https://doi.org/10.30910/turkjans.1603167

TÜRK

TURKISH JOURNAL of AGRICULTURAL and NATURAL SCIENCES

www.dergipark.gov.tr/turkjans

Original Article

Assessment of the Susceptibility of Grapevine Genotypes in the Eastern Anatolia Region Genetic Resource Plot to Powdery Mildew (Erysiphe necator) Under Natural Infection **Conditions**

Tevhit Geçim¹[⊠], Nalan Yıldırım Doğan², Hasan Pınar³, Abdurrahim Bozkurt¹

¹Horticultural Research Institute Directorate, Erzincan ²Erzincan Binali Yıldırım University, Faculty of Arts and Sciences, Department of Biology, Erzincan ³Erciyes University, Faculty of Agriculture, Department of Horticulture, Kayseri

¹Uhttps://orcid.org/0000-0003-2406-9929, ²Uhttps://orcid.org/0000-0002-5344-5367, ³Uhttps://orcid.org/0000-0002-0811-8228, 4 https://orcid.org/0000-0001-7315-202X

[⊠]: tevhit.gecim@tarimorman.gov.tr

ABSTRACT

Powdery mildew disease caused by Erysiphe necator is an economically important disease of grape varieties of the Vitis vinifera species worldwide. The use of resistant grape varieties in the control of the disease is extremely important for human and environmental health. In this study, the tolerance levels of 203 local cultivars, two tolerant (Regent and Kishmish Vatkana) and two sensitive (Karaerik and Italia) cultivars collected within the scope of the Eastern Anatolia Region Grapevine Genetic Resources Project were determined against the pathogen Erysiphe necator under natural conditions. A visual scale based on sporulation density and necrosis formation on the leaves was used for evaluation and four vines were evaluated for each genotype. The colonisation rate on the surface of the leaves was determined according to the scale values between 0-7. The severity of the disease was calculated based on the lesions on the leaves and the susceptibility of the genotypes was determined. As a result of the study, 3 of the genotypes were highly resistant (HR), 44 were resistant (R), 68 were susceptible (S) and 88 were highly susceptible (HS) in terms of powdery mildew disease severity. Among these genotypes, 50 out of 197 genotypes belonging to Vitis vinifera species and all Vitis labrusca genotypes showed tolerance below 30% in terms of disease severity. Vitis vinifera subsp. sylvestris (Sarmalık Üzüm) was classified as susceptible with a disease severity of 37.99%. In the study, V. vinifera showed more sensitivity than other species. The most resistant genotype was Izabelle-1 (3.88%) and the most susceptible genotype was Beyaz Üzüm S1 (90.07%).

Key words: Genetic resource, Grape genotypes, Powdery mildew, Natural infection, Vitis vinifera

Doğu Anadolu Bölgesi Asma Genetik Kaynak Parselindeki Genotiplerin Doğal Enfeksiyon Koşullarında Külleme Hastalığına (Erysiphe necator) Duyarlılıklarının Değerlendirilmesi

ÖZ

Erysiphe necator'un neden olduğu külleme hastalığı, dünya çapında Vitis Vinifera türüne giren üzüm çeşitlerinin ekonomik açıdan önemli bir hastalığıdır. Hastalığın kontrolünde dirençli üzüm çeşitlerinin kullanımı insan ve cevre sağlığı acısından son derece önemlidir.Bu calısmada Doğu Anadolu Bölgesi Asma Genetik Kaynakları projesi kapsamında toplanan ve koruma altına alınan 203 yerel çeşit ile 2 tolerant (Regent ve Kishmish Vatkana) ve 2 duyarlı (Karaerik ve Italia) çeşidin doğal koşullar altında Erysiphe necator patojenine karşı toleranslık düzeyleri belirlenmiştir. Değerlendirmede yapraklar üzerindeki sporulasyon yoğunluğu ve nekroz oluşumuna dayalı görsel skala kullanılmış ve her genotip için dörder asma değerlendirilmiştir. Yaprakların yüzeyindeki kolonizasyon oranı, 0-7 arasındaki skala değerlerine göre belirlenmiştir. Yaprakların üzerindeki lezyon değerleri üzerinden hastalık şiddeti hesaplanarak genotiplerin duyarlılık durumları belirlenmiştir. Çalışma sonucunda külleme hastalık şiddeti bakımından 3 genotip oldukça dirençli (HR), 44 genotip dirençli (R), 68 genotip hassas (S) ve 88 genotip oldukça hassas (HS) olarak belirlenmiştir. Bu genotipleri türler bazında incelendiğinde *Vitis vinifera* türüne ait 197 farklı genotipten 50'si ve *Vitis labrusca* genotiplerinin tamamı, hastalık şiddeti bakımından %30 un altında tolerans göstermiştir. Ayrıca *Vitis vinifera* subsp. *sylvestris* türüne ait Sarmalık üzümün hastalık şiddet derecesi %37.99 ile hassas sınıfında yer almıştır. Türlere dayalı değerlendirmede *V. vinifera*'nın diğer türlere kıyasla daha fazla hassasiyet gösterdiği belirlenmiştir. İncelenen genotipler arasında en dirençli genotip olarak İzabelle-1 (%3.88) belirlenirken, en hassas genotip Beyaz Üzüm S1 (%90.07) olarak tespit edilmiştir.

