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 ABSTRACT  

 

In this work, a structurally identifiable mathematical model is developed to capture the first 

peak of COVID-19 in Türkiye. The daily numbers of COVID-19 cases, deaths, prevalence in the 

ICU, and prevalence on ventilation, obtained from the open-access TURCOVID-19 database, 

during the first peak, are used as observations. Structural identifiability analysis is performed 

using the open-source software Julia. For parameter estimation, some parameters are fixed based 

on the literature while the remaining parameters are estimated using the Data2Dynamics 

software. Our results align well with the observations. Then, a practical identifiability analysis 

based on the profile likelihood method is conducted to investigate uncertainties in the parameter 

values. It reveals that three of the model parameters, namely the progression rate of 

symptomatically infectious individuals to hospital and the transmission rates associated with 

exposed and symptomatically infectious individuals, are not practically identifiable. This means 

that the implementation of intervention strategies via this model must be performed carefully. 

 

 
Keywords: Structural identifiability, Practical identifiability, COVID-19, Mathematical 

modeling, Türkiye.  

 

1 INTRODUCTION 

The novel coronavirus has changed the world in several ways, such as introducing new 

hygiene habits, emphasizing effective handwashing, skipping the handshake, working out at 

home, increasing reliance on online meetings, and raising awareness about vaccination or 

boosters. Once a novel virus began affecting the world, predicting the number of infectious 

https://dergipark.org.tr/tr/pub/bitlisfen
https://doi.org/10.17798/bitlisfen.1602308
https://orcid.org/0000-0003-1206-2287
mailto:takman@thk.edu.tr
https://www.beu.edu.tr/
https://dergipark.org.tr/en/pub/bitlisfen
https://doi.org/10.17798/bitlisfen.1602308
https://orcid.org/0000-0003-1206-2287


T. Akman / BEU Fen Bilimleri Dergisi, 14 (1), pp. 494-512, 2025 

 

 

495 

individuals, forecasting upcoming peaks, and determining the most suitable public 

interventions became crucial.  

Researchers and scientists have paid attention to mathematical models in infectious 

disease modeling for decision-making. Intervention strategies and their impacts are compared 

using run charts, EWMA control charts, and p-control charts based on COVID-19 data from 

Türkiye [1]. An algorithm approximating the effect of nodes in complex networks has been 

developed under the susceptible-infectious-recovered (SIR) models [2].  We refer the reader to 

the studies for reviews on COVID-19 modeling (see, examples [3-5].). On the other hand, 

hypothetical models have gained importance in understanding the spread of the disease within 

communities. In particular, the potential use of face masks has been investigated in 

mathematical models; the importance of face masks together with non-pharmaceutical 

interventions is concluded [6]. As more data have been collected, models incorporating 

parameter estimation methods have revealed country-based differences driven by intervention 

strategies, human behavior, and technology. For example, differences have been observed in 

India, Mexico, Wuhan, Sweden, Canada, and Türkiye [7-12]. Vaccination programs have been 

examined through mathematical models, with findings suggesting that vaccination alone is not 

sufficient to control the spread [13]. The effects of awareness programs have also been studied, 

with results indicating that awareness and timely hospitalization are critical factors in 

eliminating the disease [14]. The impact of testing and isolation has been discussed, and authors 

have concluded that the timing of testing and the rate of testing are two key factors in developing 

effective control strategies [15]. Malik et al. have expressed the outbreak of COVID-19 as a 

fractional order system and considered an inverse problem to find the time-dependent 

parameters in the model for the data of India [16, 17].  

The construction of a mathematical model consists of several steps [18, Figure. 1]. 

Model development is followed by structural identifiability analysis. This is necessary because 

two different parameter sets can sometimes lead to the same solution curves for a structurally 

nonidentifiable model. However, this can result in unrealistic model behavior. In fact, inefficient 

control strategies based on such models may cause the disease to spread even more. Therefore, 

it is crucial to analyze whether the model is structurally identifiable before proceeding with 

model calibration. Model calibration enables the determination of the parameter values in the 

model. While model parameters are structurally identifiable, they may not always be practically 

identifiable. Therefore, practical identifiability analysis is essential. If any parameter is found 
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to be practically nonidentifiable, then one must be careful in making predictions or adjustments 

in case of parameter perturbations. 

