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Abstract. In the era of digital transformation, artificial intelligence
(AI) is emerging as a foundational technology that is driving efficiency
and innovation across many industries. One area where AI has had a sig-
nificant impact is Smart predictive maintenance (SPM). Industries are
gradually moving away from old models of reactive maintenance to proac-
tive methods using AI. This shift helps minimize downtime, reduce costs,
and improve operational efficiency. This article explores the many bene-
fits, real-world applications, and techniques through which AI is enabling
the implementation of SPM. Multi-agent system-based SPM employing
machine learning classifiers has been used combined with deep learning
proposed algorithms LSTM for optimizing SPM for energy systems at
SONELGAZ Algeria. Using the forecast model and analyzing time-series
data, LSTM model has obtained good accuracy with almost 97% accu-
racy. The experimental results showcase remarkable performance, achiev-
ing a Score about of 92% for binary classification and an impressive 97%
for multiple classifications. Comparative analysis highlights the superi-
ority of the MAS-LSTM hybrid approach in prediction accuracy. Our
solution model, SIPM (Smart energy system, Intelligent, Predictive, and
Maintenance), implemented in Python, predicts a device failure proba-
bility within 30 days as 0.0046.

Keywords: Artificial Intelligence · Autonomy Robot · Smart Predictive
Maintenance · Energy Systems · LSTM · Multi-Agent System.
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1 Introduction

Predictive maintenance (PM) is a strategy that directly monitors the condition
and performance of equipment during normal operation to reduce the likeli-
hood of failures. SPM attempts to keep costs low by reducing the frequency of
maintenance tasks, reducing unplanned breakdowns, and eliminating unneces-
sary preventive maintenance.

AI-powered predictive maintenance is an advanced technological approach
that uses artificial intelligence (AI) to predict and prevent equipment failures
within an infrastructure before they occur. As can be seen from Figure 1, there
are three main types of maintenance methods.

Fig. 1: The maintenance methods and levels [1].

Smart Predictive Maintenance (SPM) is the practice of using Big Data an-
alytics tools and techniques to detect anomalies and predict failures in Energy
System equipment before they occur. It is a concept where the optimal time to
perform maintenance is determined based on real-time, large-scale data. This dif-
fers from planned preventive maintenance, which is performed regardless of the
actual condition of the equipment. By ensuring that maintenance is performed
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only when necessary, this strategy maximizes resource utilization and minimizes
downtime. The use of AI techniques and autonomous robots equipped with in-
telligent sensors and actuators facilitates the implementation of such Energy
System maintenance strategies.

1.1 AI-based Predictive Maintenance in Energy Sector

In the energy sector, AI-based predictive maintenance ensures the reliability and
efficiency of power distribution and generation systems. AI algorithms are used
in wind farms to evaluate sensor data and anticipate component issues, such
as a bearing or gearbox failure, before they cause downtime. With these pre-
dictive capabilities, energy companies like SONELGAZ in Algeria can maintain
high levels of energy production and avoid the significant expense of unplanned
outages.

1.2 The Use of AI and Autonomy Robots for Predictive
Maintenance

AI is revolutionizing predictive maintenance by leveraging technologies like ad-
vanced data analytics, pattern recognition, and predictive modeling. Here’s how
AI is improving each area:

Advanced data analytics, where AI systems examine vast amounts of in-
formation generated by industrial operations, such as maintenance logs, sensor
data, and operating logs. These algorithms can provide deep insights into oper-
ational efficiency and equipment health by detecting patterns and correlations
that human analysts might miss.

Maintenance Schedule Optimization, where AI’s predictive capabilities en-
able dynamic optimization of maintenance schedules. By ensuring that mainte-
nance tasks match the actual needs of the equipment, it is possible to extend its
lifespan and eliminate unnecessary downtime, as presented in Figure 2.

