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Abstract 

In this article, by examining Stirling numbers, a new matrix type containing these numbers is 

defined and this matrix is called Stirling matrix. Based on the fact that the use of matrices is 

very common and convenient in the field of encryption, we used the newly defined Stirling 

matrix to perform AES type encryption. Inspired by the properties of integer sequences, a 

new recurrence relation that gives Stirling polynomials is defined. The Stirling polynomials 

used in our study are associated with k-order generalized matrices. LU decomposition of this 

generalized matrix is performed and examined. The L matrix obtained with the help of this 

decomposition is used in AES-like encryption methods. In our study, the examination and 

verification of this algorithm are given with an application. 
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1. INTRODUCTION 

 

Stirling numbers of the first type are defined by the recurrence relation 

 

𝑠(𝑛, 𝑘) = 𝑠(𝑛 − 1, 𝑘 − 1) + (𝑛 − 1)𝑠(𝑛 − 1, 𝑘) 

 

where 𝑛 is greater than 𝑘 and initial values are 

 

𝑠(𝑛, 0) = 𝑠(0, 𝑘) = 0, 𝑠(0,0) = 1. 

 

These numbers have been studied by many authors. A large number of generalized finite sums involving 

Stirling numbers can be seen in Section 6.1 of Concrete Mathematics [1]. Some of these studies are worth 

recalling. These numbers are called after J. Stirling (1692-1770) and were first put forward in his book 

"Methodus differentialis" in 1730 [2]. However, Abraham de Moivre (1667-1754) was the mathematician 

who first worked on Stirling numbers. De Moivre used these numbers in permutations and combinatorics 

[3]. Later, James Stirling (1692-1770) examined and analyzed these numbers, known as Stirling numbers, 

in more detail [4]. Stirling's works have an important place, especially in asymptotic analysis. Abel, 

Norwegian mathematician, worked on Stirling numbers, polynomials [5]. Abel's work contributed to the 

understanding of Stirling numbers in a broader mathematical context. Jacobi (1804-1851) worked on 

Stirling numbers and determinant theories. Jacobi's work revealed the relationship of these numbers to 

matrix theory and linear algebra [6]. 

 

http://dergipark.org.tr/gujs
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Modern Studies (20th and 21st century), Stirling numbers have found wide application in combinatorics, 

numerical analysis and computer science today. Modern mathematicians have further developed these 

numbers by using them in various algorithms and theories. In the study conducted by Aziza, H.A (2016), 

generating functions and combinatoric sums and their related applications were studied [7]. 

 

The first type of Stirling matrix is defined as  

 

𝑆𝑛(1) = [𝑠𝑖𝑗]𝑛×𝑛, 

 

where 𝑖, 𝑗 are the positive numbers and 𝑖 is greater than 𝑗 and “0” in the other cases. Details of the studies 

done with Stirling matrix can be seen in the references [8-10]. The studies done with the first type of Stirling 

polynomials can be seen in the references [11-17]. However, for this study, the first type of Stirling 

polynomials, similar to Fibonacci, was used. These polynomials were created using the row sums of the 

first type Stirling number table. These polynomials are defined by the same recursive relation as for the 

first type Stirling numbers, 

 

𝑠𝑛+1(𝑥) = 𝑥𝑠𝑛(𝑥) + (𝑛𝑥 + 𝑛2 − 𝑛)𝑠𝑛−1(𝑥) 

 

and give the first type Stirling numbers with special values. We now construct the Stirling polynomials and 

derive the general form of the Stirling polynomial matrix. In [18], for 𝑘 > 0 and 𝑛 ≥ 𝑘, first and second 

type Stirling polynomials are defined by   

 

𝑠𝑛,𝑘(𝑥) = 𝑥 𝑠(𝑛 − 1, 𝑘 − 1) + (𝑛 − 1)𝑠(𝑛 − 1, 𝑘) 

 

and 

 

𝑆𝑛,𝑘(𝑥) = 𝑥 𝑠(𝑛 − 1, 𝑘 − 1) + 𝑘 𝑠(𝑛 − 1, 𝑘), 

 

respectively, where  𝑠0,0(𝑥) = 𝑆0,0(𝑥) = 1 and 𝑠0,𝑘(𝑥) = 𝑠𝑛,0(𝑥) = 𝑆0,𝑘(𝑥) = 𝑆𝑛,0(𝑥) = 0. 
 

Noticed that when 𝑥 = 1, above last equations give the first and second type Stirling numbers, respectively. 

Some terms of the first sequence are 

 

𝑠1,1(𝑥) = 𝑥, 𝑠2,1(𝑥) = 𝑥, 𝑠2,2(𝑥) = 𝑥2, 𝑠3,1(𝑥) = 2𝑥, 𝑠3,2(𝑥) = 3𝑥2, … . 

