POWER SERIES SOLUTION OF DIFFERENTIAL ALGEBRAIC EQUATION

Muhammet KURULAY and Mustafa BAYRAM ${ }^{1}$
Yildiz Technical University, Faculty of Art and Sciences
Department of Mathematics, 34210-Davutpasa-İstanbul email: msbayram@yildiz.edu.tr
\section*{Özet}

Bu makalede, Lineer diferensiyel cebirsel denklemleri çäzmek için kuvvet serisi yöntemi uygulandı. Bu yöntem diferensiyel cebirsel denklemlerin nümerik çözmek için bir keyfi mertebe verir.. Biz bu metodu test etmek için bir örnek verdik ve elde ettiğimiz sonuç ile analitik çözümü karşlaştırdık.
Anahtar kelimeler: Diferensiyel cebirsel denklem, keyfi mertebe, kuvvet serisi.

Abstract

In this paper, we apply the power series method to solve a linear differential algebraic equation. This method gives an arbitrary order for solving differential algebraic equation numerically. We have given an example to test the method and the result of the our method compared the exact solution of the given problem.

Keywords: Differential Algebraic Equation; Arbitrary Order; Power Series.

1. INTRODUCTION

A differential-algebraic equation has the form

$$
\begin{equation*}
F\left(y^{\prime}, y, x\right)=0 \tag{1.1}
\end{equation*}
$$

with initial values

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1},
$$

where F and y is a vector fuṇction for which we assumed sufficient differentiability[3,4,6], and the initial values to be consistent, i.e.

$$
\begin{equation*}
F\left(y_{0}, y_{0}^{\prime}, x_{0}\right)=0 . \tag{1.2}
\end{equation*}
$$

The solutions of (1.1) can be assumed that

$$
\begin{equation*}
y=y_{0}+y_{1} x+e x^{2}, \tag{1.3}
\end{equation*}
$$

where e is a vector function which is the same size as y_{0} and y_{0}^{\prime}. Substitute (1.3) into (1.1) and neglect higher order term, we have the linear equation of e in the form

$$
\begin{equation*}
A e=B \tag{1.4}
\end{equation*}
$$

where A and B are constant matrixes. Solving equation (1.4), the coefficients of x^{2} in (1.3) can be determined. Repeating above procedure for higher order terms, we can get the arbitrary order power series of the solutions for (1.1) and we have numerical solution of differential algebraic equation in (1.1).

2. POWER SERIES FOR DIFFERENTIAL ALGEBRAIC EQUATIONS

We define another type power series in the form

[^0]\[

$$
\begin{equation*}
f(x)=f_{0}+f_{1} x+f_{2} x^{2}+\cdots+\left(f_{n}+p_{1} e_{1}+\cdots+p_{m} e_{m}\right) x^{n} \tag{2.1}
\end{equation*}
$$

\]

where $p_{1}, p_{2} \cdots p_{m}$ are constants $e_{1}, e_{2} \cdots e_{m}$ are basis of vector e, m is size of vector $e . y$ is a vector in (1.3) with m elements. Every element can be represented by the Power series in (2.1). Therefore we can write

$$
\begin{equation*}
y_{i}=y_{i, 0}+y_{i, 1} x+y_{i, 2} x^{2}+\cdots+e_{i} x^{n} \tag{2.2}
\end{equation*}
$$

from (1.3), where y_{i} is i th element of y. Substitute (2.2) into (1.1), we can get

$$
\begin{equation*}
f_{i}=\left(f_{i, n}+p_{i, 1} e_{1}+\cdots+p_{i, m} e_{m}\right) x^{n-j}+Q\left(x^{n-j+1}\right) \tag{2.3}
\end{equation*}
$$

where f_{i} is i th element of $f\left(y, y^{\prime}, x\right)$ in (1.1) and if $f\left(y, y^{\prime}, x\right)$ have y^{\prime} then j is 0 , otherwise 1 . From (2.3) and (1.4), we can determine the linear equation in (1.4) as follow

$$
\begin{gather*}
A_{i, j}=P_{i, j} \tag{2.4}\\
B_{i}=-f_{i, n} \tag{2.5}
\end{gather*}
$$

Solve this linear equation, we have $e_{i}(i=1, \cdots, m)$. Substitute e_{i} into (2.2); we have $y_{i}(i=1, \cdots, m)$ which are polynomials of degree n. Repeating this procedure from (2.2) to (2.4), we can get the arbitrary order Power series solution of differential-algebraic equations in (1.1).
Let step size of x to be h and substitute it into the power series of y and derivative of y, we have y and y^{\prime} at $x=x_{0}+h$. If we repeat above procedure, we can have numerical solution of differential-algebraic equations in (1.1)[1,2,7].