Fig. 2: AI and Autonomy Robots (AR) at the service of energy systems predictive
maintenance [2].
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Anomaly Detection, where AI systems monitor Smart Devices in real-time
and detect any unusual deviations from standard operating parameters [3]. AI
can respond quickly to prevent small issues from becoming major problems by
identifying these anomalies before they occur.

Our proposed LSTM model is designed to determine the conditions and the
problems which are about to occur and when the maintenance should be per-
formed to overcome the problems. Our solution model SIPM is presented, where
S : Smart energy system, I : Intelligent, P : Predictive and M : Maintenance.
The implementation of our (LSTM and Multi-Agent System) hybrid solution
in Python language, with the probability that Smart Device will fail within 30
days, is 0.004578595. We combine LSTM model for optimizing failure detec-
tions in energy platform and multi-agent for optimizing communication between
(UAV, sensors, actuators, and remote terminal unit (RTU)) composed the Smart
Grids and smart gas pipelines platforms.

2 Related Work

Predictive Maintenance benefits include reduced costs, prolonged Smart Device
lifetime, higher product quality and plant safety [4]. However, PM in real facto-
ries faces many challenges due to the need to integrate the various technologies
such as AI, AR, PM, and MAS. Key challenges for the implementation of PM
in energy systems include the processing of a large amount of sensory data from
various monitored processes such as production and logistics and model develop-
ment that will permit timely Smart Device energy system monitoring for robust
energy systems [5]. Energy systems of IMs are a main research discipline in
energy system management [6].

AI-driven methods of IMs have enhanced the reliability and efficiency of PM
due to the development of different methods based on NN, fuzzy logic, neural-
fuzzy systems, expert systems and MAS, among others. ML methods have been
widely used for Energy System, yet more recently, various deep learning (DL)
methods driven by advanced in DL have been developed, in order to implement
Energy System in industrial equipment, enhancing PM reliability. DL uses long
causal chains of NN layers, where each layer transforms non-linearly the acti-
vation of the network into a higher, more abstract representation based on the
development of computational models of the real complex system. DL meth-
ods have improved the state of the art in energy systems of IMs, overcoming
drawbacks of traditional data-driven energy systems methods, including their
limited ability to learn from raw data and the dependence on experts for fea-
ture selection and extraction [7]. Figure 3 shows the flows of the energy systems
sub-processes of ML and DL based methods for IMs [8]. Big Data analyze for
developing predictive maintenance solution integrated with artificial intelligence
and autonomy robots [9,10].

Recent works in the domain of using UAV and autonomy drones in predictive
maintenance as “Autonomous predictive maintenance of quadrotor UAV with
multi-actuator degradation” [12], and “Emerging Technologies in Secure Data
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Fig. 3: Energy systems predictive maintenance flows of traditional ML and DL
based methods [11].

Sharing, Predictive Maintenance, and Autonomous Systems in 5G Networks”
[13], finally “Robotics and Artificial Intelligence (AI) for Maintenance” [14], and
the work Predictive maintenance as an artificial intelligence service: a study
of value creation [15]. Finally, the use of Internet of Things-Based Control of
Induction Machines: Specifics of Electric Drives and Wind Energy Conversion
Systems [16] for developing predictive maintenance in Electric Drives and Wind
Energy Conversion Systems.

3 Deep Learning and Multi Agent System– A Brief
Overview

In the case of predictive maintenance, AI solutions can analyze current opera-
tional conditions and look for indications that a piece of Smart Grid equipment
may fail in the future — even if it hasn’t displayed any overt operational is-
sues. By assessing current machine performance against baseline data, AI tools
can pinpoint small reductions in efficiency that may suggest the need for main-
tenance. Maintenance Teams are then alerted to these needs and can replace
specific parts before failure occurs.

The learning capacity of AI and more particularly of data mining allows us in
certain cases to move from a preventive maintenance logic, based on compliance
with manufacturers’ recommendations and/or on feedback from operators, to a
predictive maintenance logic taking into account a large amount of information
or measurements available relating in particular to the equipment installed on
the network.