 

Table 1. First and second type Stirling polynomials 

𝑠𝑛,𝑘(𝑥) 1 2 3 4 5 6  ⋯ 

1 𝑥       

2 𝑥 𝑥2      

3 2𝑥 3𝑥2 𝑥3     

4 6𝑥 11𝑥2 6𝑥3 𝑥4    

5 24𝑥 50𝑥2 35𝑥3 10𝑥4 𝑥5   

6 120𝑥 274𝑥2 225𝑥3 85𝑥4 15𝑥5 𝑥6  

⋮        
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In the Table 1, if we take 𝑥 = 2 we obtain the sequence (A125553) included in the OEIS and it’s 𝑇(𝑛, 𝑘).  

 

𝑇(𝑛, 𝑘) = 2𝑘𝑠(𝑛, 𝑘) 

 

{2, 2, 4, 4, 12, 8, 12, 44, 48, 16, 48, 200,… }. 
 

2. MATERIALS AND METHODS 

 

2.1. Stirling Polynomials 

 

In this section, Stirling polynomials are studied in detail and some new identities are given. In the following 

theorem, a recurrence relation is given that gives the row sums for Stirling polynomials. 

 

Theorem 2.1.1. For  𝑛 > 0, we have 

 

𝑠𝑛+1(𝑥) = (𝑛 + 𝑥)𝑠𝑛(𝑥)  

 

and 

 

𝑠𝑛+1(𝑥) = 𝑥𝑠𝑛(𝑥) + (𝑛𝑥 + 𝑛2 − 𝑛)𝑠𝑛−1(𝑥).                                                                                                       (1)  
 

Proof. The proof can be done by using the row sums of Table 1. 

 

𝑠0(𝑥) = 1, for  𝑛 = 0, 1 and  𝑚 − 1  the polynomials 𝑠𝑛+1(𝑥) are 𝑠1(𝑥) = 𝑥, 𝑠2(𝑥) = 𝑥 + 𝑥2 and 𝑠𝑚(𝑥) =
(𝑚 − 1) 𝑠𝑚−1(𝑥) + 𝑥 𝑠𝑚−1(𝑥), respectively. 

 

For 𝑛 = 𝑚, the Equality (1) is true. So, 

 

𝑠𝑚+1(𝑥) = 𝑚 𝑠𝑚(𝑥) + 𝑥 𝑠𝑚(𝑥) 

 

𝑠𝑚+1(𝑥) = 𝑚[(𝑚 − 1)𝑠𝑚−1(𝑥) + 𝑥𝑠𝑚−1(𝑥)] + 𝑥[(𝑚 − 1)𝑠𝑚−1(𝑥) + 𝑥𝑠𝑚−1(𝑥)] 

 

𝑠𝑚+1(𝑥) = (𝑚 + 𝑥)(𝑚 − 1 + 𝑥)𝑠𝑚−1(𝑥). 

 

Consequently, we can write 

 

𝑠𝑚+1(𝑥) = (𝑚2 − 𝑚 + 2𝑚𝑥 − 𝑥 + 𝑥2) 𝑠𝑚−1(𝑥). 
 

Thus, we have  

 

𝑠𝑛+1(𝑥) = (𝑛 + 𝑥)𝑠𝑛(𝑥) 

 

which is the desired result. 

 

Moreover, we have the following identities. 

 

i. If 𝑛 − 1 is written instead of 𝑛 in the above Equation (1), then we get 

 

𝑠𝑛(𝑥) = (𝑛 + 𝑥 − 1)𝑠𝑛−1(𝑥). 
 

https://oeis.org/A125553
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ii. The sum of consecutive polynomials, is 

 

𝑠𝑛+1(𝑥) = (𝑛 + 𝑥 − 1)(𝑠𝑛(𝑥) + 𝑠𝑛−1(𝑥)). 

 

iii. The difference of consecutive polynomials is 

 

𝑠𝑛+1(𝑥) = (𝑛 + 𝑥 − 1)(𝑠𝑛(𝑥) − 𝑠𝑛−1(𝑥)) + 2 𝑠𝑛(𝑥). 

 

Now, we can give the sums of the Stirling polynomials. 

 

Theorem 2.1.2. For the polynomials  𝑠𝑛(𝑥), we have 

 

 𝑖)  ∑ 𝑠𝑛(𝑥)

∞

𝑛=0

= 1 + ∑(𝑛 + 𝑥 − 1)

∞

𝑛=1

𝑠𝑛−1(𝑥). 

 

𝑖𝑖) ∑ 𝑠2𝑛(𝑥)

∞

𝑛=0

= 1 + ∑(2𝑛 + 𝑥 − 1)

∞

𝑛=1

𝑠2𝑛−1(𝑥). 