Akman et al. constructed a mathematical model for COVID-19 in Türkiye [12], which 

captured the first peak using the data from the TURCOVID-19 database [19]. They also 

investigated the effect of underreporting [12]. In this work, we extend the model presented in 

the work [12] by splitting the symptomatically infectious subgroup into symptomatically 

infectious and hospitalized patients and adding a quarantine subgroup to model the first peak 

of the spread. Additionally, we investigate both the structural and practical identifiability of the 

model, which were not within the scope of the paper by Akman et al. [12]. From this current 

study, we have learned that caution is needed when making future predictions or planning 

interventions based on this model, as α1, βe, and βs (the progression rate of symptomatically 

infectious individuals to hospital, and the transmission rates associated with exposed and 

symptomatically infectious individuals) are not practically identifiable. The rest of the paper is 

organized as follows: In Sec. 2, the mathematical model is developed and explained. Sec. 3 

presents the structural identifiability analysis. Sec. 4 is devoted to model calibration, followed 

by the practical identifiability analysis in Sec. 5. Sensitivity analysis is discussed in Sec. 6. 

Simulation results are presented in Sec.7. This paper ends with a summary and conclusion.  

2 MODEL DEVELOPMENT 

We develop a mathematical model for the first wave of COVID-19 by splitting the total 

population of Türkiye at time t, denoted N(t), into nine mutually exclusive compartments of 

individuals for the period of March 11, 2020 - May 31, 2020. The variables in the model 

represent the number of individuals in each compartment: susceptible S:=S(t), exposed E:=E(t), 

asymptomatic and infectious but not tested In:=In(t), symptomatic and infectious Is:=Is(t), 

hospitalized and isolated Ih:=Ih(t), patients staying at ICU IICU:=IICU(t), ventilated Iv:=Iv(t), 

recovered R:=R(t) and quarantined Q:=Q(t) at time t. Therefore, the total population N:=N(t) is 

given by 

N = S + E + In + Is + Ih + IICU + Iv + R + Q. 

We use the standard incidence and exclude isolated individuals, as motivated by the 

work [21], in the disease transmission state. Susceptible individuals (S) become infected 

because of the interactions with exposed individuals (E), asymptomatically infectious 

individuals (In), and symptomatically infectious individuals (Is) at the rates of βe, βn, and βs, 
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respectively. The exposed class (E) is affected by this interaction, and the exposed compartment 

decreases at the rate of k. A fraction ρ of exposed individuals show symptoms, while the rest 

move to the compartment of asymptomatically infectious individuals (In). Asymptomatically 

and symptomatically infectious individuals recover at the rates of γn and γs, respectively. 

Symptomatically infectious individuals may develop severe infections and get hospitalized at 

the rate of α1. Hospitalized individuals die at the rate of μh and recover at the rate of γh. 

Hospitalized patients may be transferred to the ICU at the rate of α2, and ICU patients may be 

ventilated (Iv) at the rate of α3. Both ICU patients and ventilated patients recover at the rates of 

γICU and γv, respectively, and pass away at the rates of μICU and μv, respectively. During 

simulations, quarantine and isolation strategies are implemented, so susceptible individuals 

move to quarantine at the rate of c. We exclude quarantine of the subgroups of E, In and Is, as 

quarantine is applied only when the number of infectious individuals becomes too high. Since 

we are modeling the early stages of the pandemic, we exclude the terms for natural death, births, 

and vaccination. Based on these assumptions, we develop the following model: 

𝑑𝑆

𝑑𝑡
= −(𝛽𝑒𝐸 +  𝛽𝑛𝐼𝑛 +  𝛽𝑠𝐼𝑠)

𝑆

𝑁−𝐼ℎ− 𝐼𝐼𝐶𝑈−𝐼𝑣−𝑄
− 𝜂𝑆,      (1a) 

dE

𝑑𝑡
= (𝛽𝑒𝐸 +  𝛽𝑛𝐼𝑛 +  𝛽𝑠𝐼𝑠)