In this context, the automation of tasks allows asset management which,
coupled with AI techniques, significantly increases the availability of equipment
and opens up prospects for reducing costs, whether economic or environmental.

In low voltage, for example, France has two million departures. Based on the
history of replacements, but also on a number of exogenous variables (humidity,
nearby work, etc.), a Smart Device learning algorithm can calculate the proba-
bility of a cable failing based on its characteristics and its environment. Similar
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applications are being developed for medium-voltage cables and transformers in
source substations.

AI techniques of a different kind are also being used on overhead cables. This
is the case, for example, for overhead lines inspected each year by helicopter or
drone. Image recognition here makes it possible to optimize the programming of
the renovation of technical equipment. Indeed, rather than spotting faults with
the naked eye, based on the expertise of field agents, the scheduled renovation of
networks is now triggered by automatic diagnostics based on the analysis of pho-
tographs. The ML subclass studied are presented in Figure 4. These techniques
used for failure prediction in energy systems are diverse and rely on several
scientific and technological approaches:

– Time series analysis: Evaluation of data collected over time to detect anoma-
lies.

– Neural networks: Used to model complex relationships between different
flight parameters.

– Classification algorithms: To identify and categorize the different anomalies
encountered.

Fig. 4: ML Classification Techniques [17].

For example, the use of Random Forest can allow an efficient classification of
potential failures thanks to its supervised learning ensemble approach. DL ap-
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proaches are proven to achieve state-of-the-art performance in predictive main-
tenance because of their capability to transform complex information and Big
Data databases fusion problems into supervised multi-label classification tasks
[18].

Convolutional Neural Networks (CNNs) A typical CNN architecture con-
sists of alternating and stacking convolution and pooling layers followed by fully
connected layers. Convolutional layers use trainable filters called kernels that
propagate the input data with a continued or windowed sliding technique.

Recurrent Neural Networks (RNNs) are networks that perform the same
computation for every element in a set of sequential input data. Even though
their typical architecture is simple, consisting of an input layer, a hidden layer
and an output layer, they are difficult to train and subject to a lot of fine-tuning.

Auto-Encoders (AEs) The AE is a particular type of neural network that
compresses the input data into a low-dimensional code and attempts to recon-
struct the data from this latent-space representation. Specifically, AE training
aims to converge to the identity function, so that the output X’ is similar to input
X. Traditionally, AE architecture consists of three core parts. Several variants
of AE have been developed, Auto Encoder (DAE) is an extension version of the
basic auto encoder, which is trained to reconstruct the stochastically corrupted
input data by adding isotropic Gaussian and by forcing the hidden layer to ex-
plore robust features; Sparse Auto Encoder (SAE) imposes sparse constraints
on the hidden layers while imposing activation closing to zero. This is used for
fault diagnosis and intelligent fault signature. Variation Auto Encoder (VAE)
is a deep generative architecture constructing a probability distribution for a
latent variable as presented in Figure 5.

Fig. 5: Deep learning methods.

To overcome this fundamental limitation and to solve such complex and dy-
namic decision processes, a MAS is required to provide intelligent energy man-
agement and home automation. The MAS is a distributed artificial intelligence
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system that allows the intercommunication and the interaction between intel-
ligent agents. MAS have been defined using several terms going by one of the
most common definitions, MAS is made up of various interacting agents, where
an agent is a computer system with the ability to perform autonomous actions
in order to accomplish certain goals in some environments. An intelligent agent
achieves its goals by perceiving its environment and utilizing observations to de-
cide on which action(s) to perform in the global predictive maintenance solution.

4 Proposed Solution and Experimental Results

Our proposed SPM pyramid is presented in Figure 6 use LSTM (Long Short-
term Memory) Deep Learning solution, where we propose the use of fly robots,
different intelligent sensors (Automatic, Adaptive, Energy saving, Wireless, Low
cost, Real-time, Robust and Miniaturized), with the use multisource network of
sensors (M), vibration and temperature sensors (V), Big data analytic tolls (B),
interoperability challenges (I), decentralization of control (D) and virtual and
Nano sensors (N), that trends MVBIDN.

