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Abstract. 3D acquisition technologies have favored the development of
geometric modelling of 3D objects based on data from their digitization.
The aim is to use the Delaunay triangulation (DT) approach to gen-
erate a digital model of the external surfaces of a physical object from
point clouds. The generation of a DT from a non-uniform point clouds
is an arduous and time-consuming task. Moreover, point clouds are very
large and computationally intensive, which increases processing time and
costs, especially if only one processor is used. The fastest DT algorithm is
based on the divide-and-conquer, which is generally designed to be used
for parallelism. This algorithm is carried out in two steps. The first step
recursively partitions the points set into sub-regions; each is assigned to
a processor. Independently, these regions are further triangulated simul-
taneously. The second step merges the sub-regions into the final mesh,
which is applied in the reverse order of points set partitioning. This work
deals with the generation of a 3D triangulation from any point cloud,
which is partitioned to several sub-points using cells. Independently, the
sub points are further triangulated simultaneously by parallelizing the
calculations on several processors. After that, an allocated area of each
cell is determined, as well as the strategy for the fusion. Finally, this so-
lution is tested and validated through many unstructured point clouds.

Keywords: Cloud of Points · Cells · 3D Delaunay Triangulation · Merg-
ing · Parallel Computing.
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1 Introduction

With the technological evolution in different industries such as automotive,
robotics or medical, the need to produce more complex objects with more details
and a higher degree of precision is always present. Depending on their geometric
complexity, these objects are designed according to two approaches: the so-called
classical one, based on the modelling of the object according to a specification us-
ing design and manipulation functions offered by computer-aided design (CAD)
software. The disadvantage of this approach lies in the difficulty of obtaining
the desired shapes without resorting to successive modification and validation
phases. This leads to very long processing times. The other approach, known as
Reverse Engineering, is used when the shapes of the objects are very complex
and cannot be designed in CAD software, or if the object description model is
unavailable. It is based on the modelling of the object from point clouds. This
approach has become a very common practice in the industrial world now days,
as it allows to reduce the development time of new products from prototypes.

Object reconstruction is a relatively young discipline. It allows the conversion
of the point clouds representing the object into simple geometric elements such
as triangles, tetrahedra, etc. Several methods have been developed for object re-
construction from point clouds. Rego [1] and Kazhdan [2] mention that the point
cloud plays a very important role in the choice of the reconstruction method. It
can be a uniform or non-uniform point cloud. In [3], a comparative study between
several reconstruction algorithms was presented by taking into account several
criteria: algorithm complexity, point cloud, surface topology, etc., the authors
chose the Delaunay triangulation (DT) as the most used approach. As a result,
many techniques for the generation of DT have been developed, the incremental
insertion method presented by [4] and [5], the Sweep-line method proposed by [6]
and [7] and the Divide and Conquer method first presented by [8]. Subsequently
improved in [9] and [10]. The only drawback of these techniques is the long pro-
cessing time. With the advent of multi-core machines, the construction time can
be reduced by using more than one processor. Several parallel algorithms for DT
construction have been proposed to improve the performance and overcome the
drawbacks of existing techniques.

In [11], the point cloud is decomposed into a single dimension, and then each
processor performs sub-cloud triangulation and boundary fusion. The authors in
[12] propose an affected area solution. It consists in determining the area that
can be modified when merging two sub-triangulations to reduce communication
between processors. Since point clouds are often very large, the authors in [13]
present an algorithm called Para Stream that uses k-tree to distribute the task of
triangulation and merging over the processor cores to improve the load balance.
Also, the authors in [14,15] present the generation of the parallel DT based on
the partition of the points into zones. The points are first divided into cells
of approximately equal number of points. The cells are grouped into zones, in
which the DT is constructed by simultaneously inserting points cell by cell in each
zone. Some techniques have been merged and presented as a hybrid method [16].
Authors in [16] used a double divide and conquer to increase the efficiency when
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processing a dense point cloud. The obtained results show that the proposed
parallel algorithm is efficient in constructing the DT with good speedup.

