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Highlights 
• This paper focuses on classification process for Parkinson disease. 

• In this study, a new classification architecture for speech data classification is proposed. 

• Study assesses ML algorithms performance for Parkinson disease classification using speech features.  
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Abstract 

In recent years, the volume and variety of biological data being acquired have increased 

significantly. Among these data types, the diagnosis of Parkinson's disease holds a critical place 

in medical research. For this study, speech signals were recorded from patients and healthy 

controls in a controlled environment at the Neurology Department of Fırat University Hospital. 

28 healthy controls, 22 Med Off patients and 30 Med On patients constituted our data set. 

Participants were asked to read a standardized text in a quiet room using a high-quality H1N 

Zoom microphone. 19 features were extracted from the obtained sounds. The dataset was 

categorized into three distinct classes: Healthy Control, Med Off (patients without medication), 

and Med On (patients medication). To evaluate classification performance, we used a three-layer 

deeep neural network (DNN) model as well as classical machine learning algorithms in 

MATLAB. Various classification scenarios have been considered, including many different 

combinations. For benchmarking, the DNN results were compared with those from commonly 

used algorithms in the literature: K-Nearest Neighbor (KNN), Support Vector Machine (SVM), 

Decision Tree (DT), and Naive Bayes (NB). Furthermore, the DNN model’s performance was 

assessed using the NeuroParkNet architecture. The comparative analysis revealed that the DNN 

model generally provided a more accurate and efficient classification process. However, in some 

specific cases, its performance was partially outperformed by traditional classification 

algorithms. These findings highlight the DNN's potential while also underscoring areas for 

optimization in Parkinson’s disease classification systems. In addition, the effects of 

pharmacological treatments were also evaluated in this study. 
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1. INTRODUCTION 

 

 The number of people with Parkinson disease (PD) has increased significantly with the aging population 

and rising life expectancy [1]. There are approximately 150 thousand people suffering from Parkinson's 

disease in Turkey. Globally, this number is approximately 5 million people [2]. Approximately 90% of 

patients with Parkinson's disease have been reported to have a speech disorder called hypokinetic 

dysarthria[3]. This condition is recognised as one of the common symptoms accompanying Parkinson's 

disease and may lead to significant impairment in speech ability depending on the progressions of the 

disease[4-5]. In Parkinson's disease (PD), speech is affected by pathological symptoms such as akinesia 

and hypokinesia, leading to reduced amplitude and automaticity of speech movement [6,7]. Speech 

impairment, which is frequently observed in Parkinson's patients, is usually characterised by voice tremors, 

intonation difficulties and articulation disorders [7]. This is a common symptom in the early stages of the 

disease and can result in a marked reduction in fluency and clarity of speech associated with loss of motor 

control. Consequently, speech analysis has emerged as a potential, non-invasive, and cost-efficient tool for 

the early diagnosis of Parkinson's disease [8]. In recent years, Machine Learning has emerged as a 
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computational approach that delivers exceptional results in solving complex problems, often surpassing 

human performance in certain tasks [9].  

 

 MATLAB and Machine Learning methods have been frequently utilised to address classification issues 

and extract features that contribute significantly to these classifications. In clinical applications, Machine 

Learning has demonstrated its potential not only in the classification of Parkinson's disease but also in other 

areas [10], such as the diagnosis of lung cancer [11]. Speech classification usually aims to discriminate 

between Parkinson's patients (PD) and healthy controls (HC) with high accuracy [12], as we do in this 

study. For this, it is important to extract features from speech signals. Various features extracted from 

speech signals, such as shimmer and jitter, have been used in machine learning algorithms to classify 

individuals as having Parkinson's disease or being healthy [13]. Extracting meaningful features from the 

recorded speech signals remains a critical challenge. To achieve optimal validation outcomes, it is essential 

to prioritize the selection of features that provide the robust [14] to the classification process. Feature 

selection plays a pivotal role in constructing a reliable predictive model by eliminating redundant or 

irrelevant features. This process not only reduces the dimensionality of the dataset but also enhances the 

overall performance and efficiency of the model [15]. Other ML-based methodologies have been proposed 

for the detection of PD, such as Electroencephalography [16] or Magnetic resonance imaging [17] studies. 

