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Abstract: A novel Liénard oscillator design incorporating a bridge rectifier with an R-L-C output filter and negative resistance converter 

is presented. The bridge rectifier exhibits memristive behavior and provides the even nonlinear resistance required for Liénard 

oscillation in the periodic steady state. The circuit's mathematical model, including state-space equations and analysis of its nonlinear 

characteristics, is developed. LTSpice simulations demonstrate that at higher frequencies, the memristive bridge functions as a 

nonlinear resistor, enabling the circuit to operate as a Liénard oscillator. The simulation results show periodic waveforms and limit 

cycles characteristic of Liénard systems, though with notable deviations from ideal sinusoidal behavior due to the Schottky diodes' 

threshold effects and second harmonic generation. While the proposed oscillator has more state variables than traditional two-variable 

Liénard systems, it successfully achieves sustained oscillations using readily available components: Schottky diodes, passive elements, 

and an operational amplifier. The circuit's behavior is analyzed through voltage-current characteristics, limit cycles, and phase portraits, 

confirming its operation as a Liénard-type oscillator. This work opens new possibilities for implementing Liénard oscillators using 

semiconductor elements and suggests directions for future research in parametric analysis and analytical solutions.  

Keywords: Liénard Oscillator, Schottky Diode Bridge Rectifier, R-L-C Filter, Limit Cycle, Circuit Dynamics. 

Memristif Köprü Doğrultuculu Bir Liénard Osilatör Devresi 

Öz. Bu çalışmada köprü doğrultucu ve R-L-C çıkış filtresi ile negatif direnç dönüştürücü içeren yeni bir Liénard osilatör tasarımı 

önerilmiştir. Köprü doğrultucu, memristif davranış sergilemekte ve periyodik kararlı durumda Liénard salınımı için gerekli olan çift 

doğrusal olmayan direnci sağlamaktadır. Devrenin matematiksel modeli, durum-uzay denklemleri ve doğrusal olmayan özelliklerinin 

analizi dahil olmak üzere geliştirilmiştir. LTSpice simülasyonları, daha yüksek frekanslarda memristif köprünün doğrusal olmayan bir 

direnç olarak işlev gördüğünü ve devrenin bir Liénard osilatörü olarak çalışmasını sağladığını göstermektedir. Simülasyon sonuçları, 

Liénard sistemlerine özgü periyodik dalga formları ve limit döngüleri göstermektedir, ancak Shottky diyotlarının eşik etkileri ve ikinci 

harmonik üretimi nedeniyle ideal sinüzoidal davranıştan kayda değer sapmalar görülmektedir. Önerilen osilatör, geleneksel iki 

değişkenli Liénard sistemlerinden daha fazla durum değişkenine sahip olmasına rağmen, kolayca temin edilebilen bileşenler kullanarak 

(Schottky diyotları, pasif elemanlar ve bir işlemsel yükselteç) sürekli salınımları başarıyla elde etmektedir. Devrenin davranışı, gerilim-

akım karakteristikleri, limit döngüleri ve faz portreleri aracılığıyla analiz edilmiş, Liénard tipi bir osilatör olarak çalıştığı 

doğrulanmıştır. Bu çalışma, Liénard osilatörlerinin yarı iletken elemanlar kullanılarak uygulanması için yeni olanaklar sunmakta ve 

parametrik analiz ve analitik çözümler konusunda gelecekteki araştırmalar için farklı bakış açıları önermektedir. 

Anahtar kelimeler: Liénard Osilatörü, Schottky Diyot Köprü Doğrultucu, R-L-C Filtresi, Limit Döngüsü, Devre Dinamikleri 
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1. Introduction 

The Van Der Pol Oscillator (VDPO), first created in 1920 with 

a triode vacuum tube, is a well-known and extensively studied 

oscillator [1]. The stable oscillations discovered in the triode 

circuit are known as relaxation oscillations, a concept 

introduced by Van der Pol [2]. This circuit also demonstrates 

frequency de-multiplication, an example of deterministic 

chaos [3]. The discovery of this oscillator significantly 

contributed to the development of nonlinear oscillator theory 

[4]. French physicist Alfred-Marie Liénard introduced 

equations to model oscillating circuits [5]. The Van der Pol 

Oscillator is described by the Van der Pol equation, which is a 

special case of the Liénard equations. Many studies have been 

conducted on the Liénard Oscillator and Liénard equations, 

which have been applied across diverse fields such as 

electronic oscillators, radio engineering, chemical reactions, 

optoelectronic systems, lasers, predator-prey studies, 

population studies, biological studies, and vibration modeling 

[6-9]. The dynamics of coupled Van der Pol oscillators are 

commonly studied [10-12]. The synchronization of such 

oscillators is an important research area in natural sciences and 

engineering [13-19]. Van der Pol or Liénard’s oscillators are 

used to examine chaos phenomenon [20-24].  

