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Abstract. Principal Component Analysis (PCA) is a commonly em-
ployed technique in industrial systems for process monitoring and fault
diagnosis, owing to its capability to efficiently process large datasets.
Traditionally, it is applied to single-valued variables, where critical in-
formation can be lost in real scenarios with data uncertainties. Inter-
valvalued PCA methods like Symbolic Covariance PCA (SCPCA) and
Complete Information PCA (CIPCA) have been developed to enhance
fault detection by incorporating data uncertainties in the PCA model.
This paper presents a novel adaptation of SCPCA for detecting incer-
tain sensor faults, marking the first correct implementation of SCPCA
for fault detection and isolation (FDI). It aims to compare the perfor-
mance of the NewSCPCA with that of CIPCA, evaluating its reliability
and accuracy in detecting sensor faults in a greenhouse prototype system.

Keywords: Fault Detection, · Symbolic Covariance PCA · Complete
Information PCA · Interval Data.
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1 Introduction

Principal Component Analysis (PCA) is a widely adopted technique for process
moni-toring and fault diagnosis in industrial systems. Its popularity stems from
its ability to efficiently manage and analyze large volumes of correlated process
data [1][2]. PCA simplifies the data into a lower-dimensional representation by
extracting linear relationships from high-dimensional datasets without losing
critical information. This reduced representation, known as the PCA model,
serves as a powerful tool for detecting anomalies and diagnosing faults within
the system.

Traditionally, PCA has been applied to single-valued variables, where each
data point is represented by a specific value [3]. However, this simplification
can lead to a significant loss of information, particularly in real-world scenarios
where data is often approximate and stained with uncertainties. To address this
limitation, researchers have proposed representing the measurements as intervals
to include process data and its inherent uncertainties [4][5].

Extending PCA to handle interval data involves developing new algorithms
capable of dealing with these uncertainties. Various interval-valued PCA ap-
proaches have been introduced, such as Vertices PCA (VPCA), Centers PCA
(CPCA) [6], Midpoints-Radii PCA (MRPCA) [7], Symbolic Covariance PCA
(SCPCA) [8][9], and Complete Information PCA (CIPCA) [10]. These methods
improve the robustness of fault detection in uncertain and complex industrial
systems, thereby preventing false detections and maintaining sensitivity to de-
viations [11].

In this paper, we present a new adaptation of the SCPCA approach to de-
tect sensor faults in the presence of uncertainties. The sample covariance matrix
function calculated by SCPCA does not respect the properties of a classical
covariance matrix, as discussed in [12] This limitation significantly affects the
model’s performance in detecting sensor faults. This work proposes a new version
of the SCPCA technique, which maintains the mathematical properties of classi-
cal PCA model for detecting and isolating (FDI) sensor faults. The effectiveness
of the NewSCPCA technique will be evaluated by comparing its performance to
the CIPCA and conventional SCPCA approaches. The comparison will focus on
the reliability and accuracy of sensor fault detection in the greenhouse prototype
system.

This paper is organized as follows. Section.2 provides the theoretical founda-
tion of PCA as a multivariate statistical tool for process monitoring. In section.3,
we present the modeling of interval data using new and conventional SCPCA and
CIPCA approaches. Section. 4 addresses the index fault detection used in this
study. Experimental results of the comparison study between these three models
for fault detection of the greenhouse prototype system are given in Section. 5.
Finally, conclusions are given in Section. 6.
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2 Classical PCA Model

PCA aims to identify the axis that captures the most information in the process
data. This is achieved by calculating uncorrelated linear combinations of the
original variables [13].