However, voice analysis has shown its value as a reliable method [18] and includes a completely non-

invasive approach. In the study in [19], 84.21% accuracy, 93% precision, 89% sensitivity, 89% sensitivity, 

89% F1-score and 87% AUC were achieved in the classification of Parkinson's Disease (PD) patients using 

machine learning (ML) models. After the implementation of the approach used in this study, the 

performance metrics improved, with accuracy increasing to 85.09%, precision to 92%, sensitivity to 91%, 

F1-score to 89% and AUC to 90%. These results show that the method used in this study significantly 

improves the classification performance of PD detection from audio recordings. In another study [20], the 

proposed classifier achieved an accuracy of 98.3% with feature selection and 94.92% without feature 

selection. In this study [21] the first experiment in where 11 acoustic features were used, Support Vector 

Machine (SVM) showed the best performance by achieving 87.2% accuracy, 83.3% specificity, 87% 

precision, 90% sensitivity and 88.6% F1 score. However, Logistic Regression surpassed SVM in terms of 

sensitivity, reaching 91.1%. In the second experiment, all acoustic and MFCC features were combined to 

create a feature vector with 24 features. SVM again showed the highest overall performance with 98.3% 

accuracy, 98.7% specificity, 98% sensitivity, 98.9% precision and 98.4% F1 score. In the third experiment, 

the top 10 features were selected from the initial 24 feature set. With this reduced feature set, SVM achieved 

superior results compared to other models with 98.9% accuracy, 99% specificity, 98.8% sensitivity, 99.2% 

precision and 99% F1 score. While SVM provided the best performance using 10 selected features, not all 

models benefited from feature reduction. For example, Logistic Regression and Gradient Boosting provided 

better accuracy when using the full set of 24 features (11 acoustic + 13 MFCC). In this study [22], speech 

signal features were utilized as inputs to machine learning algorithms, and the resulting classifiers were 

integrated to enhance the accuracy of Parkinson's Disease (PD) classification. Experimental findings 

revealed a diagnostic accuracy of up to 95% achieved through these machine learning models. Furthermore, 

a feature extraction methodology informed by clinical expertise was introduced for analyzing speech 

signals of the participants. 

 

2. MATERIALS AND METHODS 

 

 The primary objective of this study is to evaluate the accuracy of machine learning algorithms and a 

custom-designed deep neural network in classifying Parkinson’s disease (PD). To ensure high-quality data 

collection and minimize noise, all speech recordings were conducted in a controlled environment. Data 

acquisition was carried out at the Neurology Department of Fırat University Hospital using a high-quality 

H1N Zoom microphone. The microphone was mounted on a tripod and positioned according to each 

participant’s sitting posture. According to recommendations in the literature [13], a standard distance of 10 

cm between the microphone and the participant was maintained throughout the recordings. For consistency, 

all speech signals were recorded in WAV format. The dataset consisted of three distinct groups: 

 

• Healthy individuals (control group), 

• PD patients medication (Med On), 
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• PD patients without medication (Med Off). 

 

 For classification, 15% of the dataset was reserved for testing purposes, while the remaining portion was 

used for training and validation. Various acoustic features were extracted from the recorded speech signals 

to facilitate classification. Features such as jitter, shimmer, entropy, log entropy, skewness, kurtosis, and 

power bandwidth were analyzed in the MATLAB environment to identify distinguishing patterns and 

differences among the groups. These features were introduced into MATLAB’s Classification Learning 

Toolbox to develop and evaluate machine learning models. The comparative classification performance of 

the models was analyzed to assess their combined effectiveness in distinguishing between the three groups. 

This comprehensive approach allowed for a robust evaluation of the models’ ability to classify Parkinson’s 

disease accurately under varying conditions. 

