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ABSTRACT

This article investigates almost Ricci-Yamabe solitons and gradient almost Ricci-Yamabe solitons
in spacetimes. Initially, we demonstrate that if a spacetime allows an almost Ricci-Yamabe soliton
with a conformal vector field as potential vector field, then the spacetime turns into an Einstein
spacetime. Next, we examine that if a spacetime admits an almost Ricci-Yamabe soliton with a
recurrent vector field as potential vector field, then the spacetime becomes perfect fluid spacetime.
Then, it is shown that if a generalized Robertson-Walker spacetime admits an almost Ricci-Yamabe
soliton or a gradient almost Ricci-Yamabe soliton, then it represents a perfect fluid spacetime.
Consequently, we derive a number of interesting corollaries. We conclude providing an example
of an almost Ricci-Yamabe solitons.
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1. Introduction

The geometric theory of gravity is the common name for Einstein’s "Theory of General Relativity". Perhaps
the finest broadly accepted theories of physics in the last century, general relativity (GR), has shown the
fundamental relationship between physics and spacetime geometry. Over the past century, it has been regarded
as among the most vibrant fields of study in both physics and mathematics. Apart from its pivotal role in
theoretical study, GR has also found notable achievements in engineering when implemented in real-world
situations. Finding alternative solution to Einstein’s field equations has emerged as the greatest significant
issues of our time and the most apparent answer is the Minkowski spacetime.The Schwartzchild solution, de-
Sitter, Kerr, and other non-trivial solutions are also included. In GR, warped product Lorentzian manifolds
were modified in order to provide a general solution to Einstein’s field equations. Standard static spacetime
and generalized Robertson-Walker spacetime (GRW) [3] are two well-known instances.

A spacetime is described as a 4-dimensional Lorentzian manifold M that is time-oriented. In [1] Alias et al.
presented the idea of GRW spacetimes. When Mn is formed as a warped product M = −I ×φ2 M∗, with I ⊂ R,
M∗ representing a (n− 1)-dimensional Riemannian manifold, and φ > 0 representing a warping function, the
spacetime is referred to as a GRW spacetime. If M∗ has dimension-3 and is of constant curvature, the spacetime
becomes Robertson-Walker (RW) spacetime. There have been several studies of the geometrical and physical
characteristics of GRW spacetimes (see, [3], [5], [12], [15]).

The Ricci tensor S in perfect fluid spacetime (PFS) has the shape:

S = ag + bω ⊗ ω, (1.1)

in which a and b stand for scalars, ω is a non zero 1-form defined by ω(X1)=g(X1, ρ1) for all X1 and ρ1 is a unit
time-like vector field (Here after we will denote vector field by VF), that is, g(ρ1, ρ1) = −1, named the velocity
VF or flow VF. In particular, if b = 0, then the PFS becomes an Einstein spacetime.
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The conformal curvature tensor C, also known as the Weyl tensor plays a vital role in GR, cosmology and in
the differential geometry. The conformal curvature tensor C is demonstrated as

C(X1, Y1)Z1 = R(X1, Y1)Z1

− 1

n− 2
[g(QY1, Z1)X1 − g(QX1, Z1)Y1 + g(Y1, Z1)QX1 − g(X1, Z1)QY1]

+
r

(n− 1)(n− 2)
[g(Y1, Z1)X1 − g(X1, Z1)Y1] (1.2)

for all X1, Y1, Z1 ∈ X(M) and r represents the scalar curvature, R is the Riemann curvature tensor, Q stands
for the Ricci operator stated by g(QX1, Y1) = S(X1, Y1).

Further, we are aware of that

(div C)(X1, Y1)Z1 =
n− 3

n− 2
[{(∇X1

S)(Y1, Z1)− (∇Y1
S)(X1, Z1)} (1.3)

− 1

2(n− 1)
{(X1r)g(Y1, Z1)− (Y1r)g(X1, Z1)}],

‘div’ denotes the divergence.
The term conformal VF refers to a VF V1 on a semi-Riemannian manifold M if

LV1g = 2hg, (1.4)

for some smooth function h. If h is constant then the VF V1 is said to be homothetic VF.
A VF V1 on M is named recurrent VF if

∇X1
V1 = A(X1)V1, (1.5)

where A is a 1-form demonstrated by A(X1) = g(X1, V1) for all X1 ∈ X(M).
Sharma derived the following Theorems

Theorem A. ([20]) With a non-homothetic conformal VF and a divergence-free Weyl tensor C, a spacetime
(M , g) is locally of type O or N .