 

𝑖𝑖𝑖) ∑ 𝑠2𝑛+1(𝑥)

∞

𝑛=0

= (2𝑛 + 𝑥) ∑ 𝑠2𝑛(𝑥).

∞

𝑛=0

 

 

Proof. Here, only the proof of 𝑖) will be given. Let's do it by induction over finite numbers 𝑘. 

 

∑ 𝑠𝑛(𝑥)0
𝑛=0 = 1 is true. Assume that 

 

∑ 𝑠𝑛(𝑥)

𝑘+1

𝑛=0

= ∑ 𝑠𝑛(𝑥)

𝑘

𝑛=0

+ 𝑠𝑘+1(𝑥). 

 

If we substitute the following equality a into the assumption, 

 

∑ 𝑠𝑛(𝑥)𝑘
𝑛=0 = 𝑠0(𝑥) + ∑ (𝑛 + 𝑥 − 1)𝑘

𝑛=1 𝑠𝑛−1(𝑥) then, we write 

 

∑ 𝑠𝑛(𝑥)𝑘+1
𝑛=0 = 𝑠0(𝑥) + ∑ (𝑛 + 𝑥 − 1)𝑘

𝑛=1 𝑠𝑛−1(𝑥) + 𝑠𝑘+1(𝑥)  

 

Using the equation  𝑠𝑘+1(𝑥) = (𝑘 + 𝑥)𝑠𝑘(𝑥), we get 

 

∑ 𝑠𝑛(𝑥)

𝑘+1

𝑛=0

= 𝑠0(𝑥) + ∑(𝑛 + 𝑥 − 1)

𝑘+1

𝑛=1

𝑠𝑛−1(𝑥). 

 

Thus, the proof is completed. 

 

In this study, the matrix 𝑄𝑘
𝑛(𝑥)  is defined to be used in encryption and LU decomposition of this matrix 

was performed. AES type encryption was performed by using LU. 

 

Definition 2.1.3. Let's define a new matrix, we call the Stirling polynomial matrix, denoted by 𝑄𝑘
𝑛(𝑥) 
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𝑄𝑘
𝑛(𝑥) =

[
 
 
 
 

𝑠0(𝑥) 𝑠1(𝑥) 𝑠2(𝑥) ⋯ 𝑠𝑘(𝑥)

𝑠1(𝑥) 𝑠2(𝑥) 𝑠3(𝑥) ⋯ 𝑠𝑘+1(𝑥)

𝑠2(𝑥) 𝑠3(𝑥) 𝑠4(𝑥) ⋯ 𝑠𝑘+2(𝑥)
⋮ ⋮ ⋮ ⋱ ⋮

𝑠𝑛−1(𝑥) 𝑠𝑛(𝑥) 𝑠𝑛+1(𝑥) ⋯ 𝑠𝑛+𝑘−1(𝑥)]
 
 
 
 

. 

 

Now, let us give two different decompositions of this matrix without proof. 

 

Lemma 2.1.4. The LU decomposition of the matrix 𝑄𝑘
𝑛(𝑥) is  

 

𝑄𝑘
𝑛(𝑥) = 𝐿𝑛𝑈𝑛. 

 

 

where   𝐿𝑛 =

[
 
 
 

1 0 ⋯ 0
𝑥 1 ⋯ 0
⋮ ⋮ ⋱ ⋮

𝑠𝑛−1(𝑥)
𝑠𝑛(𝑥)

𝑥
− 𝑠𝑛−1(𝑥) ⋯ 1]

 
 
 

 and 𝑈𝑛 = [

1 𝑥 ⋯ 𝑠𝑘(𝑥)

0 𝑥 ⋯ 𝑠𝑘+1(𝑥) − 𝑥𝑠𝑘(𝑥)
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑠𝑘+𝑛−1(𝑥) − ∑ 𝐿𝑘𝑖𝑈𝑖𝑘

𝑘−1
𝑖=1

]. 

 

In our current study, the  𝐿𝑛 matrix of the LU decomposition given in the above lemma is used.  

 

The AES method is known to be a classic method for encryption. This method is widely used both for 

encrypting the message to be transmitted and for decrypting the message. In this method, both keys used 

for encryption and decryption are the same. AES supports 128, 192 and 256 bit keys.  The cycle for the 

method used is given in Figure 1. For more detailed information about AES, you can refer to references 

[19- 21]. 

 

 

 

 

 

 

Figure 1. Cycle AES [23] 

 

The Galois field is an algebraic structure that commonly includes matrix operations and provides ease of 

operation. Detailed information about this structure can be found in [22- 24]. The elements of 𝐺𝐹(2𝑚) can 

be integers as well as matrices and polynomials. In the situtation the elements of 𝐺𝐹(2𝑚)  are polynomials, 

the degree of these polynomials is at most 𝑚 −  1. The number of elements of the Galois field used in AES 

type encryption is 28. 