Fig. 6: Smart Predictive Maintenance pyramid.

The proposed framework in Figure 4 represents a Smart Device learning
approach adapted to the building context. The framework is composed of five
steps: data collection, data processing, model development, fault notification and
model improvement, as presented in Figure 7.

Our work is related to the 3 W dataset and downloadable from the UCI
website at the link https://archive.ics.uci.edu/ml/datasets/3W+dataset.
The dataset, containing observations related to off-shore oil wells, comprises
1984-time series divided into nine classes: good-predictive-maintenance (class 0)
and eight error classes (bad-predictive-maintenance). However, one of the errors

https://archive.ics.uci.edu/ml/datasets/3W+dataset
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Fig. 7: The proposed framework for energy systems predictive maintenance based
on MAS and LSTM.

is poorly represented in the dataset, so we consider only the error types from 1
to 6 and 8. Furthermore, we use a train-validation-test split, as shown in Figure
8.

Fig. 8: Dataset for predictive maintenance test results.

To handle the large amount of information provided by the multiple assets of
the factories, it’s an intelligent solution to establish a multi-agent system com-
posed of multiple intelligent agents interacting with each other to solve difficult
and impossible problems to solve individually. The structure of this system could
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consist of several agents, each of which is modeled as a virtual digital shell of
each asset in the production line and collects the data generated by the asset,
and a central agent (middle-ware running on the server) to which it’s imple-
mented a learning algorithm to identify abnormal behavior. MAS are a branch
of Distributed Artificial Intelligence that involve a group of autonomous agents
working together to achieve a common goal. Agents can cooperate or compete,
share knowledge with each other, and operate in a loosely connected environ-
ment. The key elements of an agent system include the entity, environment,
parameters, and action. The entity refers to the type of agent, which can be
software, hardware, or a combination of both. The environment refers to the
place where the agent is located and can include various features such as ac-
cessibility, determinism, dynamism, and continuity. The parameters refer to the
different data types that an agent can sense from the environment. The ben-
efits of using MAS include increased efficiency, low cost, flexibility, reliability,
scalability, and reusability for optimizing detecting failures in energy platforms.

The contribution of multi-agent system technology with the LSTM model for
predictive maintenance of predictive platforms and optimization of communica-
tions between the different intelligent components of these platforms as well as
the management of a multi-generation system of performance of the prediction
from generation 1 to generation N, where N evolves over time. for each gener-
ation of the prediction of operating conditions without imposed by the system,
according to the evolution of the technical constraints of the energy platforms.
The costs of degradation of the platforms which are an important factor in the
decision to replace faulty equipment are supported by agents of MAS. The deci-
sions to be supported in the context of predictive maintenance from generation 1
to generation N are also supported by the MAS, as presented in Figure 9. All is
coupled with the system (SCADA- Supervisory Control And Data Acquisition).

Smart Predictive Maintenance as a Service (SIPMaaS), the rise of cloud com-
puting and subscription-based models will pave the way for SIPMaaS offerings.
SIPMaaS providers will offer scalable, cost-effective predictive maintenance so-
lutions hosted on cloud platforms, allowing organizations to access advanced
analytics capabilities, predictive models, and expertise without the need for ex-
tensive infrastructure investment or in-house data science resources. Advance-
ments in AI, Mobility Robotics (MR), and autonomous systems will enable the
development of autonomous maintenance systems capable of self-diagnosis, self-
repair, and self-optimization. These systems will leverage AI-based algorithms
to continuously monitor energy systems and energy platforms, detect anoma-
lies, and perform smart maintenance tasks autonomously, reducing the need for
human intervention and improving overall operational efficiency.