 

2.1. Dataset 

 

 Table 1 includes speech recordings from 28 healthy controls, 22 Med Off patients and 30 Med On patients, 

providing a balanced data set for robust comparisons. This distribution enabled a comprehensive evaluation 

of the effects of pharmacological treatment on vocal characteristics in Parkinson’s disease. Participants 

were asked to read a standardized text, “Jale’nin Dünyası”, ensuring consistency across all recordings. The 

quiet room in which the speech recordings were taken is schematically represented in Figure 1. The dataset 

was categorized into three groups: healthy controls, PD patients medication (Med On), and PD patients 

without medication (Med Off). To maintain integrity in data collection, the same recording protocol was 

followed for all participants, including healthy individuals. Speech samples were recorded in WAV format, 

selected for its lossless and uncompressed properties, which preserve the integrity of the data during storage 

and processing. These recordings were then transferred to a computer for detailed analysis and classification 

tasks using MATLAB. This approach ensured high-quality speech data suitable for comprehensive speech 

signal analysis and machine learning applications.  

 

Table 1. Dataset 

 

Silent room where sound recordings are collected

Com
puter to w

hich the records 
are transferred

Parkinson's disease / Healthy controlVoice recording assistant

H1N ZOOM 
Microphone

Microphone to patient distance
10 cm

Observer 
Doctor

 
Figure 1. Schematic Representation of the Speech Recording Setup. This diagram shows the 

experimental setup used to collect speech recordings from Parkinson's patients and healthy controls. 

Recordings were performed in a quiet room to minimise external noise and ensure data quality. 

Participants were seated at a standard distance from a high-quality microphone that captured speech 

signals while reading a predefined text 

 

 

No Class Participants 

1 Healthy Control 28 

2 Med Off  22 

3 Med On 30 

Total                                                               80 
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2.2. Statıstıcal Moments Obtained From Speech Signals 

 

 To compare speech signals effectively, it is essential to extract certain features from speech. However, not 

all features are equally effective in distinguishing between signals. Therefore, it is crucial to identify and 

extract features that improve the classification process and enable a more accurate and significant 

comparison. In the work of [22], the dataset contained 26 features, including various features such as 

fundamental frequency, jitter and luminance, as well as additional features such as formants and spectral 

entropy. In our study, a total of 19 features were extracted from the speech signals in the dataset we created. 

This feature is shown in Table 2. Chi2 (Chi-square) [23] feature selection algorithm was used due to its 

high score. In Equation (1), is the equation describing Chi2. Where 𝑂𝑖 is the Observation in the 

classification. 𝐸𝑖 are observations in class i when there is no relationship between feature and target. 

Neighborhood Component Analysis (NCA) was used to evaluate the impact of these extracted features on 

the classification performance. In speech processing, a set of features such as Mel-frequency cepstral 

coefficients (MFCC) [24], spectral features, formant frequencies or energy-based features are typically 

extracted. However, not all of these features are equally important for classification or regression tasks. 

After this selection process, feature selection algorithms such as MRMR, Chi2, ReliefF, and ANOVA were 

implemented separately in the MATLAB environment, and the resulting feature importance scores were 

examined. Among these, the Chi2 algorithm gave the highest scores 

 

2.2.1. Chi2 algorithm 

 

 Feature scores were analyzed using the Chi2 feature selection method. The contribution of each feature to 

the classification performance was statistically determined and only the most relevant features were 

selected, avoiding unnecessary ones. Bayesian Optimization was used to optimize the hyperparameters of 

the model, speed up the search process and obtain better results using classical machine learning algorithms 

and the NeuroParknet neural network we built 

 

 (𝑥)2 = ∑
𝑂İ−𝐸𝑖

𝐸𝑖

𝑛

𝑖=0
 . 

(1) 

The chi-square (x)² algorithm evaluates the statistical (x)² measure between each feature and the target 

variable, selecting the optimal subset of features that achieve the highest (x)²  scores. This process is guided 

by Equation (1) [25], ensuring that only the most relevant features contributing to the target variable are 

retained for analysis. 