 

A polynomial 𝐴(𝑥), is written as 𝐴(𝑥) = 𝑎7𝑥
7+. . . +𝑎1𝑥 + 𝑎0, 𝑎𝑖 ∈ 𝐺𝐹(2) = {0,1}. 

  

Coding algorithms play an important role in ensuring information security and various number sequences 

are widely used in the cryption area. 

 

In a study conducted in 2020, the authors used some special integer sequences to encrypt with AES type 

[25]. We also used matrix representations of Stirling polynomials to obtain the targeted algorithm, 

especially as a motivation from this study. 

128/192/256 

𝑘 

𝑌 

𝑥 

AES 

128 

128 
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In the following section, we give an encryption algorithm using the first type Stirling polynomials, which 

we denote with the symbol 𝑄𝑘
𝑛(𝑥) and used the following key matrices. 

 

1. 𝐾𝑒𝑦 = [
𝐶 𝑂 𝐷
𝐵 𝐵 𝐵
𝐶 Ç 𝐵

], 2. 𝐾𝑒𝑦 = [
𝐵 𝐴
𝐷 𝐷

]. 

 

3. CODING AND DECODING WITH STIRLING POLYNOMIAL MATRICES 

 

In this section, we examined the AES type encoding and decoding method using the matrix 𝑄𝑘
𝑛(𝑥). 

 

Throughout the study, we redefined the elements of Stirling polynomials of order 𝑘 using irreducible 

polynomials to be able to perform AES type coding. Since it is advantageous to use algebraic structures 

with finite elements, the Galois field containing 128 elements was used in this study.  

 

Let the polynomials 𝐴(𝑥), 𝐵(𝑥) in 𝐺𝐹(2𝑚) and for the irreducible polynomial 𝑝𝑖 modulo. And 𝑃(𝑥) ≡
∑ 𝑝𝑖𝑥𝑖

𝑚
𝑖=0 , 𝐶(𝑥) = 𝐴(𝑥)𝐵(𝑥). As the polynomial, we use 𝑃(𝑥) = 𝑥7 + 𝑥 + 1. Let's match each polynomial 

𝑠𝑖(𝑥) used with a letter in the alphabet. 

 

In the Table 2, the polynomials are defined on the Galois field and the alphabetical comparison are given. 

 

Table 2.  Polynomials and their letter equivalents 

No Bit Polynomials Letter 

equivalents 

0 0000000 0 A 

1 0000001 1 B 

2 0000010 𝑥 C 

3 0000011 𝑥 + 1 Ç 

4 0000100 𝑥2 D 

5 0000101 𝑥2 + 1 E 

6 0000110 𝑥2 + 𝑥 F 

7 0000111 𝑥2 + 𝑥 + 1 G 

8 0001000 𝑥3 Ğ 

9 0001001 𝑥3 + 1 H 

10 0001010 𝑥3 + 𝑥 I 

11 0001011 𝑥3 + 𝑥 + 1 İ 

12 0001100 𝑥3 + 𝑥2 J 

13 0001101 𝑥3 + 𝑥2 + 1 K 

14 0001110 𝑥3 + 𝑥2 + 𝑥 L 

15 0001111 𝑥3 + 𝑥2 + 𝑥 + 1 M 

16 0010000 𝑥4 N 

17 0010001 𝑥4 + 1 O 

18 0010010 𝑥4 + 𝑥 Ö 

19 0010011 𝑥4 + 𝑥 + 1 P 

20 0010100 𝑥4 + 𝑥2 R 

21 0010101 𝑥4 + 𝑥2 + 1 S 

22 0010110 𝑥4 + 𝑥2 + 𝑥 Ş 

23 0010111 𝑥4 + 𝑥2 + 𝑥 + 1 T 

24 0011000 𝑥4 + 𝑥3 U 

25 0011001 𝑥4 + 𝑥3 + 1 Ü 

26 0011010 𝑥4 + 𝑥3 + 𝑥 V 
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27 0011011 𝑥4 + 𝑥3 + 𝑥 + 1 W 