Point clouds are often very large to be processed with a single processor, this
situation increases the processing time and consequently the cost. Based on this
analysis, this paper proposes a methodology for the generation of the DT that
allows the reduction of the processing time by parallelizing the computations
on several processors or cores. So, given an unstructured point cloud resulting
from the digitization of an object, an approach based on the principle of DT is
pro posed. In this approach, the point cloud representing the skin of the object
is subdivided into cells along three directions (X-axis, Y -axis, and Z-axis) by
introducing the number of cell on each direction. Then, the cells are assigned
to the different processors. Subsequently, the DT of the cells is generated in
parallel. Finally, the assigned areas of each cell are generated to reduce the
communication between the processors, and the fusion strategy is determined as
well.

2 Proposed Approach

The general architecture of the proposed approach is composed of three steps
(Figure 1). The first step takes as input the point cloud to generate cells, then
the points are assigned to the corresponding cells and then the cells are assigned
to the processors. The second step is to generate the DT of the cells in parallel.
At the end, the last step involves the definition of the assigned area of each cell,
followed by the merging between cells according to a well-defined order.

Fig. 1: Proposed approach
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2.1 Reading the point cloud

After the acquisition of the file containing the points cloud representing the
object, the file is verified syntactically and semantically. Figure 2 shows two
types of file that can be read in this work.

(a) Three coordinates per line. (b) One coordinate per line.

Fig. 2: Types of file.

The algorithm in figure show the steps to verify the conformity of the file (see
Figure 2). First, the file name is retrieved; it must contain the ‘.txt’ extension.
Then, the number of lines or the number of coordinates are read. It must be found
either the number of lines or the number of coordinates multiple of number three.
Otherwise, the file lacks information and therefore, I inform the user by message
that the data file lacks information. If this file is correct, all the points will be
stored in an array of point structure.

2.2 Partition of point cloud using cells

After reading the file, the subdivision of the point cloud into cells is carried out
in two steps:

1. First step: consists in creating cells of the same size.
2. Second step: assign each point to the appropriate cell.

Creating cells of the same size To achieve this goal, the raw area surrounding
the point cloud is subdivided into cells of equal size using Algorithm 1 illustrated
below.

Once the user has saved the points in a three-dimensional array in the reading
step, the user might enter the number of cells on each axis (nx, ny, and nz).
Next, the limits of the raw part are calculated, which are: xmax and xmin on
the x axis, ymin and ymax on the y axis, and zmax and zmin on the z axis. From
these values of limits, the length, width, and height dimensions are calculated.
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Fig. 3: Check file conformity algorithm.

Afterward, the dimensions of the cell (stepx, stepy, stepz) are calculated
using these formulas:

stepx =
length

nx
(1)

stepy =
width

ny
(2)

stepz =
height

nz
(3)

With nx, ny, and nz being the number of cells in the x, y, and z directions
respectively. Finally, a 3D array of cells called tab c is created, representing all
the cells created.

Algorithm 1 Subdivision of the raw part into cells

Require: Point cloud, number of cells nx, ny, nz

Ensure: Set of cells Tab C (C1, C2, C3, . . . , Ck)
1: Calculate the limits of the raw part: xmin, xmax, ymin, ymax, zmin, zmax

2: Calculate the dimensions of the raw part: length, width, and height
3: Calculate the dimensions of a cell: stepx = length

nx
, stepy = width

ny
, stepz = height

nz

4: Create a three-dimensional array of cells Tab C
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Assigning points to cell To identify the cell for each point, three indices I,
J and K that define each cell must be calculated. The formulae below allow
each point to be assigned directly to the appropriate cell without having to test
these three coordinates (Fig. 4). Where x represent the point coordinate along
the x axis, xmin represent minimum raw limit and stepx represent cell size along
the x axis. From these values, the index I is calculated using formula (4). The
same thing is repeated for two indices J and K representing the Y and Z axes
respectively. Therefore, the point P (x, y, z) is assigned to the cell (I, J,K)

I =
x− xmin

stepx
(4)

J =
y − ymin

stepy
(5)

K =
z − zmin

stepz
(6)

(a) Limits (b) Cell dimensions (c) Affected points.

Fig. 4: Assigning points to cells.

2.3 Parallel Delaunay triangulation of cells

3D Delaunay triangulation generation steps It consists of creating tetra-
hedrons from the unstructured point cloud. The process of triangulation is illus-
trated in Figure 5.

Parallel Delaunay triangulation In this step, the DT is called as many times
as necessary, depending on the number of cells. This call is made automatically
to generate DTs in parallel. This step is illustrated by an example of two cells
along each axis, resulting in eight (08) cells (Figure 6).
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(a) Limits

(b) Cell dimensions (c) Affected points. (d) Affected points.