We consider a high dimensional data matrix X = {x1, x2, . . . xm} ∈ Rn×m

, where n represents the number of samples and m represents the number of
process variables collected under normal operating conditions. The process data
matrix is supposed normalized to zero mean and unit variance. For score process
data matrix, T = {t1, t2, . . . xl} ∈ Rn×l is the low-dimensional output matrix,
which consists of n samples of l independent components. The transformation
matrix p̂ = {p1, p2, . . . pl} ∈ Rm×l contains orthogonal vectors pi. The projection
of the original high-dimensional data X into the reduced-dimension output T is
expressed by the formula:

T = XP̂ (1)

With, P̂ is obtained from the eigendecomposition equation of covariance ma-
trix. The sample covariance matrix, COV ∈ Rm×m, is defined as:

COV =
1

n− 1
XTX = PTΛP,PTP = I (2)

Where I ∈ Rm×m is an identical matrix, P ∈ Rm×m loading eigenvectors of
COV , and Λ is a diagonal matrix containing eigenvalues of COV . The sample
correlation function between Xj and Xj′ is given as follows:

Corjj′ =
Covjj′

σjσj′
(3)

Where, the Covjj′ equals Corjj′ when data is normalized to zeros mean and
unit variance.

The first l eigenvectors that allow the generation of a matrix P̂ with the
highest variances are chosen using the Variance of Reconstruction Error (VRE)
method. This method is a pioneering approach for selecting the optimal number
of l [13] .

3 Modeling Uncertainties as Intervals

3.1 Interval-Valued Data Description

Measurements received from sensors are never completely precise and are al-
ways subject to a margin of error, known as uncertainty. This means that they
cannot be perfectly accurate. When constructing a robust monitoring model, it
is crucial to take into account the uncertainties involved in order to effectively
detect potential failures [4]. One way to handle uncertainties in process data is
to describe the data using intervals instead of representing it with single values.
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An interval-valued variable Xj(k) is a type of variable that is characterized by
having its values constrained within a range defined by two bounds: a minimum
value and a maximum value. This can be represented mathematically as:

[xj(k)] = [xj(k), x̄j(k)] (4)

The interval width is determined by the sensor accuracy (∆) provided by
the manu-facturer. Construct the interval data matrix [X], where each entry
represents an intervalvalued sample as:

[X] =



[x1(1)] . . . [xj(1)] . . . [xm(1)]
...

...
...

[x1(k)] [xj(k)] [xm(k)]
...

...
...

[x1(n)] . . . [xj(n)] . . . [xm(n)]

 (5)

knowing that, j = 1, . . . ,m is the number of sensors or variables, k = 1, . . . , n
is the number of observations, and x̄j(k) < xj(k). Similar to classical PCA, nor-
malizing the data is necessary before applying any In-terval PCA (IPCA) ap-
proach for modeling and monitoring the process [5]. The authors in [3] provided
the mean and variance values of the interval variable as follows:

mj =
1

n

n∑
K=1

(
xj(k) + x̄j(k)

)
2

,

σ2
j =

1

3n

n∑
k=1

(
x2
j (k) + xj(k)x̄j(k) + x̄2

j (k)
)
− (mj)

2

(6)

Hence, the normalization process at instant k for the interval variable is
performed by [14]: [

xj(k)−mj

σj
,
x̄j(k)−mj

σj

]
(7)

3.2 Interval PCA Model

When classical PCA is applied to interval data, it can result in information
loss. This limitation necessitates extending classical PCA to the Interval case.
The extension for handling interval data involves adapting only the method of
calculating the covariance function. However, the structure of the covariance
matrix and its eigen decomposition into eigenvalues and eigenvectors remain
unchanged. Therefore, the mathematical properties that are considered in the
classical model should be respected in the interval PCA. In this subsection, we
will discuss the most well-known approaches to Interval PCA (IPCA), including
Complete Information PCA (CIPCA) and Symbolic Covari-ance PCA (SCPCA),
along with their limitations.
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Problem Statement The covariance function defined by the classical PCA
technique considers two mathe-matical properties. These proprieties appear when
we have data normalized to zeros mean and unit variance. Supposing xj and xj′

two normalized variables, Covjj′ is the covariance function between them, is
given by:

Covjj′ =
1

n

n∑
k=1

xj(k)xj′(k) (8)

The first properties that should be respected include ensuring that the quan-
tity of the Covjj′ is equivalent to a value that falls within the range of -1 to
1. The second one is when xj is the same of x′

j , the covariance function Covjj′

become equivalent to the variance function, given by:

Covjj′ = σ2
junit =

1

n

n∑
k=1

((xj(k))
2 = 1 (9)

The covariance function developed by SCPCA model does not allow to re-
spect the mathematical properties of the classical PCA for the sample covariance
matrix when data is normalized. Specifically, the diagonal elements of the covari-
ance matrix do not align with the unit variance. As a result, the total variance
of the principal components does not equal the sum variance of the input data,
as mentioned in [12]. Additionally, the other covariance matrix elements can
have values outside the range of −1 to 1. This drawback limits the application
of this method for real-world applications and can lead to misdiagnosis in fault
prediction cases.

