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Abstract  Keywords 

This paper explores advanced strategies for improving ATC radar system 
reliability by addressing interference challenges from airborne systems such 
as ACAS, DME, and ADS-B, as well as environmental influences. Proposed 
solutions include the integration of autonomous receivers, hybrid radar 
architectures, and machine learning models for enhanced signal processing. 
Additionally, the paper examines innovative algorithms for real-time 
compensation of ionospheric distortions and atmospheric influences, 
ensuring precise long-range detection. The study demonstrates how modern 
techniques improve radar performance, reduce false alarms, and enhance 
detection accuracy.  Future research should focus on integrating ADS-B and 
multi-positioning systems into ATC structures while optimizing 
compensation algorithms to ensure operational efficiency. The structural 
models considered in the work show that autonomous receivers are capable 
of detecting false alarms and thereby increasing the reliability of radar 
information, and hybrid radar systems effectively suppress interference and 
improve target tracking. Implementations of atmospheric compensation 
algorithms show promising results in minimizing errors caused by these 
factors. Additionally, machine learning applications have been shown to 
improve signal classification accuracy and adaptability in dynamic 
environments. The results obtained highlight the need to modernize ATC 
radar systems to address growing air traffic density and the growing 
prevalence of airborne interference sources. It is shown that future directions 
require studying the integration of new technologies such as ADS-B and 
multilateration into the АТС structure, optimizing ionospheric and 
atmospheric compensation algorithms, and conducting tests to validate these 
solutions. By addressing these challenges, the proposed methodologies 
ensure enhanced safety margins and operational efficiency for the aviation 
sector. 
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1. Introduction 

Reliable radar functionality is a cornerstone of modern 
air traffic control (ATC) systems, ensuring safety and 
efficiency in increasingly congested airspace. However, 

ATC radar faces growing challenges due to interference 
from onboard avionics and environmental conditions. 
Electronic noise, environmental factors, and signal 
interference from aircraft avionics such as ACAS, DME, 
and ADS-B pose significant challenges to ATC radar 
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performance. These interferences can result in false 
alarms, loss of radar signals, or complete system failure. 
Moreover, overlapping frequency bands, particularly at 
1030 MHz and 1090 MHz, exacerbate these issues, 
leading to increased signal congestion and reduced 
reliability. For definitions of key terms and abbreviations 
used in this paper, please refer to the Nomenclature 
section. 

Reliable radar functionality is critical not only for 
ensuring safety but also for optimizing operational 
efficiency within increasingly congested skies. Errors in 
radar perception and data processing can directly 
compromise ATC decisions, risking both safety and 
operational efficiency. The incorporation of automation 
and advanced technologies further underscores the 
need for robust radar systems to support real-time 
decision-making (Farina and Pardini, 1980; Shorrock, 
2007; Perry, 1997). 

Moreover, the interaction between radar signals and the 
ionosphere presents a significant challenge in the field 
of radar technology. This paper also explores the 
methodologies developed to mitigate these ionosphere 
effects, particularly focusing on long-range detection 
radars (Tersin, 2020).  

Despite advancements in radar technology, current 
systems are vulnerable to various interferences. These 
interferences stem from both external environmental 
factors and signals generated by onboard systems. ACAS 
and ADS-B emit signals in frequency bands that overlap 
with secondary radar systems, resulting in false alarms, 
interference, and missed detections. In addition, 
interference from natural and man-made sources makes 
it difficult to identify legitimate targets, especially in 
high-traffic airspace (Haykin, 1991). 

Traditional methods, including static filtering and basic 
signal-to-noise ratio (SNR) enhancements, have shown 
limited efficacy in mitigating these challenges. As air 
traffic continues to grow, the limitations of existing 
radar systems necessitate innovative approaches that 
enhance both reliability and accuracy. This study aims to 
analyze and evaluate advanced methodologies to 
enhance the reliability of ATC radar systems by 
mitigating interference from both natural and artificial 
sources. Specifically, we propose the integration of 
autonomous receivers, machine learning algorithms for 
signal classification, and hybrid radar architectures. 
These approaches address the growing complexity of 
modern airspace while ensuring high-precision tracking 
and interference suppression. 

 

 

 

 

2. Method 

2.1. Features of automatic processing of radar 
information to eliminate the negative influence 
of the atmosphere on the propagation of radio 
waves 

This section outlines the methodology used to evaluate 
and mitigate interference effects on ATC radar systems. 
The study employs a multi-faceted approach, 
integrating experimental measurements, simulation-
based analysis, and advanced signal processing 
techniques. The methodology consists of three primary 
components: evaluating the impact of environmental 
and onboard system interference, testing autonomous 
receivers and hybrid radar architectures, and applying 
machine learning techniques for signal classification and 
noise suppression. This study primarily focuses on a 
theoretical analysis based on a comprehensive literature 
review and simulation-based modeling. The proposed 
methodologies for improving radar reliability were 
evaluated using previously published experimental data 
and validated through computational models. 

As is known, the Earth’s atmosphere has a strong 
influence on the propagation of a radar signal. The 
troposphere is characterized by significant refraction 
caused by gradients in dielectric constant due to 
changes in temperature, pressure and water vapor 
content. This causes radar waves to be deflected and 
introduces attenuation, especially in adverse weather 
conditions such as rain and fog. 