2.2.2. NCA analysis 

  

 Neighborhood Component Analysis (NCA) is an advanced metric learning algorithm specifically designed 

to enhance the classification performance of the stochastic nearest neighbors method. By learning a feature 

transformation that optimally preserves class separation, NCA improves the accuracy and robustness of 

nearest neighbors classification [26]. The primary goal of Neighborhood Component Analysis (NCA) is to 

maximize Leave-One-Out (LOO) classification accuracy by learning a supervised linear transformation 

within the feature space. Unlike traditional approaches that focus exclusively on predefined similarity 

metrics, NCA takes a distinctive approach by directly optimizing the feature transformation to enhance 

LOO performance. This method ensures that the transformed feature space is better suited for class 

separation. Each data point 𝑋𝑖 € ℝ𝑑 is linearly transformed as shown in Equation (2), the formula can be 

seen [25] as given below: 

 

   𝑍𝑖 = 𝐀𝑥𝑖 , A € ℝ𝑑′𝑥𝑑 (2) 

 

where A is the transformation matrix to be learned. 
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The probability of point 𝑋𝑖, being assigned to 𝑋𝑗 (excluding itself) is defined in Equation (3) as follows, the 

formula can be seen [25] as given as below: 

 

 𝑃𝑖𝑗 = {
exp(−‖𝑧𝑖−𝑧𝑗‖

2
)

Σ𝑘≠𝑖 exp(−‖𝑧𝑖−𝑧𝑘‖2)

0,

 ,   

 

(3) 

 

The objective of NCA is to maximize the total probability of correct classification under the LOO scheme, 

defined as follows in Equation (4), the formula can be seen [25] as given below: 

 

L(A) = ∑ ∑ (𝑝𝑖𝑗)
𝑁

𝐽=1
𝑌𝑖=𝑌𝑗

𝑁

İ=1

 
(4) 

where 𝑦𝑖 and 𝑦𝑗 are the class labels of 𝑥𝑖 and 𝑥𝑗, respecticely. 

Table 2. The used statistical moments. The table provides clarity by highlighting the statistical features 

derived from speech signals 

 

To enhance the model's accuracy and reliability, the 10-fold cross-validation method was implemented. 

This technique involves randomly partitioning the entire dataset into ten subsets, with 10% of the data 

reserved for testing during each iteration. The process is repeated ten times, and the algorithm's average 

accuracy is computed across these iterations [26]. By evaluating the model's performance on all subsets, its 

overall capability across diverse portions of the datsa is assessed. This approach effectively reduces the 

risks of overfitting or underfitting, ensuring a more robust and generalizable model. 

 

2.2.3. NeuroParkNet architecture 

 

 In this study, a deep neural network model was developed to classify the speech recordings of Parkinson’s 

patients into three categories: Healthy, Med off, and Med on. The model architecture was designed to 

process the extracted features and provide accurate classification results. A total of 19 features were used 

as inputs to the neural network, including statistical and signal-based parameters such as maximum, 

minimum, variance, entropy, jitter, shimmer, and mean frequency, which were derived from segmented 

speech recordings. 

 

As seen in Figure 2, the deep neural network architecture consists of three hidden layers: 

 

• First layer: 128 neurons, responsible for initial feature extraction and capturing complex patterns 

in the data. 

• Second layer: 64 neurons, performing further abstraction by refining the learned feature 

representations. 

• Third layer: 32 neurons, serving as a final layer for consolidating the extracted features before 

classification. 

 

No Feature Moment No Feature Moment No Feature Moment No Feature Moment 

1 Maximum 6 Power Band Width 11 Variance 16 Entropy 

2 Mean Frequency 7 Jitter 12 Amplitude Mean 17 ZCR 

3 Minimum 8 Mean Energy 13 Median 18 Sure Entropy 

4 Shimmer 9 Root mean square 14 Skewness 19 Q3-Q1(Interquartile 

Range) 

5 Log Entropy 10 Standard deviation 15 Kurtosis 

if j ≠ i 

if j = i. 
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 The ReLU (Rectified Linear Unit) [27] activation function was used in each hidden layer to introduce 

nonlinearity and enhance the model's learning capacity. The network was trained over 1000 iterations, 

allowing sufficient time for convergence and optimization of the classification task. The input layer of the 

model accepts a vector of size 19, corresponding to the 19 extracted features. The output layer consists of 

3 neurons, each representing one of the classification categories: Healthy, Med off, and Med on. The 

proposed model effectively maps the 19 input features to the three output categories, utilizing its multi-

layer structure and ReLU activation to learn both low-level and high-level feature representations. This 

architecture, trained over 1000 iterations, enables accurate classification of the audio signals into the 

respective conditions, providing valuable insights into the vocal characteristics associated with Parkinson's 

disease and the effects of medication. 