𝑆

𝑁−𝐼ℎ− 𝐼𝐼𝐶𝑈−𝐼𝑣−𝑄
− 𝑘𝐸,        (1b) 

d𝐼𝑛

𝑑𝑡
= (1 − 𝜌)𝑘𝐸 − 𝛾𝑛𝐼𝑛,          (1c) 

d𝐼𝑠

𝑑𝑡
= 𝜌𝑘𝐸 −  (𝛼1 +  𝛾𝑠)𝐼𝑠,         (1d) 

d𝐼ℎ

𝑑𝑡
= 𝛼1𝐼𝑠 − (𝛼2 +  𝛾ℎ+ µℎ)𝐼ℎ,        (1e) 

d𝐼𝐼𝐶𝑈

𝑑𝑡
= 𝛼2𝐼ℎ − (𝛼3 +  𝛾𝐼𝐶𝑈+ µ𝐼𝐶𝑈)𝐼𝐼𝐶𝑈,       (1f) 

d𝐼𝑣

𝑑𝑡
= 𝛼3𝐼𝐼𝐶𝑈 − (𝛾𝑣+ µ𝑣)𝐼𝑣,         (1g) 

dR

𝑑𝑡
= 𝛾𝑛𝐼𝑛 + 𝛾𝑠𝐼𝑠 + 𝛾ℎ𝐼ℎ + 𝛾𝐼𝐶𝑈𝐼𝐼𝐶𝑈 + 𝛾𝑣𝐼𝑣,       (1h) 

dQ

𝑑𝑡
= 𝜂𝑆,           (1i) 

𝑆(0) = 𝑆0, 𝐸(0) = 𝐸0,  𝐼𝑛(0) = 𝐼𝑛,0,  𝐼𝑠(0) = 𝐼𝑠,0,  𝐼ℎ(0) = 𝐼ℎ,0,  𝐼𝐼𝐶𝑈(0) = 𝐼𝐼𝐶𝑈,0 , 𝐼𝑣(0) =
𝐼𝑣,0 𝑅(0) = 𝑅𝑛,0 , Q(0) = 𝑄𝑛,0.         (1j)  

 

We proceed with the proofs of existence and uniqueness, positivity and boundedness of 

the solution. 
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2.1 Model analysis 

We observe that the right-hand side of model (1) is completely continuous and locally 

Lipschitzian. Therefore, its solution, namely S(t), E(t), In(t), Is(t), Ih(t), Iicu(t), Iv(t), R(t), and 

Q(t), with non-negative initial conditions exists and is unique on the interval [0, t*], where 0 < 

t* < ∞ [22]. 

We first prove that the solution is positive. Consider t* = sup{t > 0: S(t), E(t), In(t), Is(t), 

Ih(t), Iicu(t), Iv(t), R(t), Q(t) > 0 }. Then, by integration, Equation (1a) leads to 

d

𝑑𝑡
(𝑆(𝑡) 𝑒𝑥𝑝(𝜂𝑡 +  ∫

𝛽𝑒𝐸(𝑢) +  𝛽𝑛𝐼𝑛(𝑢) +  𝛽𝑠𝐼𝑠(𝑢)

𝑁(𝑢) − 𝐼ℎ(𝑢) −  𝐼𝐼𝐶𝑈(𝑢) − 𝐼𝑣(𝑢) − 𝑄(𝑢)

𝑡∗

0

  𝑑𝑢))  =  0. 

Then, we obtain 

𝑆(𝑡 ∗) 𝑒𝑥𝑝(𝜂𝑡 ∗  + ∫
𝛽𝑒𝐸(𝑢) +  𝛽𝑛𝐼𝑛(𝑢) +  𝛽𝑠𝐼𝑠(𝑢)

𝑁(𝑢) − 𝐼ℎ(𝑢) − 𝐼𝐼𝐶𝑈(𝑢) − 𝐼𝑣(𝑢) − 𝑄(𝑢)

𝑡∗

0

  𝑑𝑢)  −  𝑆(0)  =  0. 

We rewrite this equation to reach 

𝑆(𝑡 ∗)  =  𝑆(0) 𝑒𝑥𝑝(− 𝜂𝑡 ∗  − ∫
𝛽𝑒𝐸(𝑢) +  𝛽𝑛𝐼𝑛(𝑢) + 𝛽𝑠𝐼𝑠(𝑢)

𝑁(𝑢) − 𝐼ℎ(𝑢) −  𝐼𝐼𝐶𝑈(𝑢) − 𝐼𝑣(𝑢) − 𝑄(𝑢)

𝑡∗

0

  𝑑𝑢)  ≥  0. 

It means that the solution S(t) is non-negative. Similarly, we can follow the same 

approach to prove that all other solutions are non-negative.  