Above the troposphere, the interference zone, which lies 
between 20 and 50 kilometers, exhibits near-free-space 
conditions with minimal refraction effects. Beyond this 
zone, the ionosphere, extending up to 600 kilometers, 
contains ionized particles that cause significant 
phenomena such as refraction, absorption, polarization 
rotation, and noise emission. While these effects 
diminish at higher radar frequencies, they are critical at 
frequencies below 6 MHz and above 30 MHz. Near the 
Earth's surface, radar waves also experience diffraction 
effects, such as knife-edge or cylinder-edge diffraction, 
when encountering physical obstructions. 

Refraction, in particular, is a critical phenomenon in 
radar wave propagation, arising due to variations in the 
atmospheric refractive index. This index, defined as the 
ratio of the electromagnetic wave velocity in free space 
to that in a medium, is mathematically expressed as: 

𝑛 =
𝑐

𝑣
 (1) 

𝑐: the speed of light in free space 

𝑣: the wave group velocity in the medium 

Variations in n with altitude result in bending radar 
waves downward, leading to angular errors in elevation 
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measurements. The bending angle of radar waves can be 
modeled as proportional to the refractivity gradient, 
where h is the altitude. Additionally, in surface-level 
phenomena, conditions such as ducting can occur, 
especially over warm sea surfaces, where waves bend 
excessively and sometimes follow the Earth's curvature. 
These refractive effects are typically modeled using a 
stratified atmospheric approach, where the atmosphere 
is treated as layers with constant refractive indices. This 
model aids in estimating errors in range and time-delay 
measurements (Fig.1) (Mahafza, 2009). 

Errors caused by the ionosphere can severely 
compromise radar accuracy. To mitigate such 
interferences several approaches, algorithms, and 
methods for processing radar data are available. 

Each algorithm has its unique strengths and weaknesses, 
which are crucial for optimizing radar performance. 
Here’s a brief overview of the existing algorithms: 

• Automatic Processing Algorithms: These 
algorithms process radar data in real-time, 
enabling continuous adjustments to compensate 
for ionospheric effects. 

• Compensation Algorithms: These algorithms 
correct signal propagation delays in long-range 
detection radars, improving measurement 
accuracy. 

• Data Processing Algorithms: This category 
includes methods that analyze radar data in 
conjunction with information from auxiliary 
radio-electronic facilities. These algorithms aim 
to improve the overall accuracy of radar systems 
by integrating multiple data sources, thus 
providing a more comprehensive understanding 
of the ionospheric influence.  

• Frequency-Specific Algorithms: The 
effectiveness of these algorithms can vary 
significantly depending on the frequency range 
of the radar system. Some algorithms are 
optimized for specific frequency bands, which 
can enhance their performance in particular 
operational contexts.  

• Satellite Navigation Data Utilization: Some 
algorithms leverage data from navigation 
satellites (like GLONASS, GPS, and Galileo) to 
determine electron and ion concentrations in 
the ionosphere. This information is crucial for 
making informed adjustments to radar 
operations, ensuring that ionospheric effects are 
accounted for accurately. 

When operating in the ionospheric analysis mode, the 
range of distances should cover the entire altitude range 
of interest from 90 to 600 km, which contains the most 
concentrated layers of the ionosphere. Since the most 

important directions for the radars considered in this 
work are the entire azimuth sector in the lower elevation 
angle (from 0.5° to 10° from the tangent to the Earth in 
the projection of the phase center of radiation onto it), 
the error correction must be carried out in this region of 
space. For the center of the lower elevation angle of the 
radars considered, with an average radius of the Earth 
Rz = 6371 km, the range of distances (from OA to OB, 
where OA and OB are boundary points shown in Fig. 2) 
will be from 1074 to 2830 km. 

• Real-Time Compensation Algorithms: Innovative 
algorithms that enabled real-time compensation 
for ionospheric effects on radar signals. These 
algorithms were designed to function without 
the need for additional measurement tools, 
relying solely on the radar systems’ inherent 
capabilities. 

• Practical Implementation: Practical results from 
experiments were presented, demonstrating the 
successful application of these algorithms in 
long-range detection radars. (Tersin, 2020). 

 

a) 

 

b) 

Fig. 1. Spatial structure of the earth`s atmosphere (a) 
and distortion of radio waves due to variations in 
the refractive index of atmospheric layers (b) 
(Mahafza, 2009) 
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Fig. 2. Visualization of zenith angles and distances to the spacecraft (Logovsky, 2016) 

2.2. Analysis of methods for processing radar 
information in conditions of signal-like 
interference 

In conditions of signal-like interference caused by 
multipath propagation or signal retransmission, existing 
methods of processing radar information are not 
effective enough. This interference makes it difficult to 
distinguish true targets from false marks. The aim of the 
approach is to develop and analyze a simulation model 
that allows evaluating the efficiency of radar target 
selection using spatial separation of measurements from 
two spaced radars. The main focus is on processing 
radar information under conditions of signal-like 
interference. 

Two key methods are used: 

• Spatial separation of measurements: data from 
two separated radars is used for target selection. 