Although semiconductor circuit elements were not available 

when these oscillators were first developed, modern Liénard 

Oscillators can be built using various semiconductor 

components [25–27]. For instance, an optoelectronic 

integrated circuit with a resonant tunneling diode and an 

optical communications laser diode operates as a voltage-

controlled oscillator as described by Liénard’s equation [25]. 

The nonlinear memristor element can also be used in Liénard 

systems, exhibiting complex behaviors such as hidden 

attractors and mixed-mode oscillations [11]. A reverse-parallel 

Schottky diode array-based VDPO has been developed, with 

its differential equation and waveforms examined through 

simulations using Simulink and LTspice programs [27]. In 

[28], a Liénard Oscillator which makes use of a Chua diode 

combining of a JFET and Schottky diode bridge has been 

made, and it was shown to behave as a Liénard Oscillator 

analytically and with simulations. In [29], it is shown that a 

cheap microcontroller such as Arduino Nano Klon V3.0 can be 

used to make a Liénard Oscillator. 

Memristors are newly found nonlinear circuit elements [30-

32]. Nonlinear resistors with a state-variable dependency are 

also called memristive systems [33]. Memristors have specific 

features known as the three fingerprints [33, 34]. Memristor 

can be used in oscillators [35, 36]. Most of the memristor-

based oscillators studies are of chaotic nature [35, 37, 38]. 

Since it has been claimed that the memristor-based Liénard 

systems or oscillators show very rich dynamics [39], it is 

imperative to examine them. For example, in [40], it has been 

shown that a Liénard Oscillator with a memristor emulator 

with a cubic characteristic shows mixed-mode oscillations 

with simulations and experiments. In [41], it has been shown 

that, in some of its operation region, a rectifier with an R-L-C 

circuit at its output behaves as if a memristive system. Corinto 

and Ascoli [41] demonstrated that the electronic system they 

designed using only passive components behaved like a 

memristor. They showed through PSpice simulations that an 

RLC filter circuit powered by a full-wave rectifier exhibited 

memristive properties and should have a pinched hysteresis 

curve with zero-crossing. Inspired by this study, other 

researchers used an RC filter instead of an RLC filter to obtain 

a hysteresis curve with fewer circuit elements, and they used 

such an emulator in the construction of a chaos circuit [42]. 

The memristive circuit given in [41] can also provide an even 

memristance function in the periodic steady state. In the 

literature, this property has not been used to make a Liénard 

Oscillator yet. In this study, a rectifier with an R-L-C circuit at 

its output has been used to make a Liénard Oscillator for the 

first time in the literature. Its analytical model has been given. 

The simulations and the experimental results have been used 

to prove that the rectifier-based oscillator circuit operates as a 

Liénard oscillator in the steady-state. In [43], it has been 

shown that two anti-parallel memristors sold in the market [44] 

can be employed to make a Liénard Oscillator. since it 

provides an even memristance function in the periodic steady 

state. A rectifier is shown to behave as a time-variant nonlinear 

resistor or as a memristor in some of its operation region, its 

state-space equations are given, and simulation and 

experimental results of proof of concept are given in [41]. The 

bridge rectifier has also been used to make chaotic generators 

[42]. Employing the memristive bridge is cheaper than using 

two memristors in an application [45]. Such a circuit can also 

provide an even memristance function in the periodic steady 

state. To the best of our knowledge, such a bridge rectifier has 

not been used to make a non-chaotic oscillator or a Liénard 

Oscillator yet.  

In this study, the nonlinear circuit element required for the 

Liénard Oscillator is made by connecting a rectifier-based 

nonlinear resistor, a negative resistance converter, an inductor, 

and a capacitor in parallel. This Liénard Oscillator is 

implemented with off-the shelves components. The circuit 

uses a diode bridge rectifier, 4 LTI resistors, 2 LTI inductors, 2 

LTI capacitors, and an op-amp. In this study, it is also to be 

shown that the diode bridge with an R-L-C filter has a 

nonlinear resistance function, which is an even function in the 

steady-state, and allows the circuit to operate as a Liénard 

Oscillator. The state-space equations of the Liénard Oscillator 

are given, and its simulations are made in LTSpice design 

program. 