28 0011100 𝑥4 + 𝑥3 + 𝑥2 X 

29 0011101 𝑥4 + 𝑥3 + 𝑥2 + 1 Y 

30 0011110 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 Z 

31 0011111 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 Q 

32 0100000 𝑥5 𝐴1 

33 0100001 𝑥5 + 1 𝐵1 

34 0100010 𝑥5 + 𝑥 𝐶1 

35 0100011 𝑥5 + 𝑥 + 1 Ç1 

36 0100100 𝑥5 + 𝑥2 𝐷1 

37 0100101 𝑥5 + 𝑥2 + 1 𝐸1 

38 0100110 𝑥5 + 𝑥2 + 𝑥 𝐹1 

39 0100111 𝑥5 + 𝑥2 + 𝑥 + 1 𝐺1 

40 0101000 𝑥5 + 𝑥3 Ğ1 

41 0101001 𝑥5 + 𝑥3 + 1 𝐻1 

42 0101010 𝑥5 + 𝑥3 + 𝑥 𝐼1 

43 0101011 𝑥5 + 𝑥3 + 𝑥 + 1 İ1 

44 0101100 𝑥5 + 𝑥3 + 𝑥2 𝐽1 

45 0101101 𝑥5 + 𝑥3 + 𝑥2 + 1 𝐾1 

46 0101110 𝑥5 + 𝑥3 + 𝑥2 + 𝑥 𝐿1 

47 0101111 𝑥5 + 𝑥3 + 𝑥2 + 𝑥 + 1 𝑀1 

48 0110000 𝑥5 + 𝑥4 𝑁1 

49 0110001 𝑥5 + 𝑥4 + 1 𝑂1 

50 0110010 𝑥5 + 𝑥4 + 𝑥 Ö1 

51 0110011 𝑥5 + 𝑥4 + 𝑥 + 1 𝑃1 

52 0110100 𝑥5 + 𝑥4 + 𝑥2 𝑅1 

53 0110101 𝑥5 + 𝑥4 + 𝑥2 + 1 𝑆1 

54 0110110 𝑥5 + 𝑥4 + 𝑥2 + 𝑥 Ş1 

55 0110111 𝑥5 + 𝑥4 + 𝑥2 + 𝑥 + 1 𝑇1 

56 0111000 𝑥5 + 𝑥4 + 𝑥3 𝑈1 

57 0111001 𝑥5 + 𝑥4 + 𝑥3 + 1 Ü1 

58 0111010 𝑥5 + 𝑥4 + 𝑥3 + 𝑥 𝑉1 

59 0111011 𝑥5 + 𝑥4 + 𝑥3 + 𝑥 + 1 𝑊1 

60 0111100 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 𝑋1 

61 0111101 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 1 𝑌1 

62 0111110 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 𝑍1 

63 0111111 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 𝑄1 

64 1000000 𝑥6 𝐴2 

65 1000001 𝑥6 + 1 𝐵2 

66 1000010 𝑥6 + 𝑥 𝐶2 

67 1000011 𝑥6 + 𝑥 + 1 Ç2 

68 1000100 𝑥6 + 𝑥2 𝐷2 

69 1000101 𝑥6 + 𝑥2 + 1 𝐸2 

70 1000110 𝑥6 + 𝑥2 + 𝑥 𝐹2 

71 1000111 𝑥6 + 𝑥2 + 𝑥 + 1 𝐺2 

72 1001000 𝑥6 + 𝑥3 Ğ2 

73 1001001 𝑥6 + 𝑥3 + 1 𝐻2 

74 1001010 𝑥6 + 𝑥3 + 𝑥 𝐼2 

75 1001011 𝑥6 + 𝑥3 + 𝑥 + 1 İ2 

76 1001100 𝑥6 + 𝑥3 + 𝑥2 𝐽2 
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77 1001101 𝑥6 + 𝑥3 + 𝑥2 + 1 𝐾2 