Anahtar kelimeler: Genetik kaynak, Üzüm genotipleri, Külleme hastalığı, Doğal enfeksiyon, Vitis vinifera

INTRODUCTION

Turkey is one of the most important countries in the world for vineyard areas and grape production. Due to the ideal climatic conditions and favourable growing conditions, there are very rich *Vitis* gene resources in Turkey (Yıldırım et al., 2019). The geographical location of the country, being situated in both the Near East and the Mediterranean Basin, plays an important role as a gene centre for viticulture (Ağaoğlu, 1986). In addition, the region between the Black Sea and the Caspian Sea, which covers the northeastern part of the Anatolian peninsula, is considered to be the gene centre and cultivation area of *V. vinifera* L. species. This situation reveals that Turkey has an extremely rich genetic diversity in terms of both wild vine (*Vitis vinifera* ssp. sylvestris) and cultivated vine (*Vitis vinifera* ssp. sativa) (Çelik et al., 1998). It is extremely important to reveal the differences within these gene resources and to use them in breeding by evaluating them in the future (Yağcı and Daler, 2023).

Grape (*Vitis vinifera*) is one of the most important fruit species cultivated as table, juice, wine and raisins. Although *Vitis vinifera* is one of the most commercially important species, it is susceptible to many fungal diseases such as powdery mildew (*Erysiphe necator* (Schw.) Burr.) and downy mildew (*Plasmopara viticola* (Berk. Et Curt) Berl et de Toni) (Reisch et al., 2012; Eibach and Töpfer, 2015; Bozkurt and Yağcı, 2024). Powdery mildew disease caused by the pathogen *Erysiphe necator* is one of the common fungal diseases of grapes and can cause significant yield loss and decrease in fruit quality by affecting all green tissues of the vines (Feechan et al., 2013; Mwamahonje et al., 2015; Pimentel et al., 2021; Aşçı et al., 2021; Sosa-Zuniga et al., 2022; Bozkurt et al., 2023; Maddalena et al., 2023). This disease not only affects grape yield, but can also affect the quality of fruit and wine, including berry flavour and various metabolites (Yu et al., 2022). The susceptibility of grapevines to powdery mildew may differ among cultivars (Boso and Kassemeyer, 2008; Yıldırım et al., 2019; Bozkurt and Yağcı, 2024) and understanding the factors affecting this susceptibility is crucial for disease management in vineyards. Considering the devastating effects of this disease, breeding studies have been initiated worldwide to develop resistant or tolerant plant varieties against this disease (Atak and Şen, 2021; Bozkurt, 2023). Due to the economic importance of *E. necator*, breeders first screened genetic materials to breed resistant varieties (Wan et al., 2007).

It is known that grapevine gene resources play a critical role in determining the effects of powdery mildew disease and the resistance mechanisms of plant phenotypes against the disease. In particular, the resistance levels of different grapevine genotypes against powdery mildew disease have been examined and it has been observed that there are significant differences between species (Atak and Göksel, 2019; Bozkurt and Yağcı, 2024). It has been reported that the majority of cultivated grape cultivars from the species *Vitis vinifera* lack genetic resistance to *E. necator*, making them highly susceptible to powdery mildew (Kunova et al., 2021). The research and utilisation of grapevine genetic resources offers an important avenue for the development of grape varieties with enhanced resistance to diseases and environmental stresses. These genetic resources harbour important traits for combating both biotic and abiotic stresses such as cold, drought, pests and diseases. By utilising genetic diversity in grapevine populations, researchers can identify individuals with superior traits or those that are naturally resistant to specific stress factors.

In this study, it was aimed to determine the susceptibility of 203 different grapevine genotypes protected in the Eastern Anatolia Region Grapevine Genetic Resource Plot against powdery mildew disease by natural infection method.

MATERIALS AND METHODS

Material

The material of the study consisted of 203 local grape varieties/genotypes collected within the scope of 'Eastern Anatolia Region Grapevine Genetic Resources' project from the provinces (Erzincan, Erzurum, Iğdır, Artvin, Sivas, Ardahan, Bingöl, Van, Mardin, Tunceli and Gümüşhane) within the responsibility area of Erzincan Horticultural Research Institute Directorate. Of these genotypes, 197 were *Vitis vinifera*, 5 were *Vitis labrusca* and 1 was *Vitis vinifera* subsp. sylvestris. In addition, two tolerant varieties (Regent and Kishmish Vatkana) and two susceptible varieties (Karaerik and Italia) were selected as controls for the study. These varieties/genotypes were collected and maintained in the genetic resource plot (Table 3). The study was conducted in the genetic resource plot, employing a coincidence block design with four replications and a single vine in each replication.

Method

Determination of Susceptibility of Genotypes to Powdery Mildew by Natural Infection Method

In order to determine the susceptibility levels to powdery mildew disease, powdery mildew infected panicles, shoots and leaves were collected from vineyards in Erzincan and Üzümlü between 19-23 June. These infected plant materials were brought to the vineyard where the genotypes were located and placed at appropriate intervals without any artificial inoculation and naturally infected with powdery mildew pathogens. This process was repeated five times at one week intervals to ensure the robustness of the results. No fungicide application was made in the study vineyard and powdery mildew infections on the leaves were monitored. Genotypes were evaluated at the first appearance of powdery mildew infections on the leaves in early August.

Counting and Evaluation

Natural infection assessment was carried out on the leaves between 1-4 August. For counting and evaluation of sporulation, a visual scale based on sporulation intensity and necrosis formation established by Wang et al. (1995) was used. For disease assessment, 4 vines were used for each local cultivar/genotype and all leaves on 2 shoots from the right and left side of each vine were examined. The colonisation rate on the surface of the leaves was determined according to the scale values between 0-7. According to the scale values, disease severity on the leaves were calculated using the Towsend Heuberger formula (Townsend and Heuberger, 1943) and sporulation severity was calculated and given as percentage (%) (Table 1). Then, disease susceptibility levels of local cultivars according to disease severity were evaluated according to Wang et al. (1995) (Table 2).