This study is organized in the following order. In the second 

section, basic information on Liénard Equation and Liénard 

Systems is given, the new Liénard Oscillator circuit topology 

is introduced, its operation principles are explained, and its 

dynamic model is given. In the third section, the simulation 

results of the circuit obtained with a SPICE based circuit 

design program are presented, and it is proven that this 

oscillator is a Liénard-like oscillator using circuit simulations. 

The paper concludes with the last section. 

2. Generic Liénard Oscillator Circuit and the Bridge 

Rectifier-Based Liénard Oscillator   

In this section, the generic Liénard Oscillator is firstly 

summarized, and then the Liénard Oscillator circuit proposed 
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in this study is introduced. A Liénard Oscillator is made of a 

nonlinear resistor that may take negative and positive values, 

a capacitor, and an inductor. The structure of its nonlinear 

resistor and the new oscillator are explained in the following 

subsections. The circuit of the generic Liénard Oscillator 

circuit is shown in Figure 1 [27].  

 

Figure 1. The generic Liénard Oscillator [27] 

2.1. The Negative Resistance Converter Circuit 

Negative impedance or negative resistance converter refers to 

circuits used to create negative resistance. The op-amp-based 

negative resistance converter employing three resistors, R1, R2, 

and R3, used in this study is shown in Figure 2. Based on the 

theoretical perspective: 

The input current of the negative resistance converter circuit is 

given as 

𝑖𝑁𝑒𝑔 = 𝑔𝑁𝑣(𝑡) = −
𝑅2
𝑅1𝑅3

𝑣(𝑡) (1) 

If  𝑅3 = 𝑅2, this current turns into 

𝑖𝑁𝑒𝑔 = 𝑔𝑁𝑣(𝑡) = −
𝑣(𝑡)

𝑅1
 (2) 

The conductance of the negative resistance converter is given 

as 

𝑔𝑁 = 𝑣(𝑡)/𝑖𝑁𝑒𝑔 = −
𝑅2
𝑅1𝑅3

= −
1

𝑅1
 (3) 

The negative resistance converter is a key to sustaining 

oscillations by compensating for losses in the LC tank circuit 

so that it is appropriate to use that an operational amplifier. It 

should be added to the circuit in parallel with the LC tank 

circuit for compensation of losses.  

 

Figure 2. A schematic for an op-amp based negative 

resistance converter circuit proposed and used in the 

Liénard Oscillator  

2.2. Memristive-Model of the Rectifier with R-L-C Load 

In this section, the memristive model of a rectifier presented in 

[41] is summarized. The rectifier circuit is with  

R-L-C filter shown in Figure 3. Such a circuit behaves as a 

memristive system [41], and its equations are given as follows. 

In this circuit, 𝑉𝑔 is the source voltage and Ig is the 

instantaneous rectifier input current. In Figure 3, all the diodes, 

D1-D4, are chosen as 1N5817, a Schottky diode, which has 

practically the voltage drop of ~0.45V.  

 

Figure 3. The Rectifier circuit with RLC filter 

The source current, which is the same as the rectifier current, 

can be expressed as:  

Ig = (ILf + 2IS). tanh (
Vg

2nVT
) (4) 

In this equation, ILf  represents the inductor current, Is is the 

leakage current of the diode, VT is the thermal voltage of the 

diodes, n is the ideality factor of the diode, and Vg is the source 

voltage. 

Ig can be expressed as follows by applying the Taylor series 

expansion of the hyperbolic tangent function in the equation 

above. 

Ig(t) = G(VCf , ILf , Vg, t)Vg(t)  (5) 

where (VCf , ILf , Vg, t) represents the equivalent conductance of 

the diode bridge, and it is defined as:  

G(VCf , ILf , Vg, t) 

= (ILf + 2IS)(
∑ (

Vg

2nVT
)
2m

(⁄ 2m+1)!∞
m=0

∑ (
Vg

2nVT
)
2m

(⁄ 2m)!∞
m=0

)     (6) 

The state variables of the rectifier are the inductor current 

ILf  and the capacitor voltage VCf. The rate of change of them 

are given respectively as 

dILf
dt

 = 
Vg

Lf
−
VCf
Lf

 

−
2.𝑛.VT

Lf
ln (

ILf+2IS

2.IS.exp (−Vg 2𝑛VT).cosh (Vg 2nVT)⁄⁄
)    

(7) 

and 
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dVCf
dt

 = 
ILf
Cf
−
VCf
RCf

    (8) 

2.3. The Nonlinear Resistor of the Liénard Oscillator 

Circuit 

A nonlinear resistor must be used in the Liénard Oscillator. The 

Liénard Oscillator examined in this study is made of the 

memristive rectifier with an R-L-C load behaving as a 

nonlinear resistor, whose nonlinear resistance is an even 

function of voltage, and the negative resistor converter circuit 

as shown in Figure 4. 