 

Input Layer

Hidden Layers
Output Layers

 
Figure 2. 3-layer deep neural network architecture 

 

3. THE RESEARCH FINDINGS AND DISCUSSION 

 

The Classifier Learner in the MATLAB (Matrix Lab.) programming language has allowed many machine 

learning algorithms to be tested. In the first stage, the features to be obtained from the speech signals were 

determined and prepared for the analysis process. Neighbourhood Component Analysis (NCA) [18] and 

Chi2 are used to evaluate the contribution of the extracted features to the overall classification performance. 

In speech signal processing, a wide range of features are typically extracted, including Mel Frequency 

Cepstral Coefficients (MFCCs), spectral features, formant frequencies and energy-based features. 

However, not all of these features have the same level of importance for classification or regression tasks. 

By identifying and prioritizing the features most effective at distinguishing between classes, NCA serves 

to eliminate redundant or irrelevant data, thereby optimizing the feature set and reducing its dimensionality. 

This approach enhances the effectiveness and precision of subsequent modeling processes. To evaluate the 

differentiation between healthy controls and individuals diagnosed with Parkinson's disease, an initial 

analysis was conducted focusing on the comparison of Healthy controls, and Medication-OFF state 

Parkinson's disease cohorts. This investigation aimed to establish a robust framework for employing 

machine learning-based classification algorithms to achieve accurate predictive outcomes in distinguishing 

between the two groups. This involves creating a training dataset that allows the algorithm to learn 

effectively by being provided with relevant data. When extracting features from signals, it is crucial to 

segment the signal rather than treating it as a whole. Analyzing the entire signal at once leads to the loss of 

significant variations across the signal’s duration, reducing the potential for feature extraction to capture 

important features. Additionally, the signal lengths obtained from both healthy controls and patients may 

differ, leading to a dimensionality challenge. Therefore, it is essential to divide the signal into smaller, more 

manageable segments and extract relevant features from each. This segmentation approach facilitates a 

more comprehensive representation of the signal’s distinct properties, enhancing the classification 

algorithm's ability to discern patterns and improve prediction accuracy. In this study, signals recorded by a 

microphone were divided into 3-second segments, followed by the extraction of significant features from 

each segment for further analysis. 
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3.1. Classification of Healthy and Med Off 

 

 In MATLAB, the features extracted from the signals corresponding to the healthy and med off states, as 

presented in Table 2, were input into the algorithms in their entirety and subsequently tested. The deep 

neural network model developed in this study achieved the highest accuracy and showed the highest 

performance in classifying the given data compared to the other models tested. The confusion matrix for 

the highest performing model is given in Figure 3. 

 

 
Figure 3. Confusion matrix for NeuroParkNet Deep Neural Network 

 

 The high rate of correct classification for healthy individuals (Class 1) suggests that the neural network 

model shows strong overall classification performance. This result indicates the model’s high ability to 

accurately differentiate healthy individuals from other classes. Moreover, the low number of 

misclassifications further supports the model’s capacity to clearly distinguish between classes, minimizing 

classification errors. Consequently, this reflects an improvement in the model's accuracy, highlighting its 

enhanced robustness in classification tasks. 

Table 3. Algorithm classification results 

 

 

 

 

 

 

 

 

 

 

 

A comparison of the performances between the algorithms is given in Table 3 

 

I. In Decision Tree, 92.1% accuracy was obtained in the Med off class and 87.0% accuracy was 

obtained in the healthy class, 

II. Naive Bayes algorithm, 87.9% accuracy in the Med off class and 87.4% accuracy in the healthy 

class, 

III. Support Vector Machine (SVM) achieved 94.9% accuracy in the Med off class and 92.2% accuracy 

in the healthy class, 

IV. K-Nearest Neighbour (k-NN), 92.6% accuracy in the Med off class and 89.8% accuracy in the 

healthy class, 

 

Classification algorithm 

 

MED OFF - 0 

% 

 

HEALTHY - 1 

% 

Decision tree 92.1 87.0 

Naive Bayes 87.9 87.4 

 
Support Vector Machine 94.9 92.2 

k-NN 92.6 89.8 

NeuroParkNet Deep Neural 

Network 

95.7 93.3 
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V. NeuroParkNet neural network, 95.7% accuracy was obtained in the Med off class and 93.3% 

accuracy was obtained in the healthy class. 