Part of the model instance of the MAS Python implementation for the (N)
generation from generation 1 to generation N is presented:

1 import random
2 class Agent:
3 def __init__(self , id):
4 self.id = id
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Fig. 9: Predictive maintenance modeling MAS and LSTM hybrid solution

5 self.position = random.randint(0, 100)
6

7 def move(self):
8 self.position += random.choice([-1, 1]) # Move left

or right
9

10 agents = [Agent(i) for i in range(N)]
11 for _ in range(N): # Simulate N time steps
12 for agent in agents:
13 agent.move()
14 print(f’Agent {agent.id} is at position {agent.

position}’)
15

16 import numpy as np
17 class ConsensusAgent:
18 def __init__(self , id, initial_value):
19 self.id = id
20 self.value = initial_value
21

22 def update_value(self , neighbors):
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23 self.value = np.mean([self.value] + [neighbor.value
for neighbor in neighbors ])

24

25 agents = [ConsensusAgent(i, random.uniform(0, N)) for i in
range(N)]

26 for _ in range(N): # Simulate N iterations
27 for agent in agents:
28 agent.update_value ([other for other in agents if

other != agent ])
29 print(f’Agent {agent.id} has value {agent.value}’)
30

31 from uagents import Agent
32 class MyAgent(Agent):
33 def __init__(self , name):
34 super().__init__(name)
35 self.state = "initial"
36

37 def act(self):
38 # Define agent behavior here
39 pass
40

41 from uagents.protocols import ExchangeProtocol
42 class MyAgent(Agent):
43 def __init__(self , name):
44 super().__init__(name)
45 self.protocol = ExchangeProtocol ()
46

47 def communicate(self , other_agent):
48 self.protocol.send_message(other_agent , "Agent

Decisions!")
49

50 from uagents import Simulation
51 simulation = Simulation ()
52 agent1 = MyAgent("Agent1")
53 agentN = MyAgent("AgentN")
54 simulation.add_agent(agent1)
55 simulation.add_agent(agentN)
56 simulation.run()

A MAS refers to a network of agents collaborating to achieve the same objec-
tive (optimize predictive maintenance cost, from generation 1 to generation N).
This system comprises numerous individual programs or hardware components
(agents) that are simpler to construct and manage. Additionally, these agents
can dynamically and swiftly adapt to changes in their environment (energy plat-
forms).

Common data sources for predictive maintenance problems are:

– Failure history : The failure history of an energy platform or component
within the smart devices and materials.
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– Maintenance history : The repair history of an energy platform, e.g., error
codes, previous maintenance activities or component replacements.

– Energy platforms conditions and usage: The operating conditions of a Smart
Device, e.g., data collected from sensors.

– A energy platform features: The features of an energy platform, e.g., engine
size, make and model, location.

– Operator features: The features of the operator, e.g., gender, past experience.

The data for this example comes from different sources which are real-time
telemetry data collected from an energy platform, error messages, historical
maintenance records that include failures and an energy platform information
such as type and age.

The performance of the models developed with these algorithms can be mea-
sured by computing the difference between the predicted class for a given input
versus the actual class of the input. For example, the correct classification will
predict data as benign if the input data was benign. To quantify the detection
performance of the classifier, the 2 × 2 confusion matrixes is used (shown in Ta-
ble 1) as it provides all the possible outcomes of a prediction and has the forms
True Positive, True Negative, False Positive, and False Negative of the classifier.

Table 1: Confusion Matrix for Engine Failure Predictions
Class Failed Prediction Non-Failed Prediction

Engine Failed True Positive (TP) False Positive (FP)
Engine Not Failed False Negative (FN) True Negative (TN)

TPR =
TP

TP + TN

FPR =
FP

FP + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

Predictive Maintenance using our proposal solution implementation in Python
langage :

– Loading Libraries
• Input 1 :
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1 import pandas as pd
2 import numpy as np
3 from sklearn.preprocessing import MinMaxScaler
4 from sklearn.metrics import confusion_matrix ,

accuracy_score
5 from keras.models import Sequential
6 from keras.layers import Dense , Dropout , LSTM ,

Activation
7 from keras.callbacks import EarlyStopping
8 import matplotlib.pyplot as plt