78 1001110 𝑥6 + 𝑥3 + 𝑥2 + 𝑥 𝐿2 

79 1001111 𝑥6 + 𝑥3 + 𝑥2 + 𝑥 + 1 𝑀2 

80 1010000 𝑥6 + 𝑥4 𝑁2 

81 1010001 𝑥6 + 𝑥4 + 1 𝑂2 

82 1010010 𝑥6 + 𝑥4 + 𝑥 Ö2 

83 1010011 𝑥6 + 𝑥4 + 𝑥 + 1 𝑃2 

84 1010100 𝑥6 + 𝑥4 + 𝑥2 𝑅2 

85 1010101 𝑥6 + 𝑥4 + 𝑥2 + 1 𝑆2 

86 1010110 𝑥6 + 𝑥4 + 𝑥2 + 𝑥 Ş2 

87 1010111 𝑥6 + 𝑥4 + 𝑥2 + 𝑥 + 1 𝑇2 

88 1011000 𝑥6 + 𝑥4 + 𝑥3 𝑈2 

89 1011001 𝑥6 + 𝑥4 + 𝑥3 + 1 Ü2 

90 1011010 𝑥6 + 𝑥4 + 𝑥3 + 𝑥 𝑉2 

91 1011011 𝑥6 + 𝑥4 + 𝑥3 + 𝑥 + 1 𝑊2 

92 1011100 𝑥6 + 𝑥4 + 𝑥3 + 𝑥2 𝑋2 

93 1011101 𝑥6 + 𝑥4 + 𝑥3 + 𝑥2 + 1 𝑌2 

94 1011110 𝑥6 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 𝑍2 

95 1011111 𝑥6 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 𝑄2 

96 1100000 𝑥6 + 𝑥5 𝐴3 

97 1100001 𝑥6 + 𝑥5 + 1 𝐵3 

98 1100010 𝑥6 + 𝑥5 + 𝑥 𝐶3 

99 1100011 𝑥6 + 𝑥5 + 𝑥 + 1 Ç3 

100 1100100 𝑥6 + 𝑥5 + 𝑥2 𝐷3 

101 1100101 𝑥6 + 𝑥5 + 𝑥2 + 1 𝐸3 

102 1100110 𝑥6 + 𝑥5 + 𝑥2 + 𝑥 𝐹3 

103 1100111 𝑥6 + 𝑥5 + 𝑥2 + 𝑥 + 1 𝐺3 

104 1101000 𝑥6 + 𝑥5 + 𝑥3 Ğ3 

105 1101001 𝑥6 + 𝑥5 + 𝑥3 + 1 𝐻3 

106 1101010 𝑥6 + 𝑥5 + 𝑥3 + 𝑥 𝐼3 

107 1101011 𝑥6 + 𝑥5 + 𝑥3 + 𝑥 + 1 İ3 

108 1101100 𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 𝐽3 

109 1101101 𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 1 𝐾3 

110 1101110 𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥 𝐿3 

111 1101111 𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥 + 1 𝑀3 

112 1110000 𝑥6 + 𝑥5 + 𝑥4 𝑁3 

113 1110001 𝑥6 + 𝑥5 + 𝑥4 + 1 𝑂3 

114 1110010 𝑥6 + 𝑥5 + 𝑥4 + 𝑥 Ö3 

115 1110011 𝑥6 + 𝑥5 + 𝑥4 + 𝑥 + 1 𝑃3 

116 1110100 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 𝑅3 

117 1110101 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 + 1 𝑆3 

118 1110110 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 + 𝑥 Ş3 

119 1110111 𝑥6 + 𝑥5 + 𝑥4 + 𝑥2 + 𝑥 + 1 𝑇3 

120 1111000 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 𝑈3 

121 1111001 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 1 Ü3 

122 1111010 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥 𝑉3 

123 1111011 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥 + 1 𝑊3 

124 1111100 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 𝑋3 

125 1111101 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 1 𝑌3 

126 1111110 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 𝑍3 
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Now, let's give the encryption algorithm we want to apply. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Utilizing the above algorithm, the decoding algorithm becomes as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

Since the number of elements in Table 1 is very high, it is clear that the encryptions to be obtained will be 

more secure. A detailed application is given below to see this situation. 

127 1111111 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 𝑄3 

Choose 𝑛  Choose 𝑘 = 𝑛 − 1  

Create 𝑄𝑘
𝑛(𝑥) . Arrange its elements by P(x)  

For 𝑄𝑘
𝑛(𝑥) write suitable 𝐿𝑛(𝑥)  

Write the numbers and polynomial equivalents of the letters of 

the text to be encrypted. 

Write the text to be encrypted in the form 𝑀𝑛×1 (=M) 

(𝐿𝑛(𝑥) ) × (𝑀𝑛×1) = 𝑓𝑖𝑟𝑠𝑡 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

(𝐾𝑒𝑦 𝑚𝑎𝑡𝑟𝑖𝑥) × (𝐹𝑖𝑟𝑠𝑡 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝑎𝑡𝑟𝑖𝑥) = 𝑀𝑛×1 

For all  𝑛 , (𝑀𝑛×1) + ቀ𝑠𝑛
(𝑘)

ቁ = 𝐿𝑎𝑠𝑡 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

(𝐿𝑛(𝑥) )−1 × (𝑓𝑖𝑟𝑠𝑡 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒) = 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑇𝑒𝑥𝑡 

 

Chose 𝑛 for  𝑛, 𝑘: (𝐿𝑛(𝑥) )−1 

(𝑇ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑠 𝑜𝑓 𝑘𝑒𝑦 𝑚𝑎𝑡𝑟𝑖𝑥) × (𝑀𝑛×1) = 𝑓𝑖𝑟𝑠𝑡 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 

For each 𝑛, the final encrypted message +ቀ𝑠𝑛
(𝑘)

ቁ = (𝑀𝑛×1) 
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Let's assume that the message text to be sent is "PELİN GO BACK". 