Complete Information PCA One of the developed IPCA approaches is a
method known as Complete Information PCA (CIPCA), which was introduced
by [10]. This approach considers each interval data unit in Eq.4 as an infinitely
dense point uniformly distributed within it. It defines the covariance matrix using
the interval data’s inner product and squared norm operator. The covariance
matrix, denoted

∑
cipca, of process data matrix [X], is computed by:

Σcipca =
1

n


⟨[x1], [x1]⟩ ⟨[x1], [x2]⟩ . . . ⟨[x2], [xm]⟩
⟨[x2], [x1]⟩ ⟨[x2], [x2]⟩ . . . ⟨[x1], [xm]⟩

...
...

. . .
...

⟨[xm], [x1]⟩ ⟨[xm], [x2]⟩ . . . ⟨[xm], [xm]⟩

 (10)

Where,
For j ̸= j′, the inner product is given by:

Covjj′ = ⟨[xj ], [xj′ ]⟩ =
n∑

k=1

⟨[xj(k)], [xj′(k)]⟩ (11)

with,
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⟨[xj(k)], [xj′(k)]⟩ =
1

4
(xj + x̄j(xi(k) + x̄i(k)) (12)

For j = j′, the squared norm is defined as:

Covjj′ = ||[xj ]||2 = ⟨[xj(k)], [xj(k)]⟩ =
n∑

k=1

||[xj(k)]||2 (13)

with,

||[xk(k)]||2 =
1

3

(
x2
j (k) + xj(k)x̄j(k) + x̄2

j (k)
)

(14)

The sample correlation function between xj and xj′ is defined as:

Corjj′ =
Covjj′

σjσj′
(15)

Where, when data is normalized, the Covjj′ and Corjj′ are equal.
The CIPCA method determines interval principal components [tk](k = 1, 2, . . . , l),

using a linear combination algorithm for interval-valued variables [tj ](j = 1, 2, . . . ,m).
This algorithm was originally developed by [15] and requires solving decompo-
sition equation of the covariance/correlation matrix obtained. More details are
given in [16].

Symbolic Covariance PCA The total use of the information contained within
intervals using IPCA approaches leads to good modeling and improving the
performance of the monitoring and robust diagnosis of sensor faults. Symbolic
covariance PCA (SCPCA) is one of the IPCA approaches that addressed this
issue, which was developed by [8,9]. This approach considers that the sample
variance in Eq. 6 of interval data representation is a function of the total sum
of squares (SST ), and proves that the SST can be decomposed into the sum of
the within variation, denoted SSW , and the between variation, denoted SSB:

nσ2
j = SSTj = SSWj + SSBj (16)

Assuming that values within an interval are uniformly distributed across the
intervals. The internal variation measured by the SSWj can be defined as:

SSWj =
1

n

n∑
k=1

(x̄j(k)− xj(k))
2

12
(17)

And the SSBj describes the variation of the interval midpoints is given by:

SSBj =

n∑
k=1

(xj(k) + x̄j(k)

2
−mj

)2
(18)

In a similar way, when j ̸= j′, the authors in [8] extended the Eqs. 16, 17,
and 18 to bivariate case. Consequently, the total sum of products SPT is the
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sum of the within sum of products, SPW , and the between sum of products,
SPT . The relation between sample covariance Cov and SPT is given as follows:

nCovjj′ = SPTjj′ = SPWjj′ + SPBjj′ (19)

where,

SPWjj′ =

n∑
k=1

(
x̄j(k)− xj(k)

)(
x̄j′(k)− xj′(k)

)
12

(20)

SPBjj′ =

n∑
k=1

((
xj(k) + x̄j(k)