– Loading Dataset
• Input 2 :

1 dataset_train = pd.read_csv(’../ input/PM_train.txt’,
sep=’ ’, header=None).drop ([26, 27], axis =1)

2 col_names = [’id’, ’cycle’, ’setting1 ’, ’setting2 ’, ’
setting3 ’, ’s1’, ’s2’, ’s3’, ’s4’, ’s5’, ’s6’, ’s7’
, ’s8’, ’s9’, ’s10’, ’s11’, ’s12’, ’s13’, ’s14’, ’
s15’, ’s16’, ’s17’, ’s18’, ’s19’, ’s20’, ’s21’ ]

3 dataset_train.columns = col_names
4 print(’Shape of Train dataset: ’, dataset_train.shape)
5 dataset_train.head()
6

7 # Output
8 # Shape of Train dataset: (20631 , 26)

• Output 2:

• Input 3:

1 dataset_test = pd.read_csv(’../ input/PM_test.txt’, sep=
’ ’, header=None).drop ([26, 27], axis =1)
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2 dataset_test.columns = col_names
3 # dataset_test.head()
4 print(’Shape of Test dataset: ’, dataset_train.shape)
5 dataset_train.head()
6

7 # Output
8 # Shape of Test dataset: (20631 , 26)

• Output 3:

– Loading Truth table
• Input 4 :

1 pm_truth = pd.read_csv(’../ input/PM_truth.txt’, sep=’ ’
, header=None).drop ([1], axis =1)

2 pm_truth.columns = [’more’]
3 pm_truth[’id’] = pm_truth.index + 1
4 pm_truth.head()

• Output 4 :

• Input 5 :
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1 # Generate column max for test data
2 rul = pd.DataFrame(dataset_test.groupby(’id’)[’cycle’].

max()).reset_index ()
3 rul.columns = [’id’, ’max’]
4 rul.head()

• Output 5 :

• Input 6 :

1 # Run to failure
2 pm_truth[’rtf’] = pm_truth[’more’] + rul[’max’]
3 pm_truth.head()

• Output 6 :

The steps of implementing a predictive maintenance model is provided
using an example scenario where the goal is to predict failures due to
certain components of a smart energy platforms. Typical steps of pre-
dictive maintenance such as feature engineering, labelling, training and
evaluation are explained using the example data sets. Predictive models
are built both using Python packages and Azure SmartDevice Learning
Studio.

• Input 7 :

1 pm_truth.drop(’more’, axis=1, inplace=True)
2 dataset_test = dataset_test.merge(pm_truth , on=[’id’],

how=’left’)
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3 dataset_test[’ttf’] = dataset_test[’rtf’] -
dataset_test[’cycle’]

4 dataset_test.drop(’rtf’, axis=1, inplace=True)
5 dataset_test.head()

• Output 7 :

• Input 8 :

1 dataset_train[’ttf’] = dataset_train.groupby ([’id’])[’
cycle’]. transform(max) - dataset_train[’cycle’]

2 dataset_train.head()

• Output 8 :

• Input 9 :
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1 df_train = dataset_train.copy()
2 df_test = dataset_test.copy()
3 period = 30
4 df_train[’label_bc ’] = df_train[’ttf’].apply(lambda x:

1 if x <= period else 0)
5 df_test[’label_bc ’] = df_test[’ttf’]. apply(lambda x: 1

if x <= period else 0)
6 df_train.head()

• Output 9 :

• Input 10: LSTM Network

1 nb_features = X_train.shape [2]
2 timestamp = seq_length
3 model = Sequential ()
4 model.add(LSTM(input_shape =(timestamp , nb_features),
5 units =100, return_sequences=True))
6 model.add(Dropout (0.2))
7 model.add(LSTM(units =50, return_sequences=False))
8 model.add(Dropout (0.2))
9 model.add(Dense(units=1, activation=’sigmoid ’))