 

3.2. Classification of Healthy and Med On 

 

 After analyzing the Med off condition with healthy controls, the Med on condition was also examined in 

order to assess the impact of this additional condition. The most effective predictive models for these 

scenarios were the Support Vector Machine (SVM) and the neural network we developed.  

 

Table 4. Algorithm classification results 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 4 presents the accuracy percentages of each algorithm for the Med on and Healthy classes. The 

decision tree and Naive Bayes algorithms exhibited relatively lower success rates in distinguishing between 

the Med on and Healthy cases, with accuracies of 81.5% and 82.6%, respectively. In contrast, the Support 

Vector Machine (SVM), k-Nearest Neighbors (k-NN), and the neural network architecture developed in 

this study achieved higher accuracy. Notably, the neural network architecture and SVM algorithm 

demonstrated superior performance, emerging as two of the most successful methods in terms of overall 

classification accuracy. Figure 4 presents the confusion matrices for two models, respectively. 

 

 
Figure 4. Confusion matrix for NeuroParknet Deep Neural Network and SVM model respectively 

(Healthy - Med on) 

3.3. Classification of Med Off and Med On 

 

 Classification operations were performed in MATLAB to see the distinction between Med on and Med 

off. The prediction results of the classification algorithms in Table 5 are evaluated according to the Med 

 

Classification algorithm 

 

MED ON - 1 

% 

 

HEALTHY - 2 

% 

Decision tree 81.5 84.0 

Naive Bayes 82.6 81.1 

 
Support Vector Machine 90.0 91.0 

k-NN 87.1 88.2 

NeuroParkNet Deep 

Neural Network 

89.5 91.3 
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off and Med on conditions. The performance of the various machine learning algorithms is given in terms 

of classification accuracy rates (%). The confusion matrix for the SVM model is given in Figure 5. 

 

Table 5. Algorithm classification results  

 

 

 

 

 

 

 

 

 

 

 

 

 

I. In Decision Tree, 77.3% accuracy was obtained in the Med off class and 74.0% accuracy was 

obtained in the healthy class, 

II. Naive Bayes algorithm, 79.8% accuracy in the Med off class and 58.8% accuracy in the healthy 

class, 

III. Support Vector Machine (SVM) achieved 85.7% accuracy in the Med off class and 83.2% accuracy 

in the healthy class, 

IV. K-Nearest Neighbour (k-NN) achieved 85.0% accuracy in the Med off class and 80.1% accuracy 

in the healthy class, 

V. NeuroParkNet neural network, 83.2% accuracy was obtained in the Med off class and 84.8% 

accuracy was obtained in the healthy class. 

 
Figure 5. Confusion matrix for the SVM model (Med off - Med on) 

3.4. Classification of Healthy, Med Off and Med On 

 

The features tested on an individual scale were combined under a table and the algorithms were taught and 

tested as a whole. The prediction results of the tested audio signals are given in Table 6. 

 

Classification algorithm 

 

MED OFF-1 

% 

 

MED ON-2 

% 

Decision tree 77.3 74.0 

Naive Bayes 79.8 58.8 

 
Support Vector Machine 85.7 83.2 

k-NN 85.0 80.1 

NeuroParkNet Deep Neural 

Network 

83.2 84.8 
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Table 6. Algorithm classification results 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), and the neural network architecture 

demonstrated high performance in identifying Med off sounds, with the SVM achieving the best results 

among these algorithms. For identifying healthy voices, all algorithms performed well, with the SVM, k-

NN, and neural network again showing remarkable accuracy. Notably, the k-NN model exhibited the 

highest performance in this task. In contrast, for the Med on condition, the neural network model we 

developed outperformed the other algorithms, highlighting its ability to capture the nuances of this 

condition. One of the primary reasons for the generally lower performance of the algorithms in the Med on 

condition may be the increased variability in patients' voices due to the effects of pharmacological 

treatments. These variations can introduce additional complexity, making it more difficult for models to 

recognize consistent patterns, thus lowering accuracy. Algorithms like decision tree and Naive Bayes may 

struggle to adapt to this variability in data distribution, as they might fail to capture the subtle frequency 

changes or other distinctive features in the patients' signals. Simplified models, such as Naive Bayes, may 

be particularly limited in capturing these complex relationships between features, further contributing to 

reduced performance. Consequently, the lower accuracy observed in the Med on cases may be attributed to 

the individual variability in the effects of the medications on the patients, which poses a challenge for the 

models in accurately capturing these variations. Figure 6 presents the confusion matrix for the Healthy, 

Med Off, and Med On states. 