Towsend Heuberger Formula: $P = \sum (n \times v \div Z \times N) \times 100$

- P Percentage of disease severity,
- Z Highest scale value,
- n Number of diseased leaves,

- N Number of leaves examined.
- v Numerical value of the degree of disease,

Scale Value	Disease Severity (%)
0	< 0.1
1	0.1 - 5.0
2	5.1 - 15.0
3	15.1 - 30.0
4	30.1 - 45.0
5	45.1 – 65.0
6	65.1 - 85.0
7	> 85

Table 1. Infection rating levels of genotype leaves for their degree of resistance to powdery mildew under natural infection conditions

		0		
Disease	Seve	rity (%)	Disease Severity Index	
0.00	<	0.10	l - Immune	
0.11	-	5.00	HR - Highly resistant	
5.01	-	25.00	R - Resistant	
25.01	-	50.00	S - Sensitive	
50,01	-	100.00	HS - Highly sensitive	

RESULTS AND DISCUSSION

As part of the "Eastern Anatolia Region Grapevine Genetic Resources" project, the susceptibility of 203 local grape varieties/genotypes, along with 2 susceptible and 2 tolerant grape varieties, to powdery mildew was evaluated under natural inoculum conditions in 2023. The severity of the disease observed on the leaves was relatively assessed. According to the findings, 4 genotypes scored 1 point, 28 genotypes scored 2 points, 24 genotypes scored 3 points, 44 genotypes scored 4 points, 67 genotypes scored 5 points, 33 genotypes scored 6 points and 4 genotypes scored 7 points. Disease severity was then calculated for each genotype using the Towsend Heuberger formula (Townsend and Heuberger, 1943). When the disease severity of 203 different genotypes and 4 control varieties in the genetic resource plot were analysed, powdery mildew disease severity was between 3.88 (Izabelle-1) and 90.07 (White Grape S1) (average 44.08%). In addition, disease susceptibility levels of genotypes according to disease severity were evaluated according to Wang et al. (1995) for powdery mildew disease. When the susceptibility level of genotypes to powdery mildew was analysed according to powdery mildew disease severity, 3 genotypes were highly resistant (HR), 44 genotypes were resistant (R), 68 genotypes were susceptible (S) and 88 genotypes were highly susceptible (HS). When the powdery mildew natural infection results of Kishmish Vatkana and Regent, which are known to be tolerant control varieties, were evaluated, the disease severity was 4.46 and 5.08, the scale values were 1 and 2 points, and the disease susceptibility levels were measured as highly resistant (HR) and resistant (R), respectively. Similarly, as a result of the evaluations made in Italia and Karaerik, which are known to be susceptible, the scale values were 6 points and their disease susceptibility levels were determined as highly susceptible (HS) (Table 3). The results of the study and the differences in the susceptibility of the cultivars to powdery mildew disease are consistent with previous studies. As a matter of fact, many grape varieties belonging to Vitis vinifera and Vitis labrusca species were examined for their susceptibility to powdery mildew disease. In the findings obtained, it has been reported both in our study and in different studies that most varieties of V. vinifera are susceptible to E. necator, while V. labrusca is tolerant, and that this susceptibility varies on variety basis (Atak et al., 2017; Bozkurt et al., 2023; Şen, 2024; Bozkurt and Yağcı, 2024). Wan et al. (2007), in order to determine the resistance to powdery mildew disease in Vitis spp. gene pool, 66 genotypes from 13 Vitis species were studied under natural conditions. They used the 0-7 scale and determined that 46 of 66 genotypes were resistant to powdery mildew in their scoring according to this scale. Similarly, Atak et al. (2017) tested 26 genotypes of V. labrusca, 6 interspecific cultivars and 3 cultivars of V. vinifera for susceptibility to powdery mildew by natural and artificial inoculation methods. In the artificial powdery mildew scoring of the study, Isabella (Yalova and Tekirdağ) and Kyoho varieties were found to be highly resistant (HR) and Italia variety was found to be highly susceptible (HS). On the other hand, in a remarkable study conducted over a period of two years, Bozkurt et al. (2023) artificially inoculated 15 different grape cultivars with the pathogen E. necator under greenhouse conditions to evaluate their susceptibility to powdery mildew over a period of seven weeks. When the results of the seventh week were analysed, infection rates for resistant cultivars were relatively low and ranged between 5.9% and 10.3%. On the other hand, increases ranging between 67.3-96.7% were observed in the more susceptible varieties Horoz Karası, Künefi, Erciş, Dökülgen, Fenerit, Italia, Muhammedi, Karaerik, Vakkas, Narince and Hatun Parmağı. Şen, (2023) conducted a study to determine the resistance to powdery mildew and powdery mildew diseases in 307 hybrid genotypes obtained as a result of cross breeding studies carried out by Atatürk Garden Cultures Central Research Institute. As a result of natural and artificial inoculation tests, 9 genotypes resistant to powdery mildew disease were identified. These findings emphasise the critical role of genetic factors in determining the susceptibility of grape varieties to powdery mildew (Parage et al., 2012).