10 model.compile(loss=’binary_crossentropy ’, optimizer=’
adam’, metrics =[’accuracy ’])

11 model.summary ()

• Output 10 :
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• Input 11: LSTM Network

1 # fit the network
2 model.fit(X_train , y_train , epochs =10, batch_size =200,

validation_split =0.05, verbose=1,
3 callbacks =[ EarlyStopping(monitor=’val_loss ’,

min_delta=0, patience=0, verbose=0, mode=
’auto’)])

• Output 11 :

1 <keras.callbacks.History at 0x7f2a963ef1d0 >

• Input 12:

1 # training metrics
2 scores = model.evaluate(X_train , y_train , verbose=1,

batch_size =200)
3 print(’Accuracy: {}’.format(scores [1]))

• Output 12 :

1 20531/20531 [=================] - 8s 392us/step
2 Accuracy: 0.9751108148252323

• Input 13 :

1 y_pred = model.predict_classes(X_test)
2 print(’Accuracy of model on test data: ’,

accuracy_score(y_test , y_pred))
3 print(’Confusion Matrix: \n’, confusion_matrix(y_test ,

y_pred))

• Output 13 :

1 Accuracy of model on test data: 0.9913050169282857
2 Confusion Matrix:
3 [[12633 31]
4 [ 82 250]]
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• Input 14 :

1 def prob_failure(SmartDevice_id):
2 SmartDevice_df = df_test[df_test.id ==

SmartDevice_id]
3 SmartDevice_test = gen_sequence(SmartDevice_df ,

seq_length , seq_cols)
4 m_pred = model.predict(SmartDevice_test)
5 failure_prob = list(m_pred [-1] * 100) [0]
6 return failure_prob
7

8 SmartDevice_id = 16
9 print(’Probability that SmartDevice will fail within 30

days: ’, prob_failure(SmartDevice_id))

• Output 14 :

1 Probability that SmartDevice will fail within 30 days:
0.004578595

5 Conclusion

AI-powered predictive analytics is a powerful method to help ensure the smooth
and efficient operation of all elements within the energy infrastructure. It can
help anticipate and prevent failures and identify the patterns that can make a
valuable information source for future improvements.

By adopting this approach in SONELGAZ energy efforts, we can enable
more sustainable operations by scheduling repairs and maintenance targeted at
the weak points and failure modes indicated by AI algorithms and MAS. It will
help energy factories act proactively and save time and money on resources by
avoiding unnecessary repairs and procedures or unexpected downtimes caused
by sudden malfunctions.

Smart Predictive Maintenance uses Big Data and AI algorithms to anticipate
equipment issues before they occur, revolutionizing traditional maintenance pro-
cedures across energy industries. By being proactive, this method reduces down-
time, improves operational efficiency, and ensures service reliability and safety.

As future work, current algorithms and models still need to be improved.
Now, they are based on the deviation from the reference baseline, and it is nec-
essary to monitor existing energy platforms to obtain new and additional data.
As a new data about the failures of the energy industry platforms becomes
available from the intelligent sensors and mobility robots, the threshold for this
condition of failure will be assessed. And as long as this value will be signifi-
cantly different from the energy platforms incident data, it will be used by the
smart optimized algorithms into the energy engineering process to improve its
generalization, robustness, and accuracy.

But to establish levels of degradation for the solar energy platforms, it is
essential to know the usage of the solar panels and the ‘culture of maintenance’
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of the energy platforms, and it is not an easy task. This means that probably we
will have little information about the state of deterioration or degradation of the
solar panels and production central electricity platforms at the very beginning.
And even though the smart optimized algorithms will show some alarms, the
component will be working until failure.

This paper serves as a valuable resource for energy industry professionals
looking to harness the power of AI and autonomy robotics to drive innovation
and excellence in renewable energy platforms infrastructure smart predictive
maintenance.

Implementing AI in maintenance offers several benefits for companies as
SONELGAZ Algeria, such as, lower costs, process improvement, extended equip-
ment lifecycle.
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