 

Figure 4. The nonlinear resistor circuit of the Liénard 

Oscillator consisting of the bridge rectifier with the R-

L-C load and the opamp-based negative resistance 

converter 

Since the bridge rectifier and the negative resistance converter 

are connected in parallel, the terminal equation of the Liénard 

Oscillator is found as 

INR = Ig + Ineg = (G(VCf , ILf , Vg, t) − 𝑔𝑁)Vg    (9) 

= ((ILf + 2IS)
∑ (

Vg

2nVT
)
2m

(⁄ 2m+1)!∞
m=0

∑ (
Vg

2nVT
)
2m

(⁄ 2m)!∞
m=0

− 𝑔𝑁)Vg = 

𝑔𝑒𝑞Vg     

(10) 

where 𝑔𝑒𝑞 𝑖𝑠 the equivalent resistance of the nonlinear 

resistor of the Liénard Oscillator and equal to  

(

 
 
((ILf + 2IS)

∑ (
Vg

2nVT
)
2m

(⁄ 2m+1)!∞
m=0

∑ (
Vg

2nVT
)
2m

(⁄ 2m)!∞
m=0

)− 𝑔𝑁

)

 
 

. 

The resistance of the bridge rectifier can be found as 

𝑅(VCf , ILf , Vg, t) =
1

𝑔𝑒𝑞

= 
1

(

  
 

(

 
 
(ILf + 2IS)

∑ (
Vg
2nVT

)
2m

(⁄ 2m + 1)!∞
m=0

∑ (
Vg
2nVT

)
2m

(⁄ 2m)!∞
m=0

)

 
 
− 𝑔𝑁

)

  
 

 
(11) 

𝑅(VCf , ILf , Vg, t) is a two variable function and it is an even 

function with respect to Vg:  

𝑅(VCf , ILf , Vg, t) = 𝑅(VCf , ILf , −Vg, t) (12) 

In this circuit, it is always true; ILf ≥ 0. 

2.4. The New Liénard Oscillator Circuit and Its State-

space Model 

By incorporating this nonlinear resistance shown in Figure 4 

into the generic Liénard Oscillator shown in Figure 1, the 

Liénard Oscillator proposed in this study is obtained, which is 

shown in Figure 5. The bridge rectifier is used to achieve the 

even resistance function and the half-wave symmetry needed 

in the voltage of a Liénard Oscillator. 

 

Figure 5. The bridge rectifier-based Liénard Oscillator 

rectifier 

If Kirchoff's Current Law is used for this oscillator: 

𝑖𝐿 + 𝑖𝐶 + 𝑖𝑁𝑅 = 0 (13) 

𝑖𝐿 + 𝐶 
𝑑𝑣𝐶
𝑑𝑡

+ (G(VCf , ILf , 𝑣𝐶 , t) − 𝑔𝑁)𝑣𝐶 = 0 (14) 

𝑖𝐿 + 𝐶 
𝑑𝑣𝐿
𝑑𝑡

+ (G(VCf , ILf , 𝑣𝐶 , t) − 𝑔𝑁)𝑣𝐶 = 0 (15) 

𝑖𝐿 + 𝐿𝐶 
𝑑

𝑑𝑡

𝑑𝑖𝐿
𝑑𝑡
+ 

(

 
 
((ILf + 2IS)

∑ (
𝑣𝐶
2nVT

)
2m

(⁄ 2m+1)!∞
m=0

∑ (
𝑣𝐶
2nVT

)
2m

(⁄ 2m)!∞
m=0

)− 𝑔𝑁

)

 
 
𝑣𝐶 = 0       (16) 

The following state-space equations describe the oscillator and 

its dynamics: 

𝑖𝐿 + 𝐿𝐶 
𝑑2𝑖𝐿
𝑑𝑡2

+ 

(

 
 
((ILf + 2IS)