Genotypes	Species Name	Powdery Mildew Disease Severity (%)	Disease Scale Value	Disease Susceptibility Level
Abdehir	Vitis vinifera	81.03 ± 0.82	6	HS
Adesa	Vitis labrusca	3.90 ± 0.76	1	HR
Ağın Beyazı	Vitis vinifera	48.28 ± 1.40	5	S
Ağır Ağız	Vitis vinifera	15.39 ± 1.77	3	R
Ahmetoğlu	Vitis vinifera	52.31 ± 0.59	5	HS
Al Üzüm (Olur)	Vitis vinifera	8.35 ± 0.77	2	R

 Table 3. Names and origin of local cultivars/genotypes and disease severity, scale value and susceptibility levels after natural infection

Genotypes	Species Name	Powdery Mildew Disease Severity	Disease Scale Value	Disease
Genotypes	Species Marile	(%)	Disease Scale value	Susceptibility Leve
Al Üzüm (Torul)	Vitis vinifera	9.03 ± 1.53	2	R
Altuntaş	Vitis vinifera	66.80 ± 1.63	6	HS
Arapgir	Vitis vinifera	82.22 ± 0.71	6	HS
Askeri	Vitis vinifera	53.88 ± 0.98	5	HS
Aş Üzümü	Vitis vinifera	83.79 ± 0.88	6	HS
At Memesi	Vitis vinifera	24.12 ± 0.40	3	R
Azerbaycan Çavuşu	Vitis vinifera	30.86 ± 1.29	4	S
Azezi	Vitis vinifera	31.19 ± 1.48	4	S
Bağlarbaşı	Vitis vinifera	51.07 ± 2.79	5	HS
	•		5 4	пз S
Balcani	Vitis vinifera	42.91 ± 0.89		
Besni Besni	Vitis vinifera	16.99 ± 1.64	3	R
Beyaz Amasya	Vitis vinifera	56.52 ± 2.54	5	HS
Beyaz Bambo	Vitis vinifera	7.59 ± 0.87	2	R
Beyaz Hatun Parmağı	Vitis vinifera	47.87 ± 1.26	5	S
Beyaz Kış Üzümü	Vitis vinifera	28.13 ± 2.43	3	S
Beyaz Kişmiş	Vitis vinifera	62.65 ± 1.66	5	HS
Beyaz Tatlı Çekirdekli	Vitis vinifera	6.35 ± 1.68	2	R
Beyaz Turfanda	Vitis vinifera	30.73 ± 1.94	4	S
Beyaz Üzüm S1	Vitis vinifera	90.07 ± 0.73	7	HS
Beyaz Üzüm S2	Vitis vinifera	87.65 ± 0.61	7	HS
Beyaz Üzüm S3	Vitis vinifera	44.02 ± 1.13	4	S
Beyaz Üzüm S4	Vitis vinifera	7.32 ± 1.19	2	R
Beyaz Üzüm S5	Vitis vinifera	6.76 ± 1.31	2	R
, Beyaz Üzüm S6	Vitis vinifera	12.91 ± 0.87	2	R
Beyaz Üzüm S7	Vitis vinifera	56.17 ± 2.48	5	HS
Beyaz Üzüm T1	Vitis vinifera	41.25 ± 1.76	4	S
Beyaz Üzüm T2	Vitis vinifera	38.40 ± 4.37	4	S
Beyaz Üzüm T3	Vitis vinifera	51.18 ± 0.68	5	HS
Beyaz Üzüm V2	Vitis vinifera	31.46 ± 0.93	4	S
Beyaz Üzüm(Çukurbağ)	Vitis vinifera	70.08 ± 1.52	6	HS
	Vitis vinifera	62.28 ± 1.27	5	HS
Boğazkere	-		2	R
Bulut Course (Cocit)	Vitis vinifera Vitis vinifera	7.83 ± 0.81		
Çavuş (Geçit)		80.50 ± 0.72	6	HS
Çavuş (Koçkar)	Vitis vinifera	10.81 ± 0.95	2	R
Çavuş (Yukarıdere)	Vitis vinifera	56.49 ± 1.71	5	HS
Çavuş(Bayırbağ)	Vitis vinifera	11.79 ± 1.13	2	R
Çayra Üzümü	Vitis vinifera	20.84 ± 1.50	3	R
Çekirdeksiz Beyaz	Vitis vinifera	9.37 ± 3.56	2	R
Çekirdeksiz Kara Üzüm	Vitis vinifera	58.88 ± 1.09	5	HS
Çekirdeksiz Kırmızı Üzüm	Vitis vinifera	58.50 ± 0.87	5	HS
Çekirdeksiz Kişmiş	Vitis vinifera	60.14 ± 0.78	5	HS
Çekirdeksiz Sarı Üzüm	Vitis vinifera	72.49 ± 0.67	6	HS
Çemiç 1	Vitis vinifera	52.25 ± 3.75	5	HS
Çemiç-2	Vitis vinifera	10.29 ± 1.09	2	R