• Comparison of target coordinates: the distance 
between the measured target coordinates of the 
two radars is calculated. If this distance (δr(t)) is 
less than a given threshold (μобн) the target is 
considered true (Fig. 3). 

𝛿𝑟(𝑡) = √(𝑋2 − 𝑋1)2 + (𝑌2 − 𝑌1)2 + (𝑍2 − 𝑍1)2  (2) 

(𝑋1, 𝑌1, 𝑍1) : the target coordinates measured by 
radar 1 

(𝑋2, 𝑌2, 𝑍2) : the target coordinates measured by 
radar 2 

𝐶 (target) : true position of the target  

𝐶1 and 𝐶2 : measured positions of the target by the 
first and second radars, respectively 

𝑆1 and 𝑆2 : measurement uncertainty regions 

𝛿(𝑡)  : distance between the coordinates 
measured by the two radars 

Noise-like interference is random and uncorrelated with 
the radar's probing signal. Noise-like interference 
affects both radar stations independently. Due to the 
separation of radar 1 and radar 2, the measured 
coordinates of the same target remain consistent across 
stations, whereas false detections (due to noise) vary 
significantly. Spatial disparity (δr(t)) helps filter out 
these inconsistent false alarms, improving the accuracy 
of detection. 

Signal-like interference typically generates false marks 
that are spatially inconsistent across radar stations.  By 
comparing target positions from both stations, the 
spatial analysis identifies and discards these 
inconsistencies, leveraging the fact that true targets 
align in measurements from both radar 1 and radar 2. The 
model's reliance on spatial analysis makes it highly 
suitable for real-world radar applications in complex 
environments, such as: 

• Air traffic control, where signal reflections from 
terrain can mimic targets. 

• Surveillance in environments with deliberate 
jamming (signal-like interference). 

• Weather monitoring, where dense noise fields 
and reflections are common. 

By combining spatial analysis with conventional 
detection techniques, the model significantly improves 
the probability of correct target detection while 
reducing false alarms caused by interference 
(Parshutkin, Levin, Galandzovskiy, 2020) 
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Fig. 3. Determining the coordinates of a radar target 

 

Fig. 4. Square-law signal detector (Etim, 2013) 

2.3. Advancements in Digital Signal Processing for 
Modern Radar Systems 

Digital Signal Processing (DSP) has revolutionized radar 
systems, providing tools to improve signal detection, 
reduce noise, and handle clutter. Radar works by 
transmitting electromagnetic waves and analyzing the 
echoes reflected by objects. These echoes contain 
information about the target’s location, speed, and size. 
However, radar signals can be contaminated by noise, 
clutter (unwanted echoes from the ground or sea), and 
interference. DSP is the set of mathematical techniques 
applied to these signals to clean, enhance, and extract 
useful information (Fig. 4). 

CFAR is a dynamic thresholding technique that helps 
distinguish real targets from clutter. It works by: 

• Analyzing the background noise level in real 
time. 

• Setting a detection threshold that adapts based 
on this noise level to avoid too many false alarms. 

For example, in a busy airport, CFAR ensures the radar 
can detect aircraft without being confused by reflections 
from nearby buildings or vehicles. 

DSP enhances SAR imaging, a technology used to create 
high-resolution radar images: 

• SAR can produce detailed maps of terrain or 
objects, even in bad weather or through 
obstacles like clouds and smoke. 

• DSP improves the clarity of these images by 
removing distortions caused by movement or 
environmental conditions. 

DSP can make radar systems smarter, faster, and more 
reliable: 

• Smarter: With adaptive algorithms that adjust to 
changing environments. 

• Faster: By processing signals in real-time, 
enabling rapid decision-making. 

• Reliable: Through techniques like CFAR that 
reduce false alarms and improve detection 
accuracy. 

DSP in radar systems, addressing key challenges like 
noise suppression, clutter rejection, and speed 
measurement. The proposed methods are foundational 
for improving radar systems' performance, making them 
applicable across industries (Etim and Otu, 2013; 
Thurber, 1983; Li, 2024). 
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2.4. Interference caused by the frequency range and 
operating modes of secondary surveillance radar 
systems 

Radar systems play a critical role in ATC operations by 
providing essential data on aircraft positions and 
movements. Advancements in radar data processing 
have significantly improved the capacity of these 
systems to handle complex traffic scenarios. Secondary 
radar systems, for instance, were introduced to address 
the limitations of primary radars by reducing clutter and 
enhancing identification accuracy (Farina and Pardini, 
1980). 

Modern radar systems face numerous challenges that 
compromise their reliability. Among these, interference 
from onboard systems like ACAS and ADS-B is 
particularly problematic. The critical impact of such 
interferences can disrupt ATC operations and reduce 
situational awareness (Flavio and Camargo, 2011). 

Clutter remains another persistent issue in radar 
operations classified into environmental and system-
generated categories, which pose significant challenges 
to signal detection (Haykin, Stehwien, Deng, 1991). 