)
2

−mj

)((
xj′(k) + x̄j′(k)

)
2

−mj′

)
(21)

For Eqs. 19 20, and 21, the sample covariance function Covjj′ is given by:

Covjj′ =
1

6n

n∑
k=1

2(xj(k)−mj)(xj′(k)−mj′) + (xj(k)−mj)(xj′(k)−mj′)+

(xj(k)−mj)(xj′(k)−mj′) + 2(xj(k)−mj)(xj′(k)−mj′) (22)

The sample covariance matrix Σscpcais given as follows:

Σscpca =


Cov11 Cov12 . . . Cov1m
Cov21 Cov22 . . . Cov2m

...
...

. . .
...

Covm1 Covm2 . . . Covmm

 (23)

The sample correlation function between two variables xj and xj′ is computed
as:

Corjj′ =
Covjj′

σjσj′
(24)

Where, when data is normalized, the Covjj′ and Corjj′ are equivalent.
SCPCA constructs the interval principal components [tk](k = 1, 2, . . . , l) that

max-imize the sample covariance matrix defined in Eq. 23, through calculating
uncorre-lated linear combinations of the input data matrix [xJ ](j = 1, 2, . . . ,m).
Let P = (p1, p2, . . . , pm) be eigenvectors of Σscpca, and Λ = [λ1, . . . , λm] its cor-
responding eigen-values. The transformation linear of higher-dimensional matrix
[X] into lower-dimen-sional matrix [T ] is performed by:

{
tj(k) =

∑m
i=1 pijxi(k)

t̄j(k) =
∑m

i=1 pij x̄i(k)
(25)

The estimated interval variables for the first l components are provided by:
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{
xj(k) =

∑m
i=1 Cijxi(k)

x̄j(k) =
∑m

i=1 Cij x̄i(k)
(26)

Where, Cij is the ith element of the jth column of matrix C = P̂ P̂T .

Proposed Symbolic Covariance PCA The newly adapted SCPCA method
aims to overcome the limitations of the SCPCA approach when detecting sensor
faults in the presence of uncertainties. The proposed method supposes the data
is normalized to zero means and unit variance in Eqs. 17 and 18. While Eq. 17
remains unchanged, Eq. 18 can be rewritten as follows:

SSBj =

n∑
k=1

(xj(k) + x̄j(k)

2

)2
(27)

And between sum of products SPB becomes given by:

SPBjj′ =

n∑
k=1

((
xj(k) + x̄j(k)

2

))((xj′(k) + x̄j′(k)
)

2

)
(28)

Therefore, the sample covariance function Covjj′ in Eq. 22 becomes:

Covjj′ =
1

n

( n∑
k=1

(
x̄j(k)− xj(k)

)(
x̄j′(k)− xj′(k)

)
12

+

n∑
k=1

(
xj(k)− x̄j(k)

)(
xj′(k)− x̄j′(k)

)
4

)
(29)

Knowing that, when j = j′, Covjj′ = Covjj = σ2
j unit, and when j ̸= j′, −1 ≤

Covjj′ ≤ +1.
The sample covariance matrix Σscpca in Eq. 23 becomes as follows:

Σscpca =


σ2

1 unit Cov12 . . . Cov1m
Cov21 σ2

2 unit . . . Cov2m
...

...
. . .

...
Covm1 Covm2 . . . σ2

m unit

 (30)

Note that the sample covariance matrix contains the same values as the
sample correlation matrix elements, assuming that data is normalized.

The proposed SCPCA determines the interval principal components [tk](k =
1, 2, . . . , l) as:

{
tj(k) =

∑m
i=1 pijxi(k)

t̄j(k) =
∑m

i=1 pij x̄i(k)
(31)
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Where, P = (p1, p2, . . . pm) is eigenvectors of Σscpca, and Λ = [λ1, . . . , λm]
representing their associated eigenvalues.

The interval variables for the first l components are estimated as:{
x̂j(k) =

∑m
i=1 Cijxi(k)

ˆ̄xj(k) =
∑m

i=1 Cij x̄i(k)
(32)

Where, Cij refers to the ith element of the jth column of matrix C = P̂ P̂T .