3. AN EXAMPLE

In this section, we consider the following differential algebraic equation as a test problem.

$$
\begin{align*}
& y_{1}^{\prime}(x)=e^{x}+y_{2}^{\prime}(x)+x y_{2}^{\prime}(x) \tag{3.1}\\
& y_{2}(x)=\cos x
\end{align*}
$$

and initial values

$$
y_{1}(0)=1, y_{2}(0)=1, y_{1}^{\prime}(0)=2, y_{2}^{\prime}(0)=0
$$

The exact solution is

$$
\begin{aligned}
& y_{1}=e^{x}+x \cos x \\
& y_{2}=\cos x
\end{aligned}
$$

From initial values, the solutions of (3.1) can be supposed as

$$
\begin{align*}
& y_{1}(x)=y_{0,1}+y_{0,1}^{\prime} x+e_{1} x^{2}=1+2 x+e_{1} x^{2} \\
& y_{2}(x)=y_{0,2}+y_{0,2}^{\prime} x+e_{2} x^{2}=1+e_{2} x^{2} \tag{3.2}
\end{align*}
$$

Substitute (3.2) into (3.1) and neglect higher order terms, we have

$$
\begin{align*}
& \left(-1+2 e_{1}\right) x+O\left(x^{2}\right)=0 \\
& \left(\frac{1}{2}+e_{2}\right) x^{2}+O\left(x^{3}\right)=0 \tag{3.3}
\end{align*}
$$

These formulas correspond to (2.3). The linear equation that corresponds to (2.4) can be given in the following:

$$
\begin{equation*}
A e=B \tag{3.4}
\end{equation*}
$$

Where

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right), B=\binom{1}{-0.5} \text { and } \quad e=\binom{e_{1}}{e_{2}}
$$

From Eq. (3.4), we have linear equation

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\binom{e_{1}}{e_{2}}=\binom{1}{-0.5}
$$

Solving this linear equation we have

$$
e=\binom{0.5}{-0.5}
$$

and

$$
\begin{align*}
& y_{1}(x)=1+2 x+\frac{1}{2} x^{2} \tag{3.5}\\
& y_{2}(x)=1-\frac{1}{2} x^{2}
\end{align*}
$$

From (3.5) the solutions of (3.1) can be supposed as

$$
\begin{align*}
& y_{1}(x)=1+2 x+\frac{1}{2} x^{2}+e_{1} x^{3} \tag{3.6}\\
& y_{2}(x)=1-\frac{1}{2} x^{2}+e_{2} x^{3}
\end{align*}
$$

In like manner, substitute (3.6) into (3.1) and neglect higher order terms, then we have

$$
\begin{align*}
& \left(3 e_{1}+1\right) x^{2}+O\left(x^{3}\right)=0 \\
& e_{2} x^{3}+O\left(x^{4}\right)=0 \tag{3.7}
\end{align*}
$$

where

$$
A=\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right), B=\binom{-1}{0} \text { ve } e=\binom{e_{1}}{e_{2}}
$$

From (3.7) we have linear equation

$$
\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)\binom{e_{1}}{e_{2}}=\binom{-1}{0}
$$

Solving this linear equation, we have

$$
e=\binom{-1 / 3}{0}
$$

Therefore

$$
\begin{align*}
& y_{1}(x)=1+2 x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3} \\
& y_{2}(x)=1-\frac{1}{2} x^{2} \tag{3.8}
\end{align*}
$$

Repeating above procedure we have

$$
\begin{aligned}
y_{1}^{*}(x)= & 1+2 . x+0.5000000000 x^{2}-0.3333333333 \cdot x^{3}+0.04166666667 x^{4} \\
& +0.05000000000 x^{5}+0.001388888889 x^{6}-0.001190476190 x^{7} \\
& +0.00002480158730 x^{8}+0.00002755731922 x^{9}
\end{aligned}
$$

$y_{2}^{*}(x)=1-0.5000000000 x^{2}+0.04166666667 x^{4}-0.001388888889 x^{6}$

$$
+0.00002480158730 x^{8}
$$

We show tables 1 and 2 for the solution of (3.1) by above numerical method. The numerical values on Tables 1 and 2 are coinciding with the exact solutions of (3.1).