 Çemiç-2
 Vitis vinifera

 HR-Highly resistant, R-Resistant, S-Sensitive, HS-Highly sensitive

Genotypes	Species Name	Powdery Mildew Disease Severity	Disease Scale Value	Disease Susceptibility
		(%)		Level
Çiğitsiz Üzüm	Vitis vinifera	73.92 ± 2.24	6	HS
Çiklep	Vitis vinifera	59.05 ± 1.92	5	HS
Direjik	Vitis vinifera	61.74 ± 1.67	5	HS
Ekber Üzümü	Vitis vinifera	53.70 ± 2.23	5	HS
Elhakkı	Vitis vinifera	64.31 ± 0.42	5	HS
Emceoğlu	Vitis vinifera	64.59 ± 0.74	5	HS
Ergan Üzümü	Vitis vinifera	43.04 ± 1.47	4	S
Erkenci Çavuş	Vitis vinifera	61.69 ± 0.91	5	HS
Eskibeyli Siyah Üzüm	Vitis vinifera	52.82 ± 3.57	5	HS
Gedikli Ağın Beyazı	Vitis vinifera	29.98 ± 1.33	3	S
Gedikli Beyaz Üzüm	Vitis vinifera	16.22 ± 1.39	3	R
Gedikli Siyah Üzüm	Vitis vinifera	30.80 ± 0.98	4	S
Gelin Parmağı	Vitis vinifera	75.65 ± 0.85	6	HS
Gineş	Vitis vinifera	5.54 ± 1.58	2	R
Gökgolot	Vitis vinifera	66.84 ± 1.28	6	HS
Gül Üzümü	Vitis vinifera	41.18 ± 2.39	4	S
Gümüş Beyazı	Vitis vinifera	38.54 ± 6.65	4	S
Güz İstanbul	Vitis vinifera	8.29 ± 0.85	2	R
Hacı Tesbihi	Vitis vinifera	65.48 ± 2.46	6	HS
Hanım Göbeği	Vitis vinifera	57.59 ± 0.93	5	HS
Harthul	Vitis vinifera	31.20 ± 0.99	4	S
Hasani-1	Vitis vinifera	71.52 ± 0.96	6	HS
Hasani-2	Vitis vinifera	22.61 ± 0.74	3	R
Hathul	Vitis vinifera	8.72 ± 2.01	2	R
Hatun Parmağı	Vitis vinifera	70.70 ± 4.97	6	HS
Hatun Parmağı(Olur)	Vitis vinifera	39.83 ± 0.39	4	S
Hedfi	Vitis vinifera	48.32 ± 1.65	5	S
Hemrani	Vitis vinifera	69.55 ± 1.07	6	HS
Herci	Vitis vinifera	60.64 ± 0.52	5	HS
Heseni	Vitis vinifera	19.09 ± 1.93	3	R
Hocabaş	Vitis vinifera	41.95 ± 2.32	4	S
İnce Beyaz	Vitis vinifera	73.30 ± 2.13	6	HS
İnek Memesi	Vitis vinifera	57.03 ± 0.79	5	HS
İri At Memesi	Vitis vinifera	14.26 ± 2.19	2	R
İri Keçi Memesi	Vitis vinifera	33.47 ± 1.79	4	S
İsabella 1	Vitis labrusca	3.88 ± 1.25	1	HR
İzabella-2	Vitis labrusca	4.03 ± 1.27	1	HR
İzmir Siyahı	Vitis vinifera	63.42 ± 1.80	5	HS
, Kabarcık	Vitis vinifera	63.00 ± 1.94	5	HS
Kabuğu Yuka	Vitis vinifera	28.16 ± 0.77	3	S
Kalduk	Vitis vinifera	58.57 ± 0.96	5	HS
Kamik	Vitis vinifera	71.76 ± 0.49	6	HS
Kara Gahet	Vitis vinifera	45.05 ± 2.20	5	S
Kara Menüşke	Vitis vinifera	43.57 ± 9.56	4	S
Kara Üzüm	Vitis vinifera	43.20 ± 1.35	4	S

Genotypes	Species Name	Powdery Mildew Disease Severity (%)	Disease Scale Value	Disease Susceptibility Level
Karaeznek	Vitis vinifera	7.18 ± 1.06	2	R
Karaeznek 2	Vitis vinifera	51.31 ± 1.30	5	HS
Karakabarcık	Vitis vinifera	47.51 ± 1.64	5	S
Karul	Vitis vinifera	19.35 ± 3.96	3	R
Keçi Memesi	Vitis vinifera	6.40 ± 0.96	2	R
Keleş	Vitis vinifera	30.84 ± 0.46	4	S
Kerfoki	Vitis vinifera	49.83 ± 0.35	5	S
Kerimgandi	Vitis vinifera	6.20 ± 1.39	2	R
Kerkuş	Vitis vinifera	53.22 ± 1.00	5	HS
Keten Gömlek	Vitis vinifera	42.51 ± 1.05	4	S
Kırmızı İstanbul	Vitis vinifera	29.73 ± 2.22	3	S
Kırmızı Keçi Memesi	Vitis vinifera	37.63 ± 1.08	4	S
Kırmızı Üzüm T1	Vitis vinifera	64.12 ± 1.14	5	HS
Kırmızı Üzüm T2	Vitis vinifera	42.75 ± 1.14	4	S
Kırmızı Üzüm T3	Vitis vinifera	58.49 ± 1.43	5	HS
Kırmızı Üzüm (Eskibeyli)	Vitis vinifera	71.37 ± 2.04	6	HS
Kışlık Beyaz	Vitis vinifera	68.71 ± 0.94	6	HS
Kızıl Türlü	Vitis vinifera	53.27 ± 2.08	5	HS
Kızıl Üzüm (Erzincan)	Vitis vinifera	69.37 ± 0.81	6	HS
Kızıl Üzüm (Erciş)	Vitis vinifera	71.19 ± 0.86	6	HS
Kirfok	Vitis vinifera	46.97 ± 1.19	5	S
Kirli Şerife	Vitis vinifera	21.77 ± 0.72	3	R
Kişmiş Üzümü	Vitis vinifera	30.32 ± 1.03	4	S
Kokulu Üzüm	Vitis labrusca	7.45 ± 0.91	2	R
Korostol	Vitis vinifera	16.94 ± 2.42	3	R
Koyun Gözü	Vitis vinifera	46.95 ± 0.66	5	S
, Kuduruş	Vitis vinifera	7.81 ± 1.29	2	R
Kuş Üzümü	Vitis vinifera	23.49 ± 2.73	3	R
Kuzu Kuyruğu	Vitis vinifera	24.64 ± 0.25	3	R
Laz Üzümü	Vitis labrusca	8.04 ± 1.54	2	R
Mazlumani	Vitis vinifera	53.38 ± 1.12	5	HS
Mazruma	Vitis vinifera	43.51 ± 1.40	4	S
Vehmetoğlu	Vitis vinifera	44.02 ± 0.61	4	S
Veneşker	Vitis vinifera	64.35 ± 4.37	5	HS
Merzune M1	Vitis vinifera	5.15 ± 0.57	2	R
Merzune M2	Vitis vinifera	36.96 ± 0.81	4	S
Vesebbe	Vitis vinifera	63.40 ± 0.58	5	HS
Mesma	Vitis vinifera	31.50 ± 0.45	4	S
Mezarlık	Vitis vinifera	19.62 ± 0.59	3	R
Mıh Üzümü	Vitis vinifera	51.98 ± 0.50	5	HS
Miskali	Vitis vinifera	51.59 ± 0.76	5	HS
Mor Amasya	Vitis vinifera	53.23 ± 0.73	5	HS
Müskü	Vitis vinifera	51.58 ± 1.18	5	HS
Nanebur	Vitis vinifera	22.67 ± 1.02	3	R
Nar Tanesi	Vitis vinifera	53.44 ± 5.08	5	HS