4 Fault Detection

Once the PCA model representing the normal behavior of the process is estab-
lished, various statistics indices are used for the monitoring phase. The most
commonly used statistic for anomaly detection is the squared prediction error
(SPE) [16]. At instant k, SPE is computed as follows:

SPE(k) = ||x(k)− x̂(k)||2 =

m∑
J=1

(
ej(k)

)2 (33)

Normal behavior of the process must be verified: SPE ≤ δ2.
Where δ2 is threshold of SPE, which can be defined as [17]:

δ2α = θ1

[
h0cα

√
2θ2

θ1
+ 1 +

θ2h0(h0 − 1)

θ21

]
(34)

With,θ =
∑2

k=l+1 λ
,
ki = 1, 2, 3, h0 = 2θ1θ3

3θ 2
2

and cα represents the confidence
thresh-old limit (1−α) in the case of a normal distribution. When dealing with
interval-valued data, the indicator SPE must be adapted to fit the interval-valued
PCA model. This means extending the statistical measure SPE to appropriately
handle the variability structure within intervals. The SPE for interval data is
defined as follows:

[SPE] = {SPE, SPE} (35)

Where,

SPE(k) = ||x(k)− x̂(k)||2 =

m∑
J=1

bigl(ej(k)
)2 (36)

And,

SPE(k) = ||x̄(k)− ˆ̄x(k)||2 =

m∑
J=1

(
ej(k)

)2
(37)

Where,
SPE and SPE result from applying traditional SPE to the lower and upper

bounds of interval data, respectively.
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The authors in [4] were introduced a new statistical index for interval fault
detection called interval squared prediction error (ISPE). This index is based on
the squared norm of the interval. The ISPE is calculated at instant k as follows:

ISPE(k) = ||[e(k)]||2 =

m∑
j=1

||[ej(k)]||2 (38)

Where,

||[ej(k)]||2 =
1

3

(
e2j (k) + ej(k)ēj(k) + ē2j (k)

)
(39)

5 Application to Greenhouse Prototype System

This section outlines the greenhouse prototype system and identifies the key
signals used for fault detection. It details the datasets collected, including their
types and sizes, which were used to develop and validate the performance of
NewSCPCA and CIPCA methods for monitoring the system.

5.1 Greenhouse Prototype Description

This greenhouse prototype was constructed and developed by [18] . It was located
in M’ziraa, Biskra province, Algeria (34°4319.7" N 6°1739.2" E), an area known
for its mild desert winters. The structure features a simple gable design with a
single span and wooden framework, covered with 0.2 mm thick polyethylene film
(shown in Figure 1). The facility serves as a nursery—a specialized greenhouse
type designed to nurture seedlings until they’re ready for transplanting. Inside,
the nursery has a raised wooden platform housing three seedling trays (45×20
cm) filled with prepared soil.

Fig. 1: External and internal views of the greenhouse prototype.
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The prototype’s data acquisition hardware system used in this prototype is
based on an Arduino Mega 2560 programmable board, which functions as the
central collection point for all sensor measurements. These sensors are designed
to gather sufficient information about the current state of the greenhouse’s in-
ternal and external climate. The monitoring system employs multiple sensors
strategically placed inside and outside the greenhouse. Inside, two DHT22 sen-
sors are mounted at 0.3 meters height to measure air temperature, while their
outdoors counterpart is positioned at 1.25 meters. Solar irradiation is monitored
by a cost-effective pyranometer using a BPW34 silicon photodiode, installed ex-
ternally at 1.4 meters. A DC motor-based anemometer is mounted outside at
1.55 meters to measure wind conditions, and a MH-RD Rain module provides
precipitation alerts. For more details, the reader may refer to the work in [18].

5.2 Data Collection

Our database captures winter conditions over five successive days for the month
of January 2019. The measurement system operated at a frequency of one sample
per minute, resulting in a daily collection of 1440 distinct measurements.

In the CIPCA and SCPCA methods modeling process, the first 6200 samples
of X were used to construct the CIPCA and SCPCA models. The remaining
1000 samples were then used for testing. The number of sensors used in this
prototype is 9 sensors. We have chosen 7 variables among them. By considering
an uncertainty δxj that is about 10% of the range of variation in measurements
for each variable xj , we create a new interval data matrix for the process. In this
matrix, δxj serves as the radius of the data intervals, as Figure 2.