 

 
Figure 6. Confusion matrix for the NeuroParkNet Deep Neural Network (Healthy- Med off - Med on) 

3.5. Healthy and Med (Med off + Med on) Classification 

We combined the speech recordings of Parkinson's patients in both the 'Med on' and 'Med off' states into a 

single dataset. The 'Med on' state refers to recordings taken while patients are on medication, and the 'Med 

off’ state refers to recordings when patients are without medication. By combining these two conditions, 

 

Classification algorithm 

 

MED OFF- 0 

% 

 

HEALTH - 1 

% 

 

MED ON- 2 

% 

Decision tree 74.8 80.5 61.3 

Naive Bayes 78.3 82.1 40.4 

Support Vector 

Machine 
82.4 85.4 75.7 

k-NN 81.7 86.2 70.9 

NeuroParkNet Deep 

Neural Network 

81.2 85.2 77.3 
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we aimed to better understand the effect of medication on the patients' voices.. However, this combination 

may obscure the distinction between the overall voice profiles of Parkinson's patients and healthy 

individuals. The features analyzed include parameters extracted from the speech recordings, such as 

maximum, minimum, variance, entropy, logarithmic entropy, sure entropy, jitter, shimmer, median, power 

bandwidth, mean frequency, RMS, Q3-Q1 (Interquartile Range), skewness, and kurtosis. These features 

serve as a benchmark for examining the overall differences in the voices of Parkinson's patients and the 

impact of medication. Figure 7 presents the confusion matrices for two models, respectively, and Table 7 

provides the results of the classification algorithms. 

Table 7. Algorithm classification results 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.  Confusion matrix for SVM model and NeuroParkNet Deep Neural Network model respectively 

Table 8. Med (Med Off + Med On) - Healthy confusion matrix parameters (NeuroParknet Deep Neural 

Network) 

MEASUREMENT VALUE 

Recall 94.57 

Specificity 83.15 

 Precision 94.36 

Accuracy 91.70 

F1 Score 94.47 

 

 

Classification algorithm 
 

MED OFF+MED ON - 

0 

% 

 

HEALTHY  - 1 

% 

Decision tree 92.0 77.0 

Naive Bayes 86.1 83.3 

 
Support Vector Machine 95.0 85.4 

k-NN 93.5 79.6 

NeuroParkNet Deep Neural 

Network 

93.4 83.7 
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Table 9. Med Off  - Healthy confusion matrix parameters (NeuroParknet Deep Neural Network) 

  MEASUREMENT VALUE 

Recall 95.53 

Specificity 93.46 

Precision 95.67 

Accuracy 94.71 

F1 Score 95.60 

 

As observed in Tables 8 and 9, the combination of Med on and Med off conditions presented difficulties in 

distinguishing the unique effects of pharmacological treatment. This combination of data made it more 

difficult to isolate the specific effect of the Med on condition compared to the data presented by the Med 

off condition. This combination had a significant impact on the predictive performance of the machine 

learning algorithms. For example, when the Med on and Med off conditions were considered separately, 

the classification accuracy in the Healthy and Med off scenario was 94.71% (Table 9). However, when the 

Med on data was integrated with the Med off data, this accuracy dropped to 91.70% (Table 8). Combining 

these two conditions reduced the distinctiveness of the pharmacological treatment effects and resulted in a 

slight decrease in the algorithms’ ability to distinguish between the conditions. This finding highlights the 

importance of treating the Med on and Med off conditions as separate conditions when evaluating 

medication effects in order to preserve the predictive power of the classification models. 