Genotypes	Species Name	Powdery Mildew Disease Severity (%)	Disease Scale Value	Disease Susceptibility Level
Nörgah	Vitis vinifera	31.36 ± 0.94	4	S
Papaz Üzümü	Vitis vinifera	34.64 ± 2.97	4	S
Pembe Üzüm T1	Vitis vinifera	54.65 ± 1.95	5	HS
Pembe Üzüm T2	Vitis vinifera	44.71 ± 0.33	4	S
Pembenaz	Vitis vinifera	29.29 ± 1.72	3	S
Pırtik	Vitis vinifera	11.18 ± 2.25	2	R
Sarı Golot	Vitis vinifera	46.98 ± 1.29	5	S
Sarı Yezendayı	Vitis vinifera	54.47 ± 1.81	5	HS
, Sarmalık Üzüm	Vitis vinifera	37.99 ± 0.49	4	S
	subsp. <i>sylvestris</i>	26.20 + 0.24		6
Selüke Pembe Üzüm	Vitis vinifera	36.28 ± 0.34	4	S
Selüke Yeşil Üzüm	Vitis vinifera	36.30 ± 0.16	4	S
Servi Beyaz Gevrek	Vitis vinifera	86.81 ± 1.51	7	HS
Servi Beyaz Üzüm	Vitis vinifera	48.75 ± 3.05	5	S
Servi Kara Üzüm	Vitis vinifera	30.69 ± 0.58	4	S
Servi Lice Üzümü	Vitis vinifera	46.45 ± 1.00	5	S
Servi Mor Erkenci	Vitis vinifera	66.43 ± 1.40	6	HS
Servi Pembe Üzüm	Vitis vinifera	75.30 ± 1.33	6	HS
Siyah Hatun Parmağı	Vitis vinifera	75.21 ± 0.84	6	HS
Siyah Mayhoş Üzüm	Vitis vinifera	7.62 ± 0.51	2	R
Siyah Şarap Mayası	Vitis vinifera	40.77 ± 2.74	4	S
Siyah Şire	Vitis vinifera	11.82 ± 0.41	2	R
Siyah Tatlı Çekirdekli	Vitis vinifera	66.99 ± 4.12	6	HS
Siyah Turfanda	Vitis vinifera	29.24 ± 0.10	3	S
Siyah Üzüm G1	Vitis vinifera	48.74 ± 2.44	5	S
Siyah Üzüm G2	Vitis vinifera	56.35 ± 1.00	5	HS
Siyah Üzüm S1	Vitis vinifera	60.18 ± 6.16	5	HS
Siyah Üzüm S2	Vitis vinifera	44.45 ± 1.24	4	S
Siyah Üzüm T1	Vitis vinifera	68.91 ± 0.72	6	HS
Siyah Üzüm T2	Vitis vinifera	59.94 ± 0.74	5	HS
Siyah Üzüm T3	Vitis vinifera	66.13 ± 0.78	6	HS
Siyah Üzüm T4	Vitis vinifera	27.71 ± 0.90	3	S
Siyah Üzüm V1	Vitis vinifera	59.24 ± 1.17	5	HS
Siyah Üzüm V2	Vitis vinifera	42.39 ± 0.86	4	S
Siyah Üzüm V3	Vitis vinifera	22.76 ± 1.01	3	R
Siyah Üzüm V6	Vitis vinifera	44.22 ± 1.25	4	S
Siyah Üzüm V7	Vitis vinifera	44.50 ± 1.45	4	S
Siyah Üzüm(Dutluca)	Vitis vinifera	63.26 ± 2.99	5	HS
Suşehri Beyaz Üzüm	Vitis vinifera	74.57 ± 1.66	6	HS
Şafra	Vitis vinifera	87.54 ± 0.37	7	HS
Şebik Karası	Vitis vinifera	67.73 ± 1.33	6	HS
Şilfoni	Vitis vinifera	43.83 ± 1.82	4	S
Şire	Vitis vinifera	47.12 ± 5.51	5	S
Şirelik Üzüm	Vitis vinifera	66.39 ± 0.58	6	HS