We secondly prove that the model variables are bounded above. Therefore, we add all 

the equations up in model (1) to obtain  

dN

𝑑𝑡
=  −µℎ𝐼ℎ  −µ𝑖𝑐𝑢𝐼𝑖𝑐𝑢  −µ𝑣𝐼𝑣  ≤  −𝑚𝑖𝑛( µℎ, µ𝑖𝑐𝑢,  µ𝑣) 𝑁 =  −µ 𝑁, 

where 𝑚𝑖𝑛( µℎ, µ𝑖𝑐𝑢,  µ𝑣)  =  µ . We observe that N is a decreasing function of time t 

and N(t) = 𝑁(0)𝑒𝑥𝑝(−µ 𝑡). Then, it means that all model variables are bounded above. We 

now proceed with the structural identifiability analysis. 

3 STRUCTURAL IDENTIFIABILITY ANALYSIS  

Identifiability analysis has been discussed in many studies (for example [23-27]). Here, 

we provide a summary based on these works.  

A model parameter pi is called identifiable if the confidence interval associated with pi, 

denoted [p+i , p−i], is finite. There are two types of identifiability that can be investigated: 

structural and practical identifiability. The former is independent of the data and concerns the 
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structure of the mathematical model, while the latter considers the observations used for model 

fitting. Some mathematical models suffer from structural nonidentifiability, meaning that a 

unique parametrization of the model using the available observations cannot be achieved. 

We, firstly, investigate the structural identifiability of model (1) by expressing it as 

        𝑥′(𝑡) =  𝑓 (𝑥, 𝑝), 𝑥(0) =  𝑥0, (2) 

where x and p denote the states and parameters of model (1), respectively. The data in 

this study comes from the open-access TURCOVID-19 database [28, 19]. The observations we 

have are the daily number of cases y1(t) = ρkE, the daily number of deaths y2(t) = μhIh +μICU 

IICU+μvIv, ICU prevalence y3(t) = IICU and ventilation unit prevalence y4(t) = Iv. We can write 

the observations as: 

𝑦(𝑡) = 𝑔(𝑥, 𝑝)  . (3) 

The model given by Equation (2) is structurally identifiable if the vector p can be 

uniquely determined from the observations y(t) in Equation (3), assuming the observations are 

unlimited [23]. Otherwise, the model is considered unidentifiable. The formal definition is 

provided below [29]. 

Definition 1. Suppose that p and ք are two distinct parameter vectors. Model (1) is said 

to be globally (uniquely) structurally identifiable if  

𝑔(𝑥, 𝑝) =  𝑔(𝑥, ք)     𝑖𝑚𝑝𝑙𝑖𝑒𝑠      𝑝 =  ք. (4) 

Definition 2. Model (1) is said to be locally structurally identifiable if for any p within 

an open neighborhood of ք in the parameter space,  

𝑔(𝑥, 𝑝) =  𝑔(𝑥, ք)     𝑖𝑚𝑝𝑙𝑖𝑒𝑠    𝑝 =  ք. (5) 

Structural identifiability can be analyzed using various methods, such as the Taylor 

series method [30], Lie symmetries [31], generating power series approach [32], and differential 

algebra approach [33]. We prefer the differential algebra approach as the open-source software 

JULIA [33] and its structural identifiability package [25, 35] can perform this analysis and can 

capture both identifiable and nonidentifiable parameters. The differential algebra approach 

explains the structural identifiability as follows [36]:  



T. Akman / BEU Fen Bilimleri Dergisi, 14 (1), pp. 494-512, 2025 

 

 

500 

Definition 3. Suppose that c(p) denotes the coefficients of the input-output equation 

corresponding to model (1). We say that model (1) is structurally identifiable from unlimited 

observations y(t) if and only if c(p) = c(ք) implies p = ք. 

If a model is not structurally identifiable, reparametrization is required [37]. 

4 MODEL CALIBRATION 

We proceed with parameter estimation for model (1) using the data obtained from the 

online database TURCOVID19 [19, 28]. The spread of the virus in the community changes 

over time due to public interventions. Therefore, we focus on the early dynamics of the spread, 

during which we can capture the first peak, specifically the period from March 11, 2020, to 

May 31, 2020, in Türkiye. We fit model (1) to the data, including the number of COVID-19 

cases, the number of deaths, ICU prevalence, and ventilation prevalence. Let 

{𝑡𝑖}𝑖=1
𝑘1 , {𝑡𝑖}𝑖=1

𝑘2 , {𝑡𝑖}𝑖=1
𝑘3  and {𝑡𝑖}𝑖=1

𝑘4  represent the time points for each observation, respectively. 