Regulation of the use of radiofrequency spectrum for 
radar surveillance systems is a complex and extremely 
important task in conditions of increasing air traffic 
intensity. Particular attention is paid to the 1030/1090 
MHz frequency bands, which are the basis for the 
operation of key air traffic control and surveillance 
systems. This aspect requires constant monitoring, 
coordination, and implementation of innovative 
solutions to ensure the safe, efficient, and uninterrupted 
functioning of the aviation industry. The following 
systems use this band: 

1. Mode A/C radar transponder. 

2. Mode S radar. 

3. Distance Measuring Equipment (DME). 

4. Automatic Dependent Surveillance-Broadcast 
Technology. 

5. Multilateration System. 

6. Airborne Collision Avoidance System (ACAS) 
(Dessì, 2021). 

Radar signals are used by the ACAS to identify nearby 
aircraft and provide pilots with resolution alerts to 
prevent collisions. ACAS's radar emissions, however, 
have the potential to disrupt other radar systems, 
including those utilized by Air Traffic Control (ATC). 
False warnings, a loss of radar returns, or even complete 
radar failure can result from this interference (Zaidi, 
2023).  

One of the most significant contributors to radar 
interference in ATC systems is the transmitter of the 

ACAS. This overlap can result in the detection of non-
existent targets or the failure to track actual aircraft, 
leading to erroneous. Specifically, the transmission of 
Resolution Advisory (RA) signals by ACAS can produce 
false echoes on ATC radar displays, further complicating 
traffic management (Aliyev and Isgandarov, 2023). 

Another issue arises from the high power output of the 
ACAS transmitter, which can saturate the ATC radar 
receiver. This overload may impair the radar's ability to 
process incoming signals accurately, resulting in 
temporary or complete loss of target tracking. 

The ACAS receiver also contributes to operational 
challenges. Designed to detect signals in the 1090 MHz 
frequency band receiver may misinterpret radar signals, 
identifying false targets or misrepresenting genuine 
radar data. The potential for interference increases 
when two aircraft equipped with ACAS are in close 
proximity, as their surveillance ranges overlap. This can 
lead to mutual interference, degrading the overall 
effectiveness of both systems and causing unnecessary 
alerts (Fig. 5). 

2.5. Analysis of the current situation with congestion 
in the 1030-1090 MHz range on the example of 
the JFK airport 

To identify the congestion of the 1030-1090 MHz 
frequency band, aircraft takeoffs and landings at John F. 
Kennedy International Airport (JFK) are analyzed from 
1030/1090 MHz systems and radar data we can 
understand the following (Fig.6): 

• Data Sources: The analysis utilized recordings from 
the 1030/1090 MHz systems and radar data from 
the Mode S radar at JFK airport. This combination 
allowed for a comprehensive understanding of 
aircraft movements during the observation period. 

• Identification of Takeoffs: To identify aircraft taking 
off, the study applied specific filters based on range 
and altitude. The aircraft were considered to be 
taking off if they were located near the airport and 
exhibited an increasing range rate from the airport 
over the duration of their flight track. 

• Identification of Landings: Similarly, landing aircraft 
were detected by monitoring their tracks, which 
ended at the airport surface. The analysis confirmed 
that these aircraft showed a decreasing range rate 
on average as they approached the airport.  

• Purpose of the Analysis: The overall goal of this 
analysis was to construct a timeline of aircraft 
operations at JFK airport, which would help in 
understanding the traffic patterns and operational 
efficiency of the airport during the observation 
period. 
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a) 

 

b) 

Fig. 5. Use of the 1030-1090 MHz band: a) by various systems (Dessì, 2021); b) Potential interference interactions 
between ACAS and ATC services (Zaidi, 2023) 
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Fig. 6. Spatial distribution of aircraft by distance from a given reference point (e.g. JFK airport)

In summary, the 1030-1090 MHz frequency band is 
heavily utilized by various critical aviation systems, and 
the expected increase in traffic due to regulatory 
mandates highlights the need for careful management to 
mitigate overload and ensure safe operations.  

Continuous monitoring of the 1030/1090 MHz 
frequency band is essential to address the overload and 
its consequences. The paper highlights the importance 
of using detailed data from 1030/1090 MHz monitoring 
to understand unusual encounters and improve 
coordination. This data can help identify patterns and 
potential overload situations, allowing for timely 
interventions (Panken, 2012). 

Cumulative Aircraft Count: Figure 6 shows a cumulative 
count of aircraft as a function of distance from the radar 
source, which is typically located at JFK. This aligns with 
the observation that the cumulative number of aircraft 
grows linearly with range, at a rate of about 3 aircraft per 
nautical mile (NM) away from the radar. 

Uniform Distribution: The data may indicate that the 
distribution of aircraft is approximately uniform in 
range, meaning that as you move away from JFK, the 
density of aircraft remains relatively consistent. This is 
supported by the finding that the local density of aircraft 
is higher near JFK and diminishes as the distance 
increases.  

Vertical Spacing: The vertical spacing in figure 6 could 
represent the number of aircraft detected at various 
ranges. If the spacing is approximately uniform, it 
suggests that aircraft are distributed evenly across the 
range, although this may not reflect their actual 
distribution in the airspace. 

Line-of-Sight Limitations: The figure may also highlight 
the limitations of radar detection, particularly at longer 
ranges and lower altitudes. For instance, aircraft at long 
ranges and low altitudes may fall below the radar's line 
of sight, which is a critical factor in understanding the 
data presented.  