 

4. RESULTS 

 

In this study, first, different conditions were evaluated and then taught to the algorithms on a holistic scale. 

Then, we aimed to evaluate the effect of medications on the voice characteristics of Parkinson's patients by 

analyzing the voice recordings in both "Med on" and "Med off" conditions. The dataset was created by 

combining these two conditions, and thus, a comprehensive analysis of the general profile of Parkinson's 

patients as well as the effect of medication was examined. Classification performance of various machine 

learning algorithms, including Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), decision tree, 

Naive Bayes, and a neural network, was evaluated using the extracted audio features. These features 

included statistical parameters such as maximum, minimum, variance, entropy, jitter, jitter, median, and 

others, which provide a basis for distinguishing between Parkinson's patients and healthy individuals. 

 

 The study highlights the impact of combining "Med on" and "Med off" conditions on the ability to 

distinguish healthy individuals from those with Parkinson's disease (PD). The findings are presented as 

follows: 

 

Healthy vs. Med Off Condition (Table 3): 

 

The NeuroParkNet model achieved the highest classification accuracy, with 95.7% for the Med off 

condition and 93.3% for the Healthy condition. These results underscore the model's superior ability to 

differentiate vocal profiles in this context. 

 

Healthy vs. Med On Condition (Table 4): 

 

 The NeuroParkNet model again demonstrated robust performance, achieving 91.3% accuracy in 

classifying Healthy individuals. For the Med on condition, the SVM algorithm performed competitively, 

reaching an accuracy of 90%. These results illustrate the NeuroParkNet model's capability to maintain high 

accuracy across different conditions. 

 

Med Conditions Classification (Table 5): 

 

 The classification of Med on and Med off conditions was analyzed separately. The SVM model achieved 

the highest accuracy for the Med off condition (85.7%), while the NeuroParkNet model provided the 
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highest accuracy for the Med on condition (84.8%). This indicates variability in algorithm performance 

depending on medication states. 

 

Individual Condition Classification (Table 6): 

 

 When evaluated independently, SVM outperformed other algorithms in distinguishing the Med off 

condition, achieving 82.4% accuracy. Conversely, the NeuroParkNet model excelled in identifying the Med 

on condition, with an accuracy of 77.3%. This demonstrates the nuanced differences in algorithmic 

strengths for specific conditions. 

 

Combined Med On and Med Off Conditions (Table 7): 

 

 When "Med on" and "Med off" data were combined, there was a marked decrease in classification accuracy 

for distinguishing Healthy individuals. The SVM algorithm outperformed other models, showcasing its 

ability to generalize across conditions and capture subtle feature differences. The k-NN and decision tree 

algorithms also performed well but were slightly less accurate compared to SVM and NeuroParkNet. 

Before combining the conditions, the Healthy-Med off classification achieved an accuracy of 94.71% 

(Table 9). However, upon combining the conditions, this accuracy dropped to 91.70% (Table 8). This 

suggests that medication significantly alters the vocal profiles of PD patients, leading to challenges in 

distinguishing them from healthy individuals. These findings emphasize the importance of accounting for 

medication effects when developing machine learning models for PD classification. The observed decrease 

in accuracy with combined datasets indicates that medication may obscure key features in vocal profiles. 

While SVM demonstrated strong generalization capabilities across conditions, the NeuroParkNet 

architecture consistently achieved competitive results in most scenarios. Future research should aim to 

refine models by explicitly addressing the influence of medication on vocal features, potentially through 

feature selection or advanced normalization techniques. 

 In conclusion, the study highlights the need to carefully consider medication conditions in PD-related voice 

analysis to improve classification accuracy and model reliability. Although our NeuroParkNet model 

blurred accuracy, especially in the Healthy-Med off and Med on+Med off conditions, our NeuroParknet 

model generally showed high performance in all combinations where Med on was included. These findings 

underscore the potential of deep neural networks (DNN) in Parkinson’s disease (PD) classification while 

also highlighting areas for further optimization. Moreover, this study provides an in-depth evaluation of the 

effects of pharmacological treatments on vocal features, revealing their potential to obscure disease-specific 

patterns. This emphasizes the importance of addressing medication-induced variability to enhance the 

reliability and robustness of PD classification systems. 
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