Theorem B. ([21]) A PFS’s Weyl tensor is divergence-free iff M is irrotational, shear-free, and has a constant
energy density across the space like hypersurface orthogonal to the 4-velocity vector. In the situation that M
allows a proper conformal VF, it is locally of type O or N and conformally flat.

Yano [23] presented the concept of a torse-forming VF V1 and V1 on M is said to be a torse-forming VF if for
every VF X1

∇X1
V1 = ϕX1 +A(X1)V1 (1.6)

in which ϕ indicates a scalar and A is the 1-form. If A = 0, then the VF V1 is named as concircular[11].
The following relation is satisfied by a unit torse-forming and time-like VF V1:

∇X1
V1 = ϕ[X1 +A(X1)V1]. (1.7)

Additionally, in [15] the subsequent theorem has been derived:

Theorem C.([15]) An n (n ≥ 3) dimensional Lorentzian manifold represents a GRW space-time iff it allows
a time-like and unit torse-forming VF: ∇X1ρ1 = ϕ[X1 + ω(X1)ρ1], ϕ is a smooth function and ω stands for a
one-form defined by g(X1, ρ1) = ω(X1) for all X1 ∈ X(M), which is an eigenvector of the Ricci tensor.

Theorem D. [17]A PFS is a GRW spacetime iff div C = 0.

Theorem E. ([16]) In all GRW spacetime with a velocity vector ρ1, (divC)(X1, Y1)Z1 = 0 iff C(X1, Y1)ρ1 = 0
for every X1, Y1, Z1 ∈ X1(M).

In the recent years many researchers have shown interest in the theory of geometric flows, including Yamabe
and Ricci flows, and associated solitons. In 2019, a new geometric flow that is a scalar combination of the

dergipark.org.tr/en/pub/iejg 144

https://dergipark.org.tr/en/pub/iejg


A.R. Baidya, U.C. De & K. De

Yamabe and Ricci flows was introduced by Guler and Crasmareanu [13]. Another term for this is (α, β) type
Ricci-Yamabe flow. The Ricci-Yamabe flow, stated as:[13]

∂

∂t
g(t) = −2αS(t) + βr(t)g(t), g0 = g(0), (1.8)

in which α, β ∈ R, and S indicates the Ricci tensor.
An almost Ricci-Yamabe soliton(ARYS) on (M , g) is stated by

£W1
g + 2αS + (2λ− βr)g = 0, (1.9)

where £ being the Lie-derivative, λ is the smooth function on M , called soliton function. Here f is a smooth
function on M and W1 is the potential VF on M .

If the potential VF W1 is the gradient of f (that is, W1 = Df ), then the above concept is called as gradient
ARYS and then equation (1.9) becomes

∇2f + αS + (λ− 1

2
βr)g = 0, (1.10)

∇2f stands for the Hessian.
For λ > 0, the ARYS (or gradient ARYS) is called expanding; for λ = 0, it is said to be steady; and for λ < 0,

it is said to be shrinking.
It should be observed that the equation (1.9) becomes

• almost Ricci soliton if α = 1, β = 0 ;
• almost Yamabe soliton if α = 0, β = 1;
• almost Einstein soliton if α = 1 , β = −1;
• Ricci-Yamabe soliton if λ = constant;

Many researchers studied different type of geometric solitons on spacetime. For instance, De et al. ([9])
studied gradient Ricci solitons on PFS. Chen-Deshmukh [4] investigated Yamabe solitons on PFS. Blaga [2]
studied η-Ricci solitons on PFS. Singh-Khatri [19] and Siddiqi [18] investigated Ricci-Yamabe solitons on PFS.

Recently, De et.al. ([7], [8]) studied gradient Ricci solitons, (m, τ)-quasi Einstein solitons in PFS and Ricci-
Yamabe solitons on f(R)-gravity, respectively.

Motivated by the cited works in this article we study ARYS and AGRYS on spacetimes.