Genotypes	Species Name	Powdery Mildew Disease Severity (%)	Disease Scale Value	Disease Susceptibility Level
Şitvi	Vitis vinifera	55.72 ± 0.90	5	HS
Ternebi	Vitis vinifera	52.85 ± 0.90	5	HS
Tıhmin Kabarcığı	Vitis vinifera	77.55 ± 0.91	6	HS
Tilki Kuyruğu	Vitis vinifera	7.34 ± 2.01	2	R
Tombul Üzüm	Vitis vinifera	22.59 ± 2.23	3	R
Turfanda	Vitis vinifera	7.61 ± 1.19	2	R
Tutikoğlu	Vitis vinifera	45.74 ± 0.97	5	S
Türkgözü	Vitis vinifera	43.80 ± 1.00	4	S
Tüylü Turfanda	Vitis vinifera	29.63 ± 2.00	3	S
Vaslı	Vitis vinifera	50.99 ± 0.32	5	HS
Verdani	Vitis vinifera	53.67 ± 2.35	5	HS
Yağ Üzümü	Vitis vinifera	49.74 ± 1.85	5	S
Yaz İstanbul	Vitis vinifera	46.23 ± 0.89	5	S
Yer Çemiçi	Vitis vinifera	44.40 ± 1.31	4	S
Yer Meneşgiri	Vitis vinifera	55.35 ± 1.06	5	HS
Yeşil Üzüm	Vitis vinifera	73.22 ± 2.02	6	HS
Yeşilyurt Üzümü	Vitis vinifera	70.27 ± 4.12	6	HS
Yezendayı	Vitis vinifera	72.00 ± 1.66	6	HS
Zehni	Vitis vinifera	42.50 ± 0.92	4	S
Zeyti	Vitis vinifera	41.72 ± 1.10	4	S
Karaerik	Vitis vinifera	84.31 ± 3.83	6	HS
Italia	Vitis vinifera	72.17 ± 1.78	6	HS
Kismish Vatkana	Vitis vinifera	4.46 ± 0.88	1	HR
Regent	Vitis vinifera	5.08 ± 0.42	2	R

HR-Highly resistant, R-Resistant, S-Sensitive, HS-Highly sensitive

CONCLUSIONS

This study is the first research aimed at determining the tolerance and susceptibility levels of 203 local grape varieties/genotypes collected from the Eastern Anatolia Region against powdery mildew disease. The findings obtained have revealed the interactions of different genotypes with the *Erysiphe necator* pathogen under natural inoculation conditions. Three different *Vitis* species were examined in the study, and it was determined that *Vitis labrusca* varieties were more resistant than *Vitis vinifera* varieties. In particular, *Vitis vinifera* subsp. *sylvestris* (Sarmalık Üzüm) was calculated to be susceptible at 37.99%. The powdery mildew severity of the genotypes examined varied between 3.88 (Izabelle-1) and 90.07 (Beyaz Üzüm S1), indicating that different grapevine species exhibit varying degrees of susceptibility to powdery mildew. Among 197 different genotypes of *V. vinifera*, 50 of them, and all of the *V. labrusca* genotypes exhibited a disease severity of less than 30%. The grape genotypes identified as resistant to the disease could support the development of new varieties with improved resistance to *Erysiphe necator*, contributing to greater diversity in grape cultivation.

Our recommendations for future studies are to evaluate more genotypes and repeat similar experiments under different climatic conditions. Furthermore, the use of resistant genotypes should be encouraged when developing disease management strategies. Our recommendations for future studies in the same field and on the same subject include the performance of comprehensive studies including physiological, biochemical and transcriptomic analyses. Such studies are crucial for a better understanding and deciphering of the complex interactions of resistance genes. Furthermore, future evaluations of these genotypes need to be conducted either under field conditions or in controlled environments. Appropriate experimental setups are required to validate resistance traits and ensure the practical applicability of these genotypes in global viticulture practices.

In conclusion, this study provides significant insights into the resistance of local grape varieties/genotypes cultivated in the Eastern Anatolia Region to *E. necator* and presents the first evidence of resistance to *E. necator*.

Acknowledgements

This research was funded by the General Directorate of Agricultural Research and Policies (Project No. TAGEM/BBAD/T1/23/A1/P2/6608) and is a part of a doctoral study titled "Determination of Tolerance Levels of Genotypes Found in the Eastern Anatolia Region Grapevine Field Gene Bank to Powdery Mildew (*Erysiphe necator*) and Downy Mildew (*Plasmopara viticola*).

Declaration of interests

The authors of this article declare that there are no conflicts of interest.

Author Contributions

The authors declare that they have contributed equally to this article.

ORCID

1st Author b http://orcid.org/0000-0003-2406-9929 2st Author b http://orcid.org/0000-0002-5344-5367 3st Author http://orcid.org/0000-0002-0811-8228 4st Author b http://orcid.org/0000-0001-7315-202X