∑ (
𝑣𝐶
2nVT

)
2m

(⁄ 2m+1)!∞
m=0

∑ (
𝑣𝐶
2nVT

)
2m

(⁄ 2m)!∞
m=0

)− 𝑔𝑁

)

 
 
𝑣𝐶 = 0        (17) 
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𝑑𝑖𝐿

𝑑𝑡
=
𝑣𝐶

𝐿
              (18) 

dILf
dt

 = 
𝑣𝐶

Lf
−
VCf
Lf
−

2𝑛VT

Lf
ln (

ILf+2IS

2.IS.exp (−𝑣𝐶 2𝑛VT).cosh (𝑣𝐶 2nVT)⁄⁄
) 

(19) 

and 

dVCf
dt

 = 
ILf
Cf
−
VCf
RCf

 (20) 

Liénard's equation is expressed as  

𝑑2𝑥

𝑑𝑡2
+ 𝑓(𝑥)

𝑑𝑥

𝑑𝑡
+ 𝑔(𝑥) = 0 (21) 

where x(t) is the state variable of the Liénard Oscillator, 𝑓(𝑥) 

is an even function, and 𝑔(𝑥) is an odd function.  

Considering the periodic steady state, 𝑣𝐶(𝑡) = −𝑣𝐶(𝑡 + 𝑇/2) 

and IL(𝑡) = IL(𝑡 + 𝑇/2), where 𝑣𝐶 is the capacitor voltage 

and IL is the inductor current. In the positive half-period (0 <

𝑡 < 𝑇/2), if the bridge rectifier conductance is 

G(VCf , ILf , 𝑣𝐶 , t), then in the negative half-period ( 𝑇/2 > t > 

𝑇), it becomes G(VCf , ILf , −𝑣𝐶 , t) as stated below. 

G(VCf , ILf , 𝑣𝐶(𝑡 + 𝑇/2), t) = G(VCf , ILf , −𝑣𝐶(𝑡), t) (22) 

Therefore, in the steady state, the resistance of the rectifier 

circuit is an even function, and this proves that the oscillator 

operates as an extended Liénard Oscillator. 

At high frequencies, since the bridge rectifier with R-L-C load 

behaves as a nonlinear resistor with an even resistance 

function, the circuit behaves as a Liénard Oscillator for high 

frequencies. However, at low frequencies, it is going to show 

more complex behavior. Perhaps, it is going to behave as an 

extended Liénard Oscillator. Its simulation is to be carried out 

in the next section. 

3. Simulation of the New Liénard Oscillator 

The Van der Pol equation does not have any solutions [46, 47]. 

However, it has some approximate solutions [48, 49].  That is 

why simulations are commonly used to study it. The bridge 

rectifier-based Liénard Oscillator proposed in this study shown 

in Figure 5 is simulated with the LTSpice circuit design 

program in this section. The circuit diagram of the Liénard 

Oscillator is shown in Figure 6. The parameters used in the 

simulation are given in Table 1. The values of the resistors 𝑅2 

and 𝑅3 are taken as equal to obtain “-𝑅1” resistance value.  The 

use of Schottky diodes is motivated by their common 

preference in the high-speed oscillator design, owing to their 

low threshold voltages and fast switching capabilities. The 

1N5817 Schottky diodes and the Opamp LM741 are employed 

in this work. The simulation results of the circuit are given in 

Figures 7 to 15. 

Table 1 Parameters of the Liénard Oscillator Circuit and 

the Characteristics of Schottky Diodes 

Parameter Value 

C 100 µF 

L 25 mH 

R1 2 kΩ 

R2 8 kΩ 

R3 8 kΩ 

Is (Saturation Current) 31.7 µA 

Rs (Series Resistance) 0.051 Ω 

n (Ideality Factor) 

𝑉𝑇 (Thermal Voltage) 

1.373 

26 mV @ Room 

Temperature. 

 

 

Figure 6. LTSpice modeling of rectifier based Liénard Oscillator circuit 
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The voltage waveform of the circuit in the periodic steady 

state, as shown in Figure 7, resembles an almost sinusoidal 

wave. However, the peaks of the waveform are sharper 

compared to those of an ideal sinusoidal wave, highlighting 

the nonlinear nature of the oscillator. The circuit oscillates at 

roughly 100 Hz (~100.7Hz) and the voltage has an amplitude 

of 2.6 V. 

 

Figure 7. The oscillator voltage in the periodic steady 

state. 