2. Preliminaries

Let us consider the potential VF W1 = ρ1 is a conformal VF and hence from (1.4), we obtain

g(∇X1
ρ1, Y1) + g(X1,∇Y1

ρ1) = 2hg(X1, Y1) (2.1)

If the VF W1 = ρ1 is recurrent, then from ( 1.5) we have

g(∇X1ρ1, Y1) + g(X1,∇Y1ρ1) = 2ω(X1)ω(Y1) (2.2)

If the potential VF W1 = ρ1 is unit torse-forming, then utilizing Theorem C, we provide

∇X1
ρ1 = ϕ[X1 + ω(X1)ρ1] (2.3)

and
S(X1, ρ1) = ξω(X1), (2.4)

ϕ stands for a scalar and ξ indicates a eigenvector (non-zero).

Lemma 2.1. ([10]) For a GRW spacetime, we get

R(X1, Y1)ρ1 = (ρ1ϕ+ ϕ2)[ω(Y1)X1 − ω(X1)Y1] (2.5)

and
S(X1, ρ1) = (n− 1)(ρ1ϕ+ ϕ2)ω(X1). (2.6)

Lemma 2.2. ([6]) For a GRW-spacetime, we provide

g((∇ρ1
Q)X1, ρ1)− g((∇X1

Q)ρ1, ρ1) = 0. (2.7)
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3. Almost Ricci-Yamabe solitons

Let the spacetime (M , g) admit an ARYS with potential VF W1 = ρ1. Then from equation ( 1.9), we get

(£W1
g)(X1, Y1) + 2αS(X1, Y1) + (2λ− βr)g(X1, Y1) = 0, (3.1)

which implies
g(∇X1

ρ1, Y1) + g(X1,∇Y1
ρ1) + 2αS(X1, Y1) + (2λ− βr)g(X1, Y1) = 0. (3.2)

I. If the potential VF is conformal, then utilizing ( 2.1) in the foregoing equation, we obtain

αS(X1, Y1) = −(λ− 1

2
βr + h)g(X1, Y1), (3.3)

which represents Einstein spacetime.

Theorem 3.1. If a spacetime admits an ARYS whose potential VF is conformal, then the spacetime becomes an Einstein
spacetime.

Using ( 3.3) in the equation ( 1.3), we acquire (div C)(X1, Y1)Z1 = 0. Hence, in view of the Theorem A, we
write:

Corollary 3.1. If a spacetime admits an ARYS with the potential VF as a conformal VF, then the spacetime is locally
either of type O or N .

II. If the potential VF is a recurrent, then making use of ( 2.2) in the equation ( 3.2), we get

αS(X1, Y1) = −(λ− 1

2
βr)g(X1, Y1)− ω(X1)ω(Y1), (3.4)

which represents PFS.

Theorem 3.2. If a spacetime admits an ARYS with the potential VF as a recurrent VF, then the spacetime becomes a
PFS.

If we assume div C = 0 in a 4-dimensional PFS , then in view of the theorem B, we state:

Corollary 3.2. A spacetime admitting an ARYS whose potential VF is a recurrent VF and satisfying divergence-free
conformal curvature tensor is irrotational, shear-free and its energy-density is constant over the spacelike hypersurface
orthogonal to the 4-velocity vector.

III. If the potential VF is a unit torse-forming VF, then using (2.3) in the equation (3.2), we provide

αS(X1, Y1) = −(λ− 1

2
βr + ϕ)g(X1, Y1)− ϕω(X1)ω(Y1), (3.5)

which represents PFS.

Therefore, we can state the result as:

Theorem 3.3. If a GRW spacetime allows an ARYS, then it becomes a PFS.

In view of the Theorem D, we acquire div C = 0 and thus Theorem E entails that in a 4-dimensional
GRW spacetime, C(X1, Y1)ρ1 = 0 iff (div C)(X1, Y1)Z1 = 0. The literal meaning of C(X1, Y1)ρ1 = 0 is that the
conformal or the Weyl tensor is purely electric [14] and from that we say the spacetime is of Petrov type I , D
or O [22].
Therefore, we have:

Corollary 3.3. If a 4-dimensional GRW spacetime admits an ARYS, then the Weyl tensor is purely electric and the
spacetime is of Petrov type I , D or O.

If we take α = 1, β = 0, then equation ( 3.5) provides

S(X1, Y1) = −(λ+ ϕ)g(X1, Y1)− ϕω(X1)ω(Y1), (3.6)

which means it is a PFS.

