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ABSTRACT The Axelrod Model (AM) is widely recognized as a valuable tool for simulating cultural dissemination within
societies. This study examines the impact of an intelligent mass media system on monoculture formation in AM and its
effects on cultural dynamics. Agent-based simulations were conducted on a structured GL,L lattice network, employing an
experimental design to observe effects of variations in key model parameters q, ϵ, and C. Results reveal dynamic transitions
between monocultural and n-cultural states, contingent on the interplay of parameters. The experimental design enabled
a novel visualization of the data, identifying robust patterns of coexistence, where both absorbing states coexist under
specific conditions. Additionally, a relationship was established between the largest cultural region size (Smax), the numbers
of final cultural regions (nR), and mass media information proportion in the lattice (ρ) using a least-squares approximation.
This study confirms that mass media can be a critical force in cultural stability, not only promoting monocultural states but
also facilitating cultural diversity under certain conditions.
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INTRODUCTION

Cultural dissemination is the process of spreading and adopting
ideas, beliefs, skills, values, and behaviors among members of
a society. The first simulation model for this process is the AM
(Axelrod 1997). The AM uses agent-based models (ABMs) to repre-
sent individuals in a society; ABMs are computational frameworks
used to simulate interactions of individual agents representing en-
tities such as people, organizations, or even biological organisms
within an environment (Railsback and Grimm 2019). Each agent
in these models is designed with specific characteristics, rules, and
behaviors, allowing it to act autonomously and interact with other
agents according to predefined protocols. In AM, an agent’s cul-
ture consists of attributes such as beliefs, values, and behaviors.
The model then simulates interactions between these agents under
two key assumptions:

• Individuals are likelier to interact with others with similar
cultural attributes.

• The interactions tend to increase the number of shared at-
tributes, reinforcing cultural similarity and increasing the like-
lihood of future interaction.
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Several extensions of AM explore factors that influence cultural
dissemination, such as noise effects and the role of network topol-
ogy in cultural order (Klemm et al. 2003a,b). Other studies investi-
gate the homogenizing effects of global feedback, demonstrating
that strong feedback accelerates monoculture, while weaker feed-
back maintains limited diversity (Shibanai et al. 2001). The propa-
ganda strategies in AM are explored and highlight the importance
of timing and intensity to achieve effective influence (Carletti et al.
2006). There is research on AM that addresses mechanisms that
sustain cultural diversity, emphasizing how limited confidence