 

Step 1. The message text is 11 letters. According to the given coding algorithm, 𝑛 can be chosen arbitrarily. 

Let's continue the coding algorithm by choosing n = 3. 

 

Step 2. The matrix 𝐿3(𝑥)  is created from the 𝐿𝑈 decomposition of the matrix 𝑄𝑘
𝑛(𝑥) using the polynomial 

𝑃(𝑥), the matrix elements 𝐿3(𝑥)  are reduced. 

 

𝐿3(𝑥) = [
1 0 0
𝑥 1 0

𝑥2 + 𝑥 1 1
]. 

 

For 𝑛 = 2, we use the matrix  𝐿2(𝑥) = [
1 0
𝑥 1

]. 

 

Step 3. The numbers and polynomial equivalents corresponding to the text to be encrypted are written. 

 

19 = (0010011) = 𝑥4 + 𝑥 + 1 = 𝑷 

 

5 = (0000101) = 𝑬 

 

14 = (0001110) = 𝑳 

 

11 = (0001011) = İ 

 

16 = (0010000) = 𝑵 

 

7 = (0000111) = 𝑮 

 

17 = (0010001) = 𝑶 

 

1 = (0000001) = 𝑩 

 

0 = (0000000) = 𝑨 

 

2 = (0000010) = 𝑪 

 

13 = (0001101) = 𝑲. 

 

For the message text divided into block matrices 3 × 1 and 2 × 1. The matrices 𝐿𝑛(𝑥) are multiplied by 

the block matrices, respectively. 

 

𝐿3(𝑥) [
𝑃
𝐸
𝐿
] = [

𝑥4 + 𝑥 + 1
𝑥5 + 𝑥 + 1
𝑥6 + 𝑥5 + 1

] = [
𝑃
Ç1

𝐵3

], 

 

𝐿3(𝑥) [
İ
𝑁
𝐺

] = [
İ
𝐹
𝐾1

], 
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𝐿3(𝑥) [
𝑂
𝐵
𝐴
] = [

𝑂
Ç1

𝐺3

], 

 

𝐿2(𝑥) [
𝐶
𝐾

] = [
𝐶
𝐻

]. 

 

Thus, according to the above operations, the first encrypted text is  

 

𝑃 Ç1 𝐵3 İ F K1 𝑂 Ç1 𝐺3 𝐶 𝐻. 
 

Step 4. Let's multiply the message matrix obtained in Step 3 by the 1𝑠𝑡 key, respectively. 

 

[
𝐶 𝑂 𝐷
𝐵 𝐵 𝐵
𝐶 Ç 𝐵

] [

𝑃
Ç1

𝐵3

] = [

𝑈1

𝑂2

𝐶1

]. 

 

Since the block matrix obtained using the other six letters is of type 3 × 1, it is multiplied by the first key 

in order. 

 

[
𝐶 𝑂 𝐷
𝐵 𝐵 𝐵
𝐶 Ç 𝐵

] [
İ
𝐹
𝐾1

] = [

𝐺2

𝐴1

𝑂1

]. 

 

[
𝐶 𝑂 𝐷
𝐵 𝐵 𝐵
𝐶 Ç 𝐵

] [
𝑂
Ç1

𝐺3

] = [

𝐷1

𝑆2

𝐴1

]. 

 

Since the block matrix to be created for the remaining two letters is of type 2 × 1, it is multiplied by the 

second key. 

 

[
𝐵 𝐴
𝐷 𝐷

] [
𝐶
𝐻

] = [
𝐶
𝑅
]. 

 

Thus, the second encrypted message is as follows. 

 

𝑈1 𝑂2 𝐶1 𝐺2 𝐴1 𝑂1 𝐷1 𝑆2 𝐴1 𝐶 𝑅. 

 

Step 5. The resulting encrypted message is added to the kth powers of the Stirling polynomials 𝑠𝑘(𝑥) to 

obtain a new encrypted message. 

 

𝑈1 + 𝑠1
(3)(𝑥) = 𝑥5 + 𝑥4 = 𝐍𝟏 

 

𝑂2 + 𝑠2
(3)(𝑥) = 𝐇𝟏 

 

𝐶1 + 𝑠3
(3)(𝑥) = İ𝟑 

 

𝐺2 + 𝑠4
(3)(𝑥) = Ü𝟑 

 

𝐴1 + 𝑠5
(3)(𝑥) = 𝑺𝟐 
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𝑂1 + 𝑠6
(3)

(𝑥) = 𝒀𝟐 

 

𝐷1 + 𝑠7
(3)(𝑥) = 𝑳𝟐 

 

𝑆2 + 𝑠8
(3)

(𝑥) = 𝑸 

 

𝐴1 + 𝑠9
(3)

(𝑥) = 𝑿𝟑 

 

𝐶 + 𝑠10
(3)(𝑥) = 𝑿𝟑 

 

𝑅 + 𝑠11
(3)

(𝑥) = 𝑲𝟑. 