Setting X1 = Y1 = ρ1 in ( 3.6) and using equation ( 2.6) we have

λ = −(n− 1)(ρ1ϕ+ ϕ2).
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Corollary 3.4. If a GRW spacetime allows an almost Ricci soliton, then the spacetime becomes a PFS and the soliton is
expanding, steady or shrinking if (ρ1ϕ+ ϕ2) <,= or > 0, respectively.

For α = 0, β = 1, the equation (3.5) entails

(λ− 1

2
r + ϕ)g(X1, Y1) = ϕω(X1)ω(Y1), (3.7)

Setting X1 = Y1 = ρ1 in the previous equation yields

λ =
1

2
r.

Hence, we state:

Corollary 3.5. If a GRW spacetime allows an almost Yamabe soliton, then r > 0,= 0 or < 0, respectively, indicates that
the soliton is expanding, steady or shrinking.

4. Gradient Almost Ricci-Yamabe solitons

Let the GRW spacetime allows a gradient ARYS. Then equation (1.10) yields

∇X1
Df = −αQX1 − (λ− β

2
r)X1. (4.1)

Covariant differentiation of (4.1) provides

∇Y1∇X1Df = −α∇Y1QX1 − (λ− β

2
r)∇Y1X1 +

β

2
(Y1r)X1 − (Y1λ)X1. (4.2)

Interchanging X1 and Y1 in (4.2), we get

∇X1
∇Y1

Df = −α∇X1
QY1 − (λ− β

2
r)∇X1

Y1 +
β

2
(X1r)Y1 − (X1λ)Y1. (4.3)

Using the equation (4.1), we have

∇[X1,Y1]Df = −αQ(∇X1
Y1 −∇Y1

X1)− (λ− β

2
r)(∇X1

Y1 −∇Y1
X1). (4.4)

In light of (4.2)-(4.4), we infer

R(X1, Y1)Df = −α[(∇X1
Q)Y1 − (∇Y1

Q)X1] +
β

2
[(X1r)Y1 − (Y1r)X1] (4.5)

−(X1λ)Y1 + (Y1λ)X1.

Taking inner product of (4.5) with ρ1 and using lemma 2.2, we infer

g(R(X1, Y1)Df, ρ1) =
β

2
[(X1r)ω(Y1)− (Y1r)ω(X1)]− (X1λ)ω(Y1) + (Y1λ)ω(X1). (4.6)

Again from equation (2.5) it follows that

g(R(X1, Y1)ρ1, Df) = (ρ1ϕ+ ϕ2)[(X1f)ω(Y1)− (Y1f)ω(X1)]. (4.7)

Jointly the equations (4.6) and (4.7) produce

(ρ1ϕ+ ϕ2)[(X1f)ω(Y1)− (Y1f)ω(X1)] = −β

2
[(X1r)ω(Y1)− (Y1r)ω(X1)] (4.8)

−(X1λ)ω(Y1) + (Y1λ)ω(X1).

Setting Y1 = ρ1 in the above equation we get
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(ρ1ϕ+ ϕ2)[(X1f) + (ρ1f)ω(X1)] = −β

2
[(X1r) + (ρ1r)ω(X1)] (4.9)

+(X1λ) + (ρ1λ)ω(X1).

If we take r = constant and λ = f , then equation (4.9) provides

(ρ1ϕ+ ϕ2 − 1)[(X1f) + (ρ1f)ω(X1)] = 0, (4.10)

which implies

[(X1f) + (ρ1f)ω(X1)] = 0, since(ρ1ϕ+ ϕ2 − 1) ̸= 0. (4.11)

The above equation reduces to

Df = −(ρ1f)ρ1. (4.12)

The covariant derivative of equation (4.12) yields

∇X1Df = −{X1(ρ1f)}ρ1 − ϕ(ρ1f){X1 + ω(X1)ρ1}, (4.13)

Equations (4.1) and (4.13) together implies

{X1(ρ1f)}ω(Y1) + ϕ(ρ1f)[g(X1, Y1) + ω(X1)ω(Y1)] = αS(X1, Y1) (4.14)

+(λ− 1

2
βr)g(X1, Y1).