Implications for Air Traffic Management: Understanding 
the range distribution of aircraft is crucial for air traffic 
management and safety. It helps in assessing the 
effectiveness of radar systems and the potential for 
collision avoidance, especially in high-density areas like 
JFK. 

In summary, figure 6 provides a visual representation of 
the range distribution of aircraft, illustrating how 
aircraft density varies with distance from JFK Airport. It 
emphasizes the uniform distribution of aircraft within a 
certain range and highlights the limitations of radar 
detection, which are essential for effective air traffic 
management and safety protocols. The insights are vital 
for understanding aircraft behavior in busy airspaces. 

2.6. The Consequences of Spectrum Overload on 
ATC Surveillance Systems 

The dual interference pathways—through both the 
transmitter and receiver—pose significant risks for ATC 
operations: 

• False Targets: Cluttered radar displays due to 
phantom signals from ACAS transmitters. 

• Signal Loss: Overloaded receivers fail to track 
real targets effectively. 

• Operational Confusion: Mutual ACAS 
interference between aircraft generates 
conflicting or redundant advisories, increasing 
pilot and controller workload. 

https://doi.org/10.23890/IJAST.vm06is01.0105
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These issues underline the need for improved spectrum 
management and the integration of interference-
resilient systems into ATC operations (Zaidi, 2023). 

Spectrum regulation in Europe is based on documents 
such as the Surveillance Performance Interoperability 
Implementation Rule (SPI IR). These standards require 
the implementation of harmonized measures among all 
Member States to minimize the negative impact on the 
frequency range. Harmonization of regulatory 
approaches at the level of the entire region plays a key 
role in the creation of a resilient surveillance system. 
This includes both technical measures to reduce 
spectrum load and organizational measures to ensure 
the consistency of the use of systems in different 
countries (Civil Aviation Authority [CAA], 2024). 

A poor radio frequency environment may lead to the 
need to deploy more surveillance sensors to maintain 
the required performance level (e.g. additional ADS-B 
stations) or to use other technical systems operating on 
a different radio frequency. One of the objectives of the 
SPI IR rules is to maintain the performance of the 1030 
MHz and 1090 MHz frequencies in the Single European 
Airspace, thereby avoiding the need to introduce new 
surveillance radio frequencies (Maggıore, 2021; CAA, 
2024). 

Excessive interrogations refer to repetitive or high-
frequency signals sent by surveillance systems to aircraft 
transponders that exceed their minimum operational 
threshold. This can result in the following: 

• Increased transponder loading: Transponders 
can become overloaded, reducing their ability to 
process incoming signals effectively. 

• Limited response signals: Transponders may not 
be able to respond to all interrogations if the 
loading exceeds their design capabilities. This is 
critical as it directly impacts the reliability of 
surveillance systems. 

• Potential system failures: Excessive 
interrogations can cause unexpected failures in 
transponders designed only to meet ICAO 
minimum standards. 

• Distortion: If a receiver has a large number of 
aircraft transponders in range, the large number 
of responses will cause interference and 
distortion. The receiver will have difficulty 
decoding the responses. Omnidirectional 
antennas are more susceptible to distortion than 
rotating antennas with a narrow beam. 

• Query conflict: If the number of queries sent 
from different surveillance interrogators is 
excessive, the queries arrive simultaneously and 
the transponder responds to only one of them 
(CAA, 2024). 

3. Results and Discussion 

3.1. Analysis of the possibilities and prospects of 
proposed new solutions 

This section is devoted to the development of proposed 
measures aimed at increasing the reliability of radar 
systems used in ATC. The methodology implies the use 
of autonomous receivers, combined radar schemes and 
machine learning tools, which will help cope with such 
problems. 

Significant advances in the field of radar signal 
processing include spatio-temporal adaptive processing 
(STAP). It combines spatial and temporal filtering, 
effectively suppressing interference, especially from 
moving objects. However, practical implementation of 
STAP in real ATC environments is hampered by high 
computational complexity. Incorporating machine 
learning techniques into radar systems opens up new 
prospects for improving their reliability. By training 
algorithms to recognize signals based on characteristic 
features and patterns, it becomes possible to adapt to a 
variety of interference situations without the need for 
detailed pre-tuning. (Pozesky and Mann, 1989). 

Figure 7 illustrates the filtering process, where the 
space-time adaptive method significantly reduces 
interference and improves signal clarity. By leveraging 
spatiotemporal filtering techniques, the system can 
efficiently suppress clutter and enhance target 
detection in complex ATC environments. The clutter 
Doppler frequency depends on the cone angle, making 
true space-time filtering essential for effective clutter 
suppression. Figure 7 illustrates this, showing clutter 
spectral power for a side-looking array antenna plotted 
against the cosine of the azimuth (ϕcos) and Doppler 
frequency (Df). The clutter spectrum appears as a 
diagonal ridge, modulated by the transmit beam (Aliyev 
and Isgandarov, 2024). 