Fig. 5: Assigning points to cells.

Fig. 6: Parallel Delaunay triangulation of eight cells.

2.4 Merging sub-triangulation

Affected zone The affected area is the region of the DT of each cell that is
likely to be modified when the triangulations are merged. These regions rep-
resent the portions of the adjoining areas between the different cells along the
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three directions X, Y and Z. To avoid processing all the tetrahedra of the cells,
only the tetrahedra whose circumscribed sphere contacts the boundaries of the
neighboring cells, along the three directions X, Y and Z, will be considered
during processing (Figure 7). For each cell, six (06) affected zones must be de-
termined; two (02) along each axis. The determined areas are: right affected area,
left affected area, top affected area, bot tom affected area, front affected area, and
back affected area.

Fig. 7: Affected zone.

Cells triangulations merging Merging is the last phase after subdividing
the point cloud into cells and triangulating the cells into parallels. The cell
merging strategy adopted is to concatenate the cell triangulations two by two
from the affected areas of adjacent cells. The merging strategy is done in all three
directions. Firstly, in the X-axis direction, secondly in the Y -axis direction and
thirdly in the Z-axis direction (Figure 8).

(a) X direction. (b) Y direction. (c) Z direction.

Fig. 8: Three directions of merging.

The merging process involves the following steps [17]:
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– Generating of the first tetrahedron, which will serve as a support for the
generation of the other tetrahedrons (see Figure 9).

– Generating a generic tetrahedron (see Figure 10).

(a) Two closest points. (b) First tetrahedron.

Fig. 9: Generating of the first tetrahedron.

(a) First candidate. (b) Second candidate. (c) Full merging.

Fig. 10: Generating of the generic tetrahedron.

3 Results and Discussion

The proposed approach is implemented in object-oriented mode under Windows
using the C++ Builder language and the OpenGL graphics library. The ap-
proach is validated on the test part (convex shape). Figure 11a and Figure 11b
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shows the acquired points. The first step is to read the point cloud, calculate
the boundaries of the raw part and its dimensions (length, width, and height).
During the reading step, the number of point represented the convex part is
equal to eight hundred and nine (809) and the overall dimensions of the blank
are 90.49 mm×49.68 mm×47.74 mm.

(a) Convex part. (b) Cloud of points. (c) Raw part dimensions.

Fig. 11: Test part (Convex shape).

3.1 Obtained results

The subdivision of the raw part is carried out as follows: the number of cells in
all directions (X, Y and Z) is chosen equal to two (2). Then, a three-dimensional
array of eight cells is generated. Figure 12 shows the generated cells and their
points. Table 3 gives the number of points in each cell.

(a) Cells creation. (b) Affected points to theirs cells.

Fig. 12: Cells and their points.
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Table 1: Number of points for each cell

Cell index Number of point

Cell 0 0 0 89
Cell 0 1 0 108
Cell 0 0 1 88
Cell 1 0 0 93
Cell 1 1 0 108
Cell 1 0 1 92
Cell 0 1 1 118
Cell 1 1 1 113

From Table 3, the minimum and the maximum number of points in cells is
equal to eighty-eight and one hundred and eighteen respectively. Therefore, the
parameter ∆point, which represents the difference between the maximum and
minimum number of points in cells (∆point=118-88) is equal to thirty (30). This
means that a little difference exists between cells, and therefore the number of
points per cell is more or less homogeneous.

To demonstrate this performance, the number of points assigned for cell is
checked against the average number of points. In this case, the average number
of points inside a partition is 101 points (809 points on 8 clusters). Using the
following equation (7), the obtained values of V are shown in Table 2.

Vi = |Number of assigned ponts to celli −Avrage number of points| (7)

Table 2: Obtained values of V (*: denotes the minimum, **: denotes the maxi-
mum)

Cell/number V1 V2 V3 V4 V5 V6 V7 V8 Sum

number of points 89 108 88 93 108 92 118 113 809
number of points -12* 69 -13 -8 7 -9 17** 12 1

Table 2 shows that the maximum values of V is 17. Regarding the minimum
values of V , the minimum values of V is -12. The last column of Table 2 shows
that the sum of the values V is equal to one (Sum = 1). This affirms better
homogeneous performances. However, this number can vary depending on the
size and geometry of the object under consideration.