5.3 Results and Discussion

Once interval-valued data representing the prototype’s behavior is established,
the sample covariance matrices of the approaches that discussed in Section 3 are
constructed, as shown in Tables 1, 2, 3, and 4.

Table 1 shows the sample covariance matrix of the PCA model when the
data is single-valued (classical), before conversion to an interval format. The
values along the diagonal are equal to one, representing unit variance. The re-
maining elements indicate the covariance between different variables, which are
constrained between −1 and +1.
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Fig. 2: Interval data of internal temperature and external relative humidity with
their estimations using SCPCA, CIPCA, and NewSCPCA models.

Table 1: The sample covariance matrix of the classical PCA approach.
1.00 0.98 0.95 -0.87 -0.87 -0.88 0.91
0.99 1.00 0.96 -0.86 -0.87 -0.89 0.92
0.95 0.96 1.00 -0.81 -0.82 -0.93 0.83
-0.87 -0.86 -0.81 1.00 0.99 0.83 -0.75
-0.87 -0.87 -0.82 0.99 1.00 0.85 -0.76
-0.88 -0.89 -0.93 0.83 0.85 1.00 -0.75
0.91 0.92 0.83 -0.75 -0.76 -0.75 1.00

In the case of interval approaches, Tables 2 and 3 present the sample co-
variance matrices for the CIPCA and the proposed SCPCA techniques. These
methods adhere to the same properties as the classical PCA model. However,
the sample covariance matrix values for the conventional version of the SCPCA
model, as defined in Table 4, do not observe the mathematical properties char-
acteristic of the classical PCA model. Therefore, the sum of variance in Table
4 does not equal the total variance of input data, leading to inaccuracies in
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the model quality, fault detection index performance, and threshold calculation.
This limitation renders this method unreliable for diagnosing sensor faults.

Table 2: The sample covariance matrix of the NewSCPCA approach.
1.00 0.99 0.95 -0.79 -0.80 -0.75 0.91
0.99 1.00 0.96 -0.78 0.82 -0.75 0.92
0.95 0.96 1.00 -0.72 -0.73 -0.76 0.83
-0.79 -0.78 -0.72 1.00 0.99 0.84 -0.68
-0.79 -0.78 -0.73 0.99 1.00 0.85 -0.69
-0.75 -0.75 -0.76 0.84 0.85 1.00 -0.63
0.91 0.92 0.83 -0.68 -0.69 -0.63 1.00

Table 3: The sample covariance matrix of the CIPCA approach.
1.00 0.95 0.91 -0.83 -0.84 -0.81 0.88
0.95 1.00 0.91 -0.82 -0.83 -0.82 0.88
0.91 0.91 1.00 -0.77 -0.78 -0.85 0.79
-0.83 -0.82 -0.77 1.00 0.94 0.76 -0.72
-0.84 -0.83 -0.78 0.94 1.00 0.78 -0.73
-0.81 -0.82 -0.85 0.76 0.78 1.00 -0.70
0.88 0.88 0.79 -0.72 -0.730 -0.70 1.00

Table 4: The sample covariance matrix of the SCPCA approach.
1.14 1.13 1.08 -0.95 -0.96 -0.92 1.04
1.13 1.13 1.09 -0.93 -0.94 -0.92 1.05
1.08 1.09 1.13 -0.87 -0.88 -0.95 0.94
-0.95 -0.93 -0.87 1.13 1.13 0.93 -0.82
-0.96 -0.94 -0.88 1.13 1.13 0.94 -0.83
-0.92 0.92 -0.95 0.93 0.94 1.08 -0.78
-0.92 0.92 -0.95 0.93 0.94 1.08 -0.78

The model PCA for each approach is constructed by solving the eigendecom-
position equation of the corresponding covariance matrix. The matrix of interval
data [X] is estimated by selecting the number of principal components l using
the VRE method. we select l = 2 for two versions of SCPCA and CIPCA ap-



Fault Detection Using an Adapted Interval PCA Approach 35

proaches, corresponding to the largest eigenvalues of the covariance matrix in
each method, respectively.