Setting Y1 = ρ1 in (4.14) entails that

{X1(ρ1f)} = −{α(n− 1)(ρ1ϕ+ ϕ2) + (λ− 1

2
βr)}ω(X1). (4.15)

Using (4.15) in the equation (4.14) we obtain

αS(X1, Y1) = {ϕ(ρ1f)− (λ− 1

2
βr)}g(X1, Y1) + {α(n− 1)(ρ1ϕ+ ϕ2) + ϕ(ρ1f)}ω(X1)ω(Y1), (4.16)

which represent a PFS.

Theorem 4.1. A GRW spacetime having constant scalar curvature and admitting a gradient ARYS is a PFS, provided
λ = f .

Remark: Corollary 3.3 also holds for gradient almost Ricci-Yamabe soliton.

5. Example

Let M4 = {(x, y, z, t) ∈ R4, t ̸= 0}, in which (x, y, z, t) indicates the standard coordinate of R4. Let us choose

υ1 = et
∂

∂x
, υ2 = et

∂

∂y
, υ2 = et

∂

∂z
, υ3 =

∂

∂t
. (5.1)

The VFs { υ1, υ2, υ3 , υ4 } are linearly independent and describe the semi-Riemannian metric g as

g(υ1, υ2) = g(υ1, υ3) = g(υ1, υ4) = g(υ2, υ3) = g(υ2, υ4) = g(υ3, υ4) = 0,

g(υ1, υ1) = g(υ2, υ2) = g(υ3, υ3) = 1, g(υ4, υ4) = −1.
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Suppose ω is a 1-form described by ω(X1) = g(X1, ρ1) for all X1 ∈ X(M4).

The Lie brackets are calculated as

[υ1, υ4] = υ1υ4 − υ4υ1

= et
∂

∂x

(
∂

∂t

)
−
(

∂

∂t

)(
et

∂

∂x

)
= et

∂2

∂x∂t
− et

∂2

∂t∂x
− et

∂

∂x
= −υ1. (5.2)

Similarly,
[υ1, υ1] = [υ1, υ2] = [υ1, υ3] = 0, [υ2, υ2] = [υ2, υ3] = 0, [υ2, υ4] = −υ2,

[υ3, υ3] = 0, [υ3, υ4] = −υ3, [υ4, υ4] = 0.

Therefore, the semi-Riemannian connection ∇ is written by

∇υ1
υ1 = υ4, ∇υ1

υ2 = 0, ∇υ1
υ3 = 0, ∇υ1

υ4 = −υ1,

∇υ2υ1 = 0, ∇υ2υ2 = υ4, ∇υ2υ3 = 0, ∇υ2υ4 = −υ2,

∇υ3υ1 = 0, ∇υ3υ2 = 0, ∇υ3υ3 = υ4, ∇υ3υ4 = −υ3,

∇υ4
υ1 = 0, ∇υ4

υ2 = 0, ∇υ4
υ3 = υ4, ∇υ4

υ4 = 0.

The non-zero Riemannian curvature tensor are

R(υ1, υ2)υ2 = −υ1, R(υ1, υ3)υ3 = −υ1, R(υ1, υ4)υ4 = −υ1, R(υ1, υ2)υ1 = υ2,

R(υ1, υ3)υ1 = −υ3, R(υ1, υ4)υ1 = υ4, R(υ2, υ3)υ3 = −υ2, R(υ2, υ3)υ2 = υ3,

R(υ2, υ4)υ2 = υ4, R(υ2, υ4)υ4 = −υ2, R(υ3, υ4)υ3 = υ4, R(υ4, υ3)υ4 = υ3.

Thus, we get

S(υ1, υ1) = S(υ2, υ2) = S(υ3, υ3) = S(υ4, υ4) = −3.

and
r = S(υ1, υ1) + S(υ2, υ2) + S(υ3, υ3) + S(υ4, υ4) = −12.

Also, we have

(£υ4
g)(υ1, υ1) = (£υ4

g)(υ2, υ2) = (£υ4
g)(υ3, υ3) = −2,

(£υ4g)(υ4, υ4) = 0.

and
(ω ⊗ ω)(υ1, υ1) = (ω ⊗ ω)(υ2, υ2) = (ω ⊗ ω)(υ3, υ3) = 0, (ω ⊗ ω)(υ4, υ4) = 1.

If we assume that W1 = υ4, α = − 1
6 , β = − 1

12 and λ = 1, then (g, W1, α, β, λ) is an ARYS on the manifold M4.
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