Article History

Submission received:	17.12.2024
Revised:	16.02.2025
Accepted:	19.02.2025

REFERENCES

- Ağaoğlu, Y. S. (1986). Türkiye'de bağcılık alanında yapılmakta olan ıslah çalışmalarının bugünkü durumu ve ileriye yönelik öneriler. TÜBİTAK Bitki Islahı Sempozyumu Özetleri: 30-31. 15-17 Ekim 1986, İzmir
- Aşçi, S. D., Tangolar, S., Kazan, K., Özmen, C. Y., Öktem, M., Kibar, U., ... Ergül, A. (2021). Evaluation of powdery mildew resistance of a diverse set of grape cultivars and testing the association between powdery mildew resistance and PR gene expression. *Turkish Journal of Agriculture and Forestry*, *45*(3), 273-284.
- Atak, A., Göksel, Z. (2019). Determination of some phenolic substance changes in cultivar/genotypes of different *Vitis* species.
- Atak, A., Şen, A. (2021). A grape breeding programme using different *Vitis* species. *Plant Breeding*, *140*(6), 1136-1149.
- Atak, A., Göksel, Z., Çelik, H. (2017). Relations between downy/powdery mildew diseases and some phenolic compounds in *Vitis* spp. *Turkish Journal of Agriculture and Forestry*, *41*(1), 69-81.
- Baki, S. (2023). Melez asma genotiplerinin bazı ampelografik özellikleri ile fungal hastalıklara dayanıklılıklarının belirlenmesi ve çeşit adaylarının tespit edilmesi. (Doktora Tezi), Ege Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Ana Bilim Dalı, İzmir, Türkiye
- Boso Alonso, S., Kassemeyer, H. H. (2008). Different susceptibility of European grapevine cultivars for downy mildew.
- Bozkurt, A. (2023). Sarmalık yaprak üretimine yönelik küllemeye toleranslı yeni üzüm çeşitlerinin geliştirilmesi. (Doktora Tezi), Tokat Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü, Bahçe Bitkileri Ana Bilim Dalı, Bağ Yetiştirme ve Islahı Bilim Dalı, Tokat, Türkiye
- Bozkurt, A., Yağcı, A. (2024). Bazı Melez Asma Genotiplerinin Küllemeye Duyarlılıklarının Küllemeye Dayanıklılıkla İlişkili Bazı Markörler ile İncelenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 11(2), 506-513.
- Bozkurt, A., Yağcı, A., Akgül, D. S. (2023). Bazı Üzüm Çeşitlerinin Külleme Enfeksiyonlarına Duyarlılığının Zamana Bağlı Değişimi. Bahçe, 52(Özel Sayı 1), 300-308.
- Çelik, H., Ağaoğlu, Y. S., Fidan, Y., Marasalı, B. ve Söylemezoğlu, G. (1998). Genel bağcılık. Sun fidan A.Ş., Mesleki Kitaplar Serisi:1., 253 s., Ankara
- Eibach, R., Töpfer, R. (2015). Traditional grapevine breeding techniques. In Grapevine breeding programs for the wine industry (pp. 3-22). Woodhead Publishing.
- Feechan, A., Anderson, C., Torregrosa, L., Jermakow, A., Mestre, P., Wiedemann-Merdinoglu, S., ... Dry, I. B. (2013). Genetic dissection of a TIR-NB-LRR locus from the wild N orth A merican grapevine species M uscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. *The Plant Journal*, *76* (4), 661-674.

- Kunova, A., Pizzatti, C., Saracchi, M., Pasquali, M., Cortesi, P. (2021). Grapevine powdery mildew: fungicides for its management and advances in molecular detection of markers associated with resistance. Microorganisms, 9(7), 1541.
- Maddalena, G., Marone Fassolo, E., Bianco, P. A., Toffolatti, S. L. (2023). Disease forecasting for the rational management of grapevine mildews in the Chianti Bio-District (Tuscany). Plants, 12(2), 285.
- Mwamahonje, A., Kilambo, D., Mrosso, L., Feyissa, T. (2015). Genetic diversity of grapevine (*Vitis vinifera* L.) from Tanzania as revealed by ISSR markers.
- Pimentel, D., Amaro, R., Erban, A., Mauri, N., Soares, F., Rego, C., ... Fortes, A. M. (2021). Transcriptional, hormonal, and metabolic changes in susceptible grape berries under powdery mildew infection. Journal of Experimental Botany, 72(18), 6544-6569.

Reisch, B. I., Owens, C. L., Cousins, P. S. (2012). Grape. Fruit breeding, 225-262.

- Sosa-Zuniga, V., Vidal Valenzuela, Á., Barba, P., Espinoza Cancino, C., Romero-Romero, J. L., & Arce-Johnson, P. (2022). Powdery mildew resistance genes in vines: An opportunity to achieve a more sustainable viticulture. Pathogens, 11(6), 703.
- Townsend, G.K., Heuberger, J.W. (1943). Methods for estimating losses caused by diseases in fungicide experiments. Plant Dis. Reptr. 27, 340-343.
- Wan, Y., Schwaninger, H., He, P., Wang, Y. (2007). Çin yabani üzümlerinde külleme ve tüylü küfe karşı direncin karşılaştırılması. Vitis-Geilweilerhof-, 46 (3), 132.
- Wang, Y., Li, Y., He, P., Chen, J., Lamikanra, O., Lu, J., (1995). Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis 34, 159-164.
- Yağcı, A., Daler, S. (2023). Amerikan Asma Anaçlarından Elde Edilen F1 Hibrit Tohumlarının Çimlenme Özellikleri Üzerine GA3 Uygulamalarının Etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(4), 767-777.
- Yildirim, Z., Atak, A., & Akkurt, M. (2019). Determination of downy and powdery mildew resistance of some Vitis spp. *Ciencia e Tecnica Vitivinicola*, *34*(1).
- Yu, H., Li, H., Wei, R., Cheng, G., Zhou, Y., Liu, J., ... Zhou, S. (2022). Widely targeted metabolomics profiling reveals the effect of powdery mildew on wine grape varieties with different levels of tolerance to the disease. *Foods*, *11*(16), 2461.