compares the best F1 scores of our proposed algorithm
with that of ChaosNet and standalone Random Forest algorithms.

Figures 5 and 6 gives a comparison of F1 scores of proposed algo-
rithm with ChaosNet and Random Forest Algorithm on different
datasets.

Overall, the analysis highlights that the proposed Neurochaos
Learning algorithms using different 1D chaotic map compositions
for feature extraction outperform classical stand-alone classifiers
like Random Forest and ChaosNet on various datasets. The non-
commutative nature of map compositions plays a significant role in
the performance variations observed, with different combinations
producing distinct improvements depending on the dataset and
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■ Table 7 Comparison of best F1 scores achieved by the proposed algorithms, Random Forest and ChaosNet. ‘Cos’ stands for
Cosine Similarity based classifier used in NL.

Dataset ChaosNet F1 Score Standalone RF F1 Score Best F1 Score -Cos Algorithms Best F1 Score - Custom RF

Iris 1.000 1.000 0.917 (S ◦ T Cos) 1 (L ◦ T RF, T ◦ L RF)

Haberman 0.560 0.560 0.569 (L ◦ T Cos) 0.483 ( T ◦ L RF)

Seeds 0.845 0.877 0.783 (T ◦ S Cos, T ◦ L Cos ) 0.926(L ◦ T RF)

Statlog 0.738 0.838 0.792 (L ◦ T Cos) 0.810 (S ◦ TRF)

Bank Note Authentication 0.845 0.974 0.85 (T ◦ S Cos) 0.911 (L ◦ T RF, T ◦ S RF)

Breast Cancer Wisconsin 0.927 0.919 0.924(S ◦ T Cos) 0.963(T ◦ S RF)

Ionosphere 0.860 0.909 0.876(S ◦ T Cos) 0.909(T ◦ L RF)

Wine 0.976 0.966 0.943 (T ◦ L Cos, T ◦ S Cos) 0.976 (L ◦ T RF)

Sonar 0.643 0.798 0.734 (T ◦ L Cos) 0.798(T ◦ L RF, T ◦ S RF)

Penguin 0.964 0.929 0.968(L ◦ T Cos) 1.000 (T ◦ S RF , S ◦ T RF)

Figure 5 Comparison of F1 scores of Algorithms computed using cosine similarity on different datasets.

Figure 6 Comparison of F1 scores of custom Random Forest algorithms on different datasets.
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classification method used.

CONCLUSION

The results demonstrate the robust performance of the proposed
neurochaos-based algorithms on diverse datasets. Across multiple
datasets, custom algorithms that use the composition of 1D chaotic
maps, such as Skew Tent, Logistic, and sin(πx) maps, consistently
outperform traditional models like standalone Random Forest and
ChaosNet. Notably, the improvements are especially pronounced
in datasets such as Cancer, Penguin, and Sonar, indicating that the
chaotic map-based feature extraction technique offers substantial
advantages in these scenarios. The Lyapunov exponent for each
of these composition of 1D chaotic maps is greater than 1.0, and
their fixed points are unstable, indicating they are highly chaotic.
Building on the promising results of the current study, there are
several avenues for future research that can further enhance the
performance and applicability of the proposed neurochaos-based
algorithms:

• Exploring New Compositions of 1D Chaotic Maps: We plan
to investigate different new combinations of 1D chaotic maps
to uncover compositions that yield even better F1 scores. The
non-commutative nature of these compositions offers a rich
space to explore for improving classification results across
diverse datasets.

• Application to Varied Datasets: Expanding the analysis to
a broader range of datasets, particularly those with more
complex or noisy structures, will help assess the generalis-
ability and robustness of the custom algorithms in different
real-world scenarios.

• Impact of Chaotic Map Compositions on Performance: A
deeper investigation into how different chaotic map compo-
sitions affect algorithm performance can reveal valuable in-
sights. Understanding the influence of map properties, such
as their sensitivity to initial conditions and chaotic behav-
ior, could lead to optimised feature extraction techniques for
specific types of data.

• Incorporating Noise Robustness: Analysing the performance
of these algorithms under varying noise levels can offer in-
sights into their stability and resilience. Future work could
involve introducing noise into the datasets and observing how
different compositions of chaotic maps handle this, with the
goal of developing more noise-tolerant algorithms.

These research directions not only offer opportunities to im-
prove the current algorithms but also contribute to advancing the
broader field of chaos theory-based machine learning.
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