The measurements contain some noise and can be expressed as 

𝑌1
𝑖 = 𝑦1(𝑡𝑖) + 𝜖𝑖,  𝑖 = 1,2, ⋯ , 𝑘1, 

Y2
i = y2(ti) + ϵi,  i = 1,2, ⋯ , k2, 

Y3
i = y3(ti) + ϵi,  i = 1,2, ⋯ , k3, 

                      Y4
i = y4(ti) + ϵi,  i = 1,2, ⋯ , k4.                               (6) 

We estimate the parameters of model (1) by solving the following optimization problem: 

 min 𝑝 (  
1

𝑘1
 ∑

|𝑦1(𝑡𝑖)−𝑌1
𝑖|

2

Ỹ1
2

𝑘1
𝑖=1  +   

1

𝑘2
 ∑

|𝑦2(𝑡𝑖)−𝑌2
𝑖|

2

Ỹ2
2

𝑘2
𝑖=1  + 

1

𝑘3
 ∑

|𝑦3(𝑡𝑖)−𝑌3
𝑖|

2

Ỹ3
2

𝑘3
𝑖=1   +

 +  
1

𝑘4
 ∑

|𝑦4(𝑡𝑖)−𝑌4
𝑖|

2

Ỹ4
2

𝑘4
𝑖=1  ) ,             (7) 

w. r. t. the constraint 𝑝 > 0.                               (8) 

The terms Ỹ𝒕
𝑖  for t ∈ {1, 2, 3, 4} are the average observations written as Ỹ𝒕

𝑖  =  
1

𝑘𝑡
∑ 𝑌𝑡

𝑘𝑡
𝑖=1 . 

After model calibration, practical identifiability is performed to investigate the 

confidence intervals of the model parameters. 
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5 PRACTICAL IDENTIFIABILITY ANALYSIS 

We proceed with the practical identifiability analysis, as model (1) has been shown to 

be structurally identifiable. However, a structurally identifiable parameter may still be 

practically nonidentifiable. This often occurs when the observations or data used in model 

calibration are insufficient to compute a finite confidence interval [38]. It is defined as follows: 

Definition 4. A parameter estimate ҏi is practically nonidentifiable; despite the unique 

minimum of the likelihood for this parameter, the likelihood-based confidence region 

associated with the parameter is infinitely extended in increasing and/or decreasing direction of 

ք i. 

There are several methods to analyze parameter identifiability, including Bayesian 

sampling approaches [39, 40], bootstrap methods [41], and the Fisher information matrix [42]. 

Additionally, using the profile likelihood method [23, 24], we can determine the practically 

identifiable parameters with a 95% confidence interval, allowing us to assess parameter 

uncertainties in the model. We prefer this approach because it can be easily implemented using 

the d2d software after model calibration [43-45].  

6 SENSITIVITY ANALYSIS 

Global sensitivity analysis is performed for COVID-19 models to test the robustness of 

the model [12, 46]. In this work, the method of the partial rank correlation coefficient (PRCC) 

is used [47]. The aim is to measure the effect of each model parameter on a variable or 

observation to obtain a value between −1 and +1 and to determine the strength of this value. 

Computational details and simulation results are discussed in the next section. 

7 SIMULATION RESULTS 

After constructing the model and determining the type of data to use, we perform 

structural identifiability analysis. We use the open-source software JULIA [34] and its 

StructuralIdentifiability.jl package [25, 35] for the analysis.  

However, we encountered a memory error in JULIA. This issue can be resolved by using 

linear first integrals, which speed up computations [46]. We apply a suitable transformation to 

the model (1) to eliminate one of the unknowns in the system. Details are provided in the 

appendix. 
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Based on the analysis performed in JULIA [33], we find that all variables and parameters 

of model (1) are globally identifiable. After confirming that the model is structurally 

identifiable, we proceed with parameter estimation using the d2d software [43-45]. We fix the 

values of some parameters related to the dynamics of COVID-19 based on the literature. The 

d2d software uses a deterministic optimisation algorithm, namely lsqnonlin, in the parameter 

estimation step [44]. In addition, the d2d software decides the most efficient ODE solver to find 

the numerical solution.  The parameter interval is set as p ∈ (10−6, 105), with the upper bound 

for α1 is fixed as 1011 and the lower bounds for βe and βs are set as 10−8. The values of parameters 

and initial conditions are provided in Table 1. 