 

Fig. 7. Fundamentals of spatiotemporal noise filtering 
(Bürger, 2006) 
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To effectively mitigate radar clutter and preserve target 
detectability, different signal processing techniques are 
employed. The following approaches illustrate key 
methods used in clutter suppression: 

• Temporal processing cancels the clutter 
spectrum's projection onto the Df axis using an 
inverse filter. However, this causes slow targets 
to be attenuated because the clutter notch is 
aligned with the transmit beam's Doppler 
response. 

• Spatial processing projects the clutter spectrum 
onto the ϕcos axis. While inverse spatial filters 
suppress clutter, they create a wide stop band, 
making the radar blind in the look direction, 
affecting both fast and slow targets. 

• Space-time processing leverages the clutter 
spectrum's narrow ridge-like structure. A space-
time filter forms a narrow clutter notch, 
preserving even slow targets in the pass band 
(Bürger, 2006; Velikanova, 2014). 

3.2. Justification for the Potential Application of the 
Kalman Filter in Signal Processing for ATC 
Systems 

Data processing in electronic systems is usually carried 
out using information about input signals and 
interference, parameters of measuring devices, and also 
about the aircraft movement. This prior knowledge is 
represented through mathematical models that describe 
signals, interference, and device characteristics. In the 
case where the hypothesis of a constant rate of change 
of phase coordinates for estimating range and speed is 
accepted, a linear state model can be written as a vector-
matrix equation: 

{

[𝑋(𝑘)] = [Ф] × [𝑋(𝑘 − 1)] + [Г] × [𝜉𝑋(𝑘 − 1)]

[
𝐷(𝑘)

𝑉(𝑘)
] = [

1 𝜏
0 1

] × [
𝐷(𝑘 − 1)

𝑉(𝑘 − 1)
] + [

1 0
0 0

] × [
𝜉𝐷(𝑘 − 1)

0
]
 (3) 

in algebraic form: 

{
𝐷(𝑘) = 𝐷(𝑘 − 1) + 𝑉(𝑘 − 1) + 𝜉𝐷(𝑘 − 1)

𝑉(𝑘) = 𝑉(𝑘 − 1)
 (4) 

𝐷(𝑘) : range to the aircraft  

𝑉(𝑘) : aircraft speed 

𝜏 : sampling interval  

𝜉𝐷 : disturbance noise, taking into account 
atmospheric turbulence, and uneven thrust of aircraft 
engines (Panasyuk, 2016). 

For signal filtering in air traffic control systems, the 
Kalman filter is used to estimate the state xk e.g. the 
actual radar signal) based on observations zk, which 
contain noise. The Kalman filter formulas involve two 
main steps: 

1. Prediction stage: 

At this stage, a priori estimates of the state and 
covariances are calculated: 

𝑥𝑘̂̅ = 𝐴𝑥𝑘−1
+ 𝐵𝑢𝑘

 (5) 

𝑃𝑘̅ = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄 (6) 

𝐴  : state transition matrix (describes the dynamics 
of the system) 

𝐵 : control matrix 

𝑢𝑘  : control vector 

𝑄 : process noise covariance matrix. 

2. Update stage (correction): 

At the update stage, estimates are refined based on new 
measurements: 

𝐾𝑘 = 𝑃𝑘̅𝐻𝑇(𝐻𝑃𝑘̅𝐻𝑇 + 𝑅)−1 (7) 

𝑥𝑘̂ = 𝑥𝑘̂̅ + 𝐾𝑘 (𝑧𝑘 − 𝐻𝑥𝑘̅
)    (8) 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘̅ (9) 

𝐾  : Kalman coefficient (update weight) 

𝐻  : measurement matrix 

𝑅  : measurement noise covariance matrix 

𝑧𝑘  : current observation 

1. State model: 

The state (xk) is taken as the target object parameters, 
such as signal frequency, delay and intensity. 

2. Measurement update: 

Observations (zk) are received signals containing a 
mixture of TCAS and ATC. The measurement noise (R) is 
due to the frequency overlap in the 1030/1090 MHz 
bands. 

3. Processing: 

• Using a priori estimates (𝑥𝑘̂) and Kalman 
coefficients (𝐾𝑘), the filter corrects the signal, 
suppressing TCAS noise and extracting reliable 
ATC data. 

• Adaptive update (𝐾𝑘) allows the filter to work 
effectively in real-time. 

3.3. Autonomous receivers for detecting false 
decisions in ATC radars and developing 
recommendations for eliminating interference 

One of the primary issues in radar systems is 
interference caused by signals from onboard systems 
like ACAS. To address this, we propose the integration of 
standalone autonomous receivers that operate parallel 
to existing radar systems. 

Design Principles are as follows: 
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1. Dedicated Frequency Monitoring: These 
receivers continuously monitor the frequency 
ranges commonly affected by ACAS signals. 

2. Signal Isolation and Analysis: Using digital signal 
processing (DSP), the receivers differentiate 
between legitimate radar returns and 
interference. 

3. Decision-Making Algorithms: The isolated 
signals are processed by decision-making 
algorithms to assess their origin and relevance to 
ATC operations. 

Implementation Strategy: 

1. Autonomous receivers are designed to 
complement both primary and secondary radar 
systems. 

2. The output from these receivers is fed into a 
central processing unit for integration with 
radar data, allowing for a holistic analysis of 
detected targets. 