Once the point cells have been generated, the DT is run in parallel on a PC
with two cores. The triangulation of the cells is shown in Figure 13. At the end,
the process of generating the affected area generates six affected areas, and they
are merged two by two. Table 3 shows the results obtained from this last step.



82 Tchantchane et al.

(a) Mesh sub-triangulation. (b) Rendered sub-triangulation.

Fig. 13: Sub-triangulation of eight cells.

Table 3: Number of points for each cell

Cell index Affected zones Number of affected tetrahedra

Cell 0 0 0 Right 44
Cell 0 1 0 Left 69
Cell 0 0 1 Top 103
Cell 1 0 0 Bottom 196
Cell 1 1 0 Front 114
Cell 1 0 1 Back 149
Cell 0 1 1 Right 44
Cell 1 1 1 Left 69

3.2 Comparative study

Table 4 illustrates the times of the DT for the three cases: global DT, Sub-
division into eight cells in sequential mode, and subdivision into eight cells in
parallel mode. For Global without subdivision, significant times are consumed
compared with subdivision with sequential mode and parallel mode. The great-
est improvement is also seen in parallel mode, where DT times are the lowest
compared with the other modes. Hence, the interest of the parallel calculation.

Table 4: Number of points for each cell

Triangulation mode Running time

Global without subdivision 1h 04min
Subdivision into eight cells in sequential mode 2min 13s
Subdivision into eight cells in parallel mode 1min 12s

For further validation of the proposed approach, three (03) PCs are used:
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– PC 1: ACER Laptop, Windows 7 Intel® Core™ I3–3217U 1.8, 4Go de RAM.

– PC 2: HP Laptop, Windows 10, Intel® Core™ I5-4200 CPU @1.60 GHz 2.30
GHz, 4Go de RAM.

– PC3: PC Intel, Windows 7 Intel® Core i7-13700K, 6Go de RAM.

To show the influence of the number of processors in parallel computing, a
comparison on the same example with 809 points is done (Table 5).

Table 5 illustrates the times of the DT using three computers PC1, PC2 and
PC3 with two, four and six cores numbers respectively. The last line shows the
percentage gain, which represents the difference between sequential and parallel
execution times for each PC. For the PC1, the percentage gain is equal to 35%,
for PC2 and PC3, the percentage gain is equal to 38% and 19% respectively.
From this, the influence of the number of processors is significant.

Table 5: Execution time vs. number of cores.

Cores Number 2 4 6

Points Number 809 809 809
Cell Number 2 2 2
Sequential Running time 1h 48min 38min 29s 22min
Parallel Running time 1h 10min 24min 07s 17min 55s
Gain 35% 38% 19%

A second evaluation was performed. This evaluation focused on how the
number of cells affects the performance of a parallel computing system. The
findings of this evaluation are presented in Table 6.

Table 6: Number of points for each cell

Cores Number 4 4 4

Points Number 809 809 809
Cell Number 1 2 3
Sequential Running time 38min 29s 11min 12s 7min 51s
Parallel Running time 24min 07s 8min 02s 5min 06s
Gain 38% 29% 28%

Table 6 illustrates the times of the DT using PC2 computer with four cores
numbers. Three cases are considered with three value of number of cell 1, 2 and 3.
The last line shows the percentage gain, which represents the difference between
sequential and parallel execution times for the case. From this, the influence of
the number of cell is very significant
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From the result obtained from Table 5 and Table 6, a very important differ-
ence be tween the execution times is observed. The higher the number of cells
or the number of processors, the lower the execution time. The user make a
good choice of the number of cells in order to obtain a considerable reduction of
the processing time. As a result, it can ensure a balanced workload at different
processors.

4 Conclusion

This paper proposes and implements an approach to parallelize DT computa-
tions. The approach uses as input a non-uniform point cloud obtained by dig-
itizing an object in three main steps. The first step is to read the point cloud,
then generate cells and assign the points to the corresponding cells. The second
step is to allocate the cells to the processors and then to generate the DT of
the cells in parallel. Finally, the last step consists in defining the assigned area
of each cell, followed by the fusion of the cells two by two in three dimensions.
The approach has been validated on a real part and the obtained results are
encouraging, as the processing time is reduced as the number of cells and the
number of cores or processors are increased. In the future, it is planned to apply
this approach on a GPU.
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