Table 1. Parameter values. 

Parameter Value Unit Source 

α1 2.8 x 1010 Day-1 Calibrated 

α2 0.041 Day-1 Calibrated 

α3 0.14 Day-1 Calibrated 

βe 1.4 x 10-9 Day-1 Calibrated 

βn 1.7 Day-1 Calibrated 

βs 6.3 x 10-6 Day-1 Calibrated 

η 0.19 Day-1 Calibrated 

γh 0.1449 Day-1 [47] 

γICU 0.231285 Day-1 [47] 

γn 0.3448 Day-1 [47] 

γs 0.1429 Day-1 [47] 

γv 0.239209 Day-1 [47] 

k 1/14 Day-1 Estimated from [48] 

µICU 0.0605032 Day-1 [12] 

µh 0.000001 Day-1 Adapted from [12] 

µv 0.00029338 Day-1 [12] 

ρ 0.28 Day-1 [12] 

S0 8 x 107 Individual [12] 

E0 437 Individual [12] 

In,0 490 Individual [12] 

Is,0 1 Individual Data 

Ih,0, IICU,0, Ihv,0, Rh,0, Qh,0 0 Individual Data 

 

The optimization problem (7)-(8) is solved as a multi-start optimization problem with 

500 iterations. Figure 1 shows that convergence is achieved, and the first-order optimality 

criterion is calculated as 3.82169 x 10-8. 
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Figure 1. Overview about the multistart optimization. 

We present the simulation results in Figure. 2-5. We observe that model (1) accurately 

predicts the dynamics, and the simulation results align well with the model observations. 

 

Figure 2. Simulation results for the number of cases. 

 

Figure 3. Simulation results for the number of deaths. 
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After model calibration, we proceed with the practical identifiability analysis using 

profile likelihood, which is performed by the d2d software.  

We note that calibrated parameter values pi‘s are displayed by gray stars, and thresholds 

for the confidence intervals are shown by the upper and lower dashed lines in Figure 6. We note 

that calibrated parameter values pi‘s are displayed by gray stars, and thresholds for the 

confidence intervals are shown by the upper and lower dashed lines in Figure 4. We observe 

that the parameters α1, βe, and βs are not practically identifiable, as a finite confidence interval 

for α1 and βe cannot be determined, and the confidence interval for βs is very flat. The value of 

βe is found at the left end of the parameter interval, indicating practical nonidentifiability. To 

overcome this, additional data sets should be incorporated during the model calibration step, 

such as data on the number of susceptible individuals. However, such data are difficult to 

collect, as it is not possible to test everyone in the population to determine whether they are 

infectious. 

 
Figure 4. Simulation results for ICU prevalence. 

 

 
Figure 5. Simulation results for ventilation prevalence. 
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We proceed with sensitivity analysis. A MATLAB code developed by Lab has been 

modified for implementation of the method of PRCC [48]. Intervals for each parameter are set 

starting from half to twice the baseline value, and a uniformly distributed sample space with 

1000 sample values is constructed.  

We investigate the sensitivities of the number of cases and the number of deaths and 

present them in Figure. 7 and Figure. 8, respectively. We choose the days corresponding to the 

middle and the end of the simulation interval, namely days 40 and 80, respectively, for 

comparison purposes. We observe that the number of cases increases as the parameter βn 

increases, while it decreases as the rate of quarantine, the rate of recovery for asymptomatically 

infectious. 

 

Figure 6. Profile likelihood curves. 

For day 80, it is inversely proportional to the incubation period 1/k. On the other hand, 

the number of deaths is proportional to the parameters βn and α2. It means that as the value of 

the transmission rate and the rate at which patients are transferred to ICU increases, the more 

people pass away. Negative, but the largest sensitivity in magnitude occurs for the parameter η 

meaning that as the rate of quarantine increases, more lives can be saved. 
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Figure 7. Sensitivity analysis for the number of cases. 

 

Figure 8. Sensitivity analysis for the number of deaths. 

8 CONCLUSION AND SUGGESTIONS 

We develop a model for disease transmission during the first peak of COVID-19 in 

Türkiye. We observe that our model is structurally identifiable when using the number of 

symptomatic cases, deaths, patients in the ICU, and ventilated patients as observations. 