3. Real-time feedback mechanisms enable 
immediate suppression of false alarms. 

Advantages: 

1. Significant reduction in false alarms caused by 
overlapping frequencies. 

2. Enhanced ability to identify and classify 
legitimate radar returns. 

To enhance ATC reliability and efficiency, autonomous 
detection systems are crucial. The proposed system 
features an independent detection scheme centered on 
a digital processing unit with memory and threshold 
devices for autonomous decision-making. In the SSR 
signal detection process, each observation compares the 
signal against upper and lower thresholds, set by target 
miss and false alarm probabilities. Signals exceeding the 
upper threshold confirm a target, while those below the 
lower threshold rule it out. Signals within the thresholds 
prompt further observations, extending the input vector 
(Fig. 8). 

Using the logarithm of the likelihood ratio simplifies 
computations by replacing multiplication with 
summation. Statistics accumulate sequentially until a 
threshold is reached, stopping the process and finalizing 
the decision. This approach resembles an incoherent 
accumulation of optimal processing results. The scheme 
filters noise and improves detection accuracy, relying on 
statistical methods to ensure reliable target 
identification. The digital processing unit, integrating 
memory and threshold functions, enables autonomous 
and precise operation 

Machine learning (ML) techniques offer a dynamic and 
adaptive approach to radar signal processing. These 
models can be trained to classify signals, detect patterns, 
and predict interference scenarios (Aliyev and 
Isgandarov, 2024). 

One of the most significant advances has been the 
integration of autonomous receivers into radar systems. 
These devices play an important role in reducing the 
false alarm rate, which is one of the main problems with 
traditional radar systems. The improved ability to 
separate true signals from interference allows 
autonomous receivers to significantly reduce the 
number of false alarms. Autonomous receivers also stand 
out for their high signal isolation accuracy, which 
improves the quality of target detection and tracking. 
This allows the radar system to quickly and accurately 
respond to changes in the environment, which is 
especially important for areas where high 
responsiveness is required, such as air traffic control or 
military defense systems. 

Another major development is the use of hybrid radar 
systems, which integrate both primary and secondary 
radar data to enhance detection capabilities. The hybrid 
approach also incorporates adaptive filtering 
techniques, which are designed to minimize errors 
caused by clutter. This filtering process ensures that the 
radar system can focus on legitimate signals, ignoring 
unwanted interference from the environment. By cross-
referencing information from different radars, the 
system can determine the exact location of a target with 
greater precision, offering a more comprehensive and 
reliable tracking solution. 

 

Fig. 8. Block diagram of an autonomous device for detecting a secondary radar signal 
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Table 1.  A comparative analysis of the three proposed solutions highlights their relative strengths and limitations 

Solution Strengths Limitations 

Autonomous Receivers 
High reduction in false alarms; Minimal 
latency 

Limited scalability for very high-density 
scenarios 

Hybrid Radar Systems 
Superior clutter suppression; Improved 
positional accuracy 

Increased complexity in system integration 

Machine Learning Models 
Adaptive and accurate classification; Scalable 
processing 

High computational demands; Dependence on 
training quality 

In addition to these hardware improvements, the use of 
machine learning (ML) models has become a pivotal 
component of modern radar systems. Machine learning 
algorithms are particularly effective in tasks such as 
signal classification, clutter reduction, and interference 
prediction. By training on past radar data, these systems 
learn to distinguish between legitimate radar returns 
and various forms of interference, ensuring that false 
positives are minimized. One of the strengths of ML 
models is their adaptability. 

Online learning algorithms allow these systems to adjust 
to new interference patterns as they emerge, ensuring 
that the radar system remains effective even in 
constantly changing conditions. The rapid adaptability of 
these models makes them ideal for environments where 
interference is unpredictable and where quick responses 
are required. Moreover, ML-driven radar systems can 
make decisions faster than traditional statistical 
methods. 

This enhanced decision-making speed is crucial in time-
sensitive applications, such as security monitoring or 
navigation, where delays in processing could lead to 
safety risks or operational inefficiencies. 

In summary, combining autonomous receivers, hybrid 
radar systems, and machine learning algorithms has 
significantly improved radar performance in various 
critical areas. These innovations have reduced false 
alarms, increased detection accuracy, and improved the 
system’s ability to process signals in real time, even in 
complex environments. With these advancements, radar 
systems are becoming more reliable, efficient, and 
capable of handling the diverse challenges posed by 
modern-day applications. 

While the proposed solutions offer significant 
improvements in radar system reliability, they also 
present several challenges that need to be addressed for 
optimal performance, particularly in real-time 
applications like air traffic control (ATC) and other 
mission-critical environments. 

One of the main challenges is computational complexity. 
The integration of machine learning models and hybrid 
radar systems demands considerable processing power, 
especially when real-time performance is a requirement. 

To mitigate this issue, one effective strategy is to 
implement hardware acceleration. By utilizing 
specialized hardware such as Graphics Processing Units 
(GPUs) and dedicated signal processors, the 
computational burden can be significantly reduced. 
These accelerators are designed to handle parallel 
processing more efficiently, enabling the radar system to 
process data faster. This approach not only improves 
real-time performance but also ensures that the radar 
system remains responsive even as the complexity of 
tasks increases. 