The current of the circuit capacitor at the periodic steady state 

is not a perfect sinusoidal waveform as expected from the 

voltage observed earlier in Figure 7 and the current is shown 

in Figure 8.  

 

Figure 8. The current of the circuit capacitor at periodic 

steady state 

Figure 9 illustrates the impact of the Schottky diodes' threshold 

voltage on the bridge rectifier's input current in the periodic 

steady state. This effect manifests as zero-crossing distortion, 

which is evident when the current transitions through zero. The 

distortion occurs because Schottky diodes require a small 

forward voltage to conduct and create a non-linear response. 

This characteristic results in a slight deviation from ideal 

behavior, where the current waveform exhibits a small flat or 

distorted region as it changes polarity, rather than smoothly 

transitioning through zero. 

 

Figure 9. The input current of the bridge rectifier in the 

periodic steady state. 

It can be seen in Figure 10 that a large harmonic content does 

exist in the equivalent nonlinear resistor current in the periodic 

steady state. The diode’s ability to produce harmonic distortion 

contributes to the complex non-linear behavior essential for 

chaotic circuits. Due to this feature, such a circuit can also be 

used as a Chua diode to build a chaotic oscillator circuit such 

as the one presented in [20]. 

 

Figure 10. The current of the nonlinear resistor in the 

periodic steady state. 

The waveform of the inductor current, as depicted in Figure 

11, deviates from an ideal sinusoidal shape in the periodic 

steady state. Notably, the signal exhibits a similar 

characteristic to the capacitor current shown in Figure 8.  

 

Figure 11. The current of the circuit inductor in the 

periodic steady state. 

 



Üstün et al. / European J. Eng. App. Sci. 7(2), 126-134, 2024 

132 

The limit cycle of the capacitor is shown in Figure 12, which 

resembles an ellipse.   

 

Figure 12. Limit cycle of the circuit capacitor  

Figure 13 illustrates the memristive rectifier’s voltage-current 

relationship in the periodic steady state. The v-i curve of the 

rectifier has an odd function symmetry, and it is confined to 

the first and the third quadrants. The graph reveals the impact 

of the Schottky diode thresholds near the origin and the 

memristive behavior of the hysteresis curve of the bridge 

rectifier with the R-L-C load. 

 

Figure 13. The V-I characteristic of the memristor based 

rectifier in the periodic steady state. 

The v-i characteristic of the circuit's nonlinear resistor, as 

illustrated in Figure 14, demonstrates also an odd symmetry 

and shows a negative resistance feature, which is confined to 

the second and fourth quadrants. Furthermore, the graph 

appears to capture the influence of the diodes' threshold 

voltage on the Chua diode's v-i characteristic. This effect is 

discernible in the subtle nuances of the curve shown in Figure 

14, adding another layer of complexity to the nonlinear 

behavior of the circuit. 

 

Figure 14. The V-I characteristics of the nonlinear 

resistor in the circuit in the periodic steady state. 

The limit cycle of the inductor in Figure 15 resembles an 

ellipse as the limit cycle of the capacitor also does as in Figure 

12. 

 

Figure 15. Limit cycle of the circuit inductor  

4. Conclusion 

This study presents the development of a Liénard Oscillator 

incorporating a bridge rectifier and an R-L-C output filter. The 

rectifier circuit exhibits memristive characteristics, and the 

system's mathematical model has been formulated. LTSpice 

simulations were employed to analyze the oscillator's 

behavior, yielding limit cycles, current, and voltage 

waveforms. The simulation results demonstrate that the 

proposed circuit functions as a Liénard Oscillator, evidenced 

by its periodic waveforms and limit cycles.  

At low oscillation frequencies such as 100 Hz, the memristive 

bridge acts as a nonlinear resistor, enabling the circuit to 

operate as a Liénard Oscillator. The memristive bridge rectifier 

is shown to provide the even nonlinear resistance necessary for 

a Liénard Oscillator in the periodic steady state. However, it's 

noted that this oscillator possesses more than two state 

variables, unlike the traditional two-variable Liénard system. 

The nonlinear capacitive junction currents may also need to be 

included in the oscillator model for accuracy in high frequency 

operation and we suggest it as future work.  

This design opens possibilities for future variants using 

different semiconductor elements. While most Liénard 

oscillators lack exact analytical solutions, future research 

could also explore series or approximate solutions for this 

system. Additionally, a parametric study examining how 

circuit elements affect oscillator frequency could expand on 

the current simulations, though such investigations were 

beyond the scope of this work due to space limitations. 
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