Table 1. Numerical solution of $y_{1}(x)$ in (3.1).

x	Exact $y_{1}(x)$	$y_{1}^{*}(x)$	$\left\|y_{1}(x)-y_{1}^{*}(x)\right\|$
0.1	1.204671335	1.204671335	0
0.2	1.417416074	1.417416074	0
0.3	1.636459755	1.636459755	0
0.4	1.860249096	1.860249096	0
0.5	2.087512552	2.087512551	0.110^{-8}
0.6	2.317320169	2.317320169	0
0.7	2.549142238	2.549142236	0.210^{-8}
0.8	2.782906295	2.782906288	0.710^{-8}
0.9	3.019052082	3.019052064	0.1810^{-7}
1.0	3.258584134	3.258584106	0.2810^{-7}

Table 2. Numerical solution of $y_{2}(x)$ in (3.1).

x	$y_{2}(x)$	$y_{2}^{*}(x)$	$\left\|y_{2}(x)-y_{2}^{*}(x)\right\|$
0.1	0.9950041653	0.9950041653	0
0.2	0.9800665778	0.9800665779	-0.110^{-9}
0.3	0.9553364891	0.9553364891	0
0.4	0.9210609940	0.9210609941	-0.110^{-9}
0.5	0.8775825619	0.8775825622	-0.310^{-9}
0.6	0.8253356149	0.8253356166	-0.1710^{-8}
0.7	0.7648421873	0.7648421951	-0.7810^{-8}
0.8	0.6967067093	0.6967067388	-0.29510^{-7}
0.9	0.6216099683	0.6216100638	-0.95510^{-7}
1.0	0.5403023059	0.5403025794	-0.273510^{-6}

The graph of $y_{1}(x), y_{2}(x)$ and their power series approximant are simultaneously shown in Fig. 1 and Fig. 2. As can be seen from the graphics, the accuracy of the approximation by using power series which agree with given exact solution of the equation systems.

Fig. 1. Graph of $y_{1}(x)$ and its power approximant in the interval $[-6,6]$

Fig. 2. Graph of $y_{2}(x)$ and its power approximant in the interval $[-4,4]$.

4. CONCLUSION

A Power approximation method has proposed for solving Differential algebraic equations in this study. This method is very simple an effective for most of differential algebraic equations.

5. REFERENCES

[1]. Henrici, P., Applied Computational Complex Analysis, Vol.1, John Wiely\&Sons, New York, Chap. 1, (1974).
[2]. Corliss G. And Chang Y. F., Solving Ordinary Differential Equations Using Taylor Series, ACM Trans. Math. Soft. , 114-144,(1982).
[3]. K. E. Brenan, S. L. Campbell, L.R. Petzold, Numerical solution of Initial-value problems in Differential-Algebraic Equations, North-Holland, Amsterdam (1989).
[4]. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer-verlag, (1991).
[5]. Kurulay,M, Differential Algebraic Equations solving with power series, master thesis,
13. Say1 Haziran 2007 yildiz technical university, institute of sciences, 23-29,(2006).
[6]. U.M. Ascher, L.R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Philadelphia: Society for Industrial and Applied Mathematics, (1998).
[7]. H. Hirayama, Arbitrary order and A-stable numerical method for solving algebraic ordinary differential equation by power series. $2^{\text {nd }}$ International Conference on: Mathematics and Computers in Physics. July9-16.(2000).
[8]. G.Frank., MAPLE V.CRC Press Inc., 2000 Corporate Blvd., N.W., Boca Raton, Florida 33431, (1996).
[9] Weiming Wang, "An algorithm for solving DAEs with mechanization", Applied Mathematics and Computation, 67 1350-1372, (2005).
[10] Bayram, M.and Çelik, E., "Arbitrary Order Numerical Method for Solving DifferentialAlgebraic Equations by Padé Series", Applied Mathematics and Computation. (2003),

[^0]: ${ }^{\prime}$ Corresponding author.