 

As a result, the encrypted text sent to the recipient of the message is as follows 

 

𝑁1 𝐻1 İ3 Ü3 𝑆2 𝑌2 𝐿2 𝑄 𝑋3 𝑋3 𝐾3 . 

 

Backward solving algorithm. 

 

In order to obtain the initial state of the encrypted message obtained in the last operation of the encrypted 

algorithm, the following steps are followed in order. 

 

Step 1. The letters of the encrypted message obtained in the last process of the encryption algorithm are 

summed, respectively, by the kth power of the Stirling polynomials. 

 

𝑁1 + 𝑠1
(3)

(𝑥) = 𝑥5 + 𝑥4 + 𝑥3 = 𝑼𝟏 

 

𝐻1 + 𝑠2
(3)(𝑥) = 𝑶𝟐 

 

İ3 + 𝑠3
(3)(𝑥) = 𝑪𝟏 

 

Ü3 + 𝑠4
(3)(𝑥) = 𝑮𝟐 

 

𝑆2 + 𝑠5
(3)(𝑥) = 𝑨𝟏 

 

𝑌2 + 𝑠6
(3)(𝑥) = 𝑶𝟏 

 

𝐿2 + 𝑠7
(3)(𝑥) = 𝑫𝟏 

 

𝑄 + 𝑠8
(3)(𝑥) = 𝑺𝟐 

 

𝑋3 + 𝑠9
(3)(𝑥) = 𝑨𝟏 

 

𝑋3 + 𝑠10
(3)(𝑥) = 𝑪 

 

𝐾3 + 𝑠11
(3)(𝑥) = 𝑹. 
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So, we can get  

 

 𝑈1 𝑂2 𝐶1 𝐺2 𝐴1 𝑂1 𝐷1 𝑆2 𝐴1 𝐶 𝑅.  
 

Step 2. Let's multiply the resulting message matrix by the inverse of the key matrices, respectively 

 

[
𝑍 İ2 𝐸2

𝑂3 𝑉2 𝐶3

𝑂3 𝑋2 𝐵3

] [

𝑈1

𝑂2

𝐶1

] = [

𝑃
Ç1

𝐵3

]. 

 

Since the block matrix to be used for the other six letters in the sequence is of order 3 × 1. 

 

[
𝑍 İ2 𝐸2

𝑂3 𝑉2 𝐶3

𝑂3 𝑋2 𝐵3

] [
𝐺2

𝐴1

𝑂1

] = [
İ
𝐹
𝐾1

], 

 

[
𝑍 İ2 𝐸2

𝑂3 𝑉2 𝐶3

𝑂3 𝑋2 𝐵3

] [

𝐷1

𝑆2

𝐴1

] = [

𝐷1

𝑆2

𝐴1

]. 

 

Since the block matrix required for the last two letters is of type 2 × 1.  

 

[
𝐵 𝐴
𝑌2 𝐾3

] [
𝐶
𝑅
] = [

𝐶
𝐻

]. 

 

Thus, we obtain the encrypted decryption message as follows 

 

𝑃 Ç1 𝐵3 İ F K1 𝑂 Ç1 𝐺3 𝐶 𝐻. 

 

Step 3. Considering the polynomial 𝑃(𝑥), the matrix (𝐿3(𝑥))−1 is as follows 

 

(𝐿3(𝑥))−1 = [
1 0 0

−𝑥 1 0
−𝑥2 −1 1

].  

 

Step 4. The ciphertext obtained in Step 2 should be multiplied by the matrices (𝐿3(𝑥))−1 in Step 3 

 

(𝐿3(𝑥))−1 [
𝑃
Ç1

𝐵3

] = [
𝑃
𝐸
𝐿
], 

 

(𝐿3(𝑥))−1 [
İ
𝐹
𝐾1

] = [
İ
𝑁
𝐺

], 

 

(𝐿3(𝑥))−1 [

𝐷1

𝑆2

𝐴1

] = [
𝑂
𝐵
𝐴
]  and  (𝐿2(𝑥))−1 [

𝐶
𝐻

] = [
𝐶
𝐾

]. 
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When all these steps are followed, the text to be sent will be found as PELİN GO BACK. 

 

4. CONCLUSION 

 

In this study, Stirling numbers were examined and Stirling polynomials were defined with the help of these 

numbers. Using these newly defined polynomials, the AES type encryption algorithm, which is widely used 

in the literature, was examined and an application was given to perform encryption as an application of this 

algorithm. This given algorithm can be used in other studies to be done in the field of encryption. 
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