In order to demonstrate the effectiveness of the NewSCPCA approach, we will
compare its performance with that of CIPCA and conventional SCPCA methods.
Figure 3 shows the monitoring performances of the Interval PCA methods when
the process is operating under normal conditions.

Fig. 3: Evolution of SCPCA-ISPE, CIPCA-ISPE, and NewSCPCA-ISPE under
normal operation.

The detection index of the ISPE-based SCPCA approach indicates that the
system is poorly modeled when compared to the ISPE-based CIPCA and the
NewSCPCA methods, even though the system performs well in this simulation.
Additionally, both versions of SCPCA exhibit an undesirable false alarm rate;
however, the NewSCPCA is more effective than the older version in managing
false alarms caused by uncertainties. Figure 4. shows the system in the case of
fault, which has been injected by real fault since the instant 500 min of the
testing phase. The magnitude of fault injected represents 25 % of the range of
variation in the internal temperature sensor. The control limits are calculated at
the confidence level of 95%. The ISPE detection index, based on the NewSCPCA
and CIPCA approaches, requires only a lower-magnitude fault to continuously
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detect deviations in the system. In contrast, the ISPE-based SCPCA requires a
higher-magnitude fault.

Fig. 4: Evolution of SCPCA-ISPE, CIPCA-ISPE, and NewSCPCA-ISPE in case
of faulty pro-cess.

Table 5 shows a comparison between previous and NewSCPCA and CIPCA
methods based on three factors: Good Detection Rate (GDR), False Alarm Rate
(FAR), and Fault Detection Time Delay (DTD). Faults from f1 to f5 are suc-
cessively injected into the system in steps of 5% of the variation range of the
internal temperature sensor, taking into account the uncertainty defined by the
model, which means the first step starts at 15%. It was observed that the fault
continuously exceeded the threshold at f4 for NewS-CPCA-ISPE and CIPCA-
ISPE while at f5 for SCPCA-ISPE, precisely at the values 29.70%, 29.13%, and
31.60% respectively.

The time required to indicate a fault after it occurs (DTD) is the same for
both CIPCA-ISPE and SCPCA-ISPE, at an instant of 538 minutes. However,
this factor differs for the NewSCPCA method, as shown in Table 4. This indi-
cates that the new method is more sensitive to faults. The robustness of these
approaches lies in their capacity to model uncertainties in the system, which are
calculated using the FAR factor. Table 5 shows that the CIPCA method is the
only robust technique in this study.
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Table 5: GDR (%), FAR (%), and DTD (min) factors for SCPCA, CIPCA, and
New SCPCA models.

Fault SCPCA-ISPE CIPCA-ISPE NewSCPCA-ISPE
GDR(%) GDR(%) GDR(%)

f1 32.08 33.40 79.00
f2 56.00 78.20 89.20
f3 73.20 93.80 94.00
f4 95.20 100.0 100.0
f5 100.0 100.0 100.0

FAR(%) 16.40 0.60 13.00
DTD(min) 538 538 505

6 Conclusion

In this paper, we present a new adaptation of the Symbolic Covariance PCA
(SCPCA) approach that addresses the limitations of the original method re-
lated to the sample covariance matrix. This proposed method leads to improved
performance for detecting sensor faults amidst uncertainties. The greenhouse
prototype simulation example evaluates the performance of this method by com-
paring it with that of Complete Information PCA (CIPCA) and the conventional
version of SCPCA approaches. The application results demonstrated that the
NewSCPCA is a more robust model for handling uncertainties and effectively
detecting deviations in the system than the conventional SCPCA approach, but
it is considered less efficient compared to the CIPCA method.
The issue discussed in this method can also be applied to other Interval PCA
(IPCA) approaches that do not adhere to the mathematical properties of the
sample covariance matrix of the classical PCA model, such as Mid-point and
Radii PCA (MRPCA). This adjustment allows the model to use all the informa-
tion contained in interval data, thereby enhancing its performance for detecting
and isolating (FDI) sensor faults.
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