Structural identifiability analysis is performed using the open-source software Julia and its 

structural identifiability package after simplifying the model based on linear first integrals. 

Model calibration is carried out as a multi-start optimization problem, and the simulation results 

align well with the data. Next, we investigate the variability of the parameters based on the 

profile likelihood method for parameter identifiability. We find that the parameters α1, βe, and 

βs are not practically identifiable. It indicates that the implementation of intervention strategies 
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must be carried out with caution. In addition, we performed sensitivity analysis and determined 

the effect of the parameters on the observations, namely the number of cases and deaths. The 

disease transmission rate of asymptomatically infectious individuals and the rate of quarantine 

have the biggest impact on the observations. Indeed, the former is positively correlated, the 

latter is negatively correlated with the observations.   

 As future work, this model can be extended to model subsequent waves of the pandemic 

by incorporating delay terms, and the identifiability of the models developed for vaccination 

strategies can be investigated.  
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APPENDIX 

We present the details of the transformation applied to model (1) to speed up the analysis 

in Julia, where the variable x1 t0 x9 represents the variables in model (1).  

 

# Transformation #1 

# Observe that: x1' + x2' + x9' +  y1 / rho = 0 

# Therefore: x1 + x2 + x9 + int_y1 / rho = C1 for some constant C1 

# We introduce new state int_y1' = 1/14 * rho * x2 and make it an output 

# Then we can use x1 = C1 - x2 - x9 - int_y1 / rho to eliminate x1 from the system 

 

# Transformation #2 

# Observe that: x3' + x4' + x5' + x6' + x7' + x8' -  y1 / rho + y2 = 0 

# Therefore: x3 + x4 + x5 + x6 + x7 + x8 - int_y1 / rho + int_y2 = C2 for some constant 

C2 

# We introduce new state int_y2' = muh*x5 + muICU*x6 + muv*x7 and make it an 

output 

# Then we can use x4 = C2 - x3 - x5 - x6 - x7 - x8 + int_y1 / rho - int_y2 to eliminate 

x4 from the system 

 

The code for structural identifiability analysis is given below: 

 

ode = @ODEmodel( 

    x2'(t) = (betae*x2(t) + betan*x3(t) + betas*(C2 - (x3(t)+x5(t)+x6(t)+x7(t)+x8(t)) + 

int_y1(t) / rho - int_y2 ))*((C1 - x2(t) - x9(t) - int_y1(t) / rho)/((C1 - x2(t) - x9(t) - int_y1(t) / 

rho)+x2(t)+x3(t)+(C2 - (x3(t)+x5(t)+x6(t)+x7(t)+x8(t)) + int_y1(t) / rho - int_y2 

)+x8(t)+x9(t))) - (1/14)*x2(t), 

    x3'(t) = (1-rho)*(1/14)*x2(t) - (gamman)*x3(t), 
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    x5'(t) = alpha1*(C2 - (x3(t)+x5(t)+x6(t)+x7(t)+x8(t)) + int_y1(t) / rho - int_y2 ) - 

(alpha2+gammah + muh)*x5(t), 

    x6'(t) = alpha2*x5(t) - (alpha3+gammaICU+muICU)*x6(t), 

    x7'(t) = alpha3*x6(t) - (gammav + muv)*x7(t), 

    x8'(t) = gamman*x3(t) + gammas*(C2 - (x3(t)+x5(t)+x6(t)+x7(t)+x8(t)) + int_y1(t) 

/ rho - int_y2 ) + gammah*x5(t) + gammaICU*x6(t) + gammav*x7(t), 

    x9'(t) = eta*(C1 - x2(t) - x9(t) - int_y1(t) / rho), 

    int_y1'(t) = (1/14) * rho * x2(t), 

    int_y2'(t) = muh*x5(t) + muICU*x6(t) + muv*x7(t), 

    y1(t) = (1/14)*rho*x2(t), 

    y2(t) = muh*x5(t) + muICU*x6(t) + muv*x7(t), 

    y3(t) = x6(t), 

    y4(t) = x7(t), 

    y5(t) = int_y1(t), 

    y6(t) = int_y2(t), 

) 

 

println(assess_identifiability(ode, known_ic=[x2,x3,x5,x6,x7,x8,x9])) 