Another significant challenge is data availability, which is 
critical for training machine learning models. These 
models rely heavily on access to large, diverse, and high-
quality datasets to effectively learn and make accurate 
predictions. However, acquiring such datasets can be 
difficult, particularly in the context of radar data, which 
is often sensitive and proprietary. Machine learning 
models require a variety of radar data to train 
effectively—this includes data from different weather 
conditions, terrains, and interference scenarios. 
Without access to comprehensive datasets, the models' 
performance could be compromised, particularly in 
dynamic and unpredictable environments. To address 
this challenge, collaboration with organizations like ATC 
(Air Traffic Control) agencies is essential. By working 
together, it may be possible to access anonymized radar 
data, ensuring that the privacy and security of sensitive 
information are maintained while still providing the data 
necessary for training machine learning models. This 
collaboration would also help ensure that the datasets 
used are relevant to real-world conditions, improving 
the accuracy and robustness of the models. 

Finally, integration overhead presents a challenge when 
incorporating new technologies like autonomous 
receivers and hybrid radar systems into existing radar 
infrastructure. Upgrading or replacing traditional radar 
systems with advanced technologies can introduce 
operational disruptions, especially when the existing 
systems are already critical to ongoing operations. To 
mitigate these challenges, a phased implementation 
approach is recommended. This strategy involves 
gradually introducing new components into the system 
while conducting parallel testing to ensure that the new 
technologies do not disrupt existing operations. This 
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method allows for the identification and resolution of 
any issues before full-scale deployment, ensuring a 
smoother transition and minimizing disruptions to 
critical operations. 

The choice of hybrid radar architectures was based on 
their superior interference suppression capabilities, 
particularly in environments with high signal congestion. 
These architectures integrate both primary and 
secondary radar data, allowing for improved target 
differentiation and clutter rejection. Additionally, 
autonomous receivers were selected due to their ability 
to operate independently from traditional radar systems, 
enabling real-time detection of false alarms without 
requiring direct integration into existing infrastructure. 

4. Conclusions 

The findings outlined above demonstrate the 
effectiveness of hybrid radar systems, autonomous 
receivers, and machine learning techniques in mitigating 
interference and improving radar reliability. In this 
section, we further analyze the implications of these 
results, comparing them with existing literature and 
discussing their potential for large-scale 
implementation in ATC environments. 

This study explored advanced methodologies to improve 
radar reliability in air traffic control (ATC) systems. By 
addressing critical challenges such as interference and 
clutter, the proposed solutions—autonomous receivers, 
hybrid radar systems, and machine learning 
applications—provide a roadmap for enhancing radar 
performance. Standalone receivers effectively isolate 
and suppress interference signals, reducing false alarm 
rates by 30% and enhancing signal clarity in real-time 
scenarios. By combining the strengths of primary and 
secondary radars, hybrid systems improve detection 
rates and positional accuracy, offering a robust approach 
to managing clutter in high-density environments. 
Adaptive and scalable, Machine Learning Models excel in 
signal classification and interference prediction, 
achieving high accuracy and operational efficiency. 

The results of these developments highlight the 
substantial potential of the proposed solutions to 
enhance radar reliability, especially in ATC and other 
critical fields. While the solutions offer significant 
benefits in terms of improving detection accuracy, 
reducing false alarms, and enhancing system 
responsiveness, they also present challenges related to 
computational complexity, data availability, and 
integration. Addressing these challenges will require 
continued innovation, collaboration between industry 
stakeholders, and the careful implementation of 
strategies to ensure that the radar systems can scale 
effectively and integrate smoothly into existing 
infrastructures. With ongoing efforts to overcome these 

obstacles, the full operational potential of these 
technologies can be realized, ultimately leading to more 
reliable, efficient, and robust radar systems. 

The findings of this study lay a solid foundation for 
further research and development in radar technologies 
for ATC systems. 

Future research should focus on integrating modern 
technologies such as ADS-B and multi-position systems 
(multi-positioning) to enhance the capabilities of radar 
systems. Particular attention should be paid to the use of 
artificial intelligence for predictive analytics, which will 
improve forecasting and data processing. An important 
area is the optimization of machine learning models to 
ensure their operation in real time, including the use of 
hardware acceleration technologies. It is also necessary 
to develop scalable hybrid systems capable of efficiently 
managing high air traffic density at the global level. 

Nomenclature 

ACAS  : Airborne Collision Avoidance System 

ADS-B  : Automatic Dependent Surveillance- 
    Broadcast 

ATC  : Air Traffic Control 

CAA  : Civil Aviation Authority 

CFAR  : Constant False Alarm Rate 

DME  : Distance Measuring System 

DSP  : Digital Signal Processing 

GLONASS : Global Navigation Satellite System 

GPS  : Global Positioning System 

MLAT  : Multilateration 

RA  : Resolution Advisory 

SAR  : Synthetic Aperture Radar 

SNR  : Signal-to-Noise Ratio 

SPI IR  : Surveillance Performance  
    Interoperability Implementation Rule 

SSR  : Secondary Surveillance Radar 

STAP  : Spatio-Temporal Adaptive Processing 

SVM  : Support Vector Machines 

WAM  : Wide Area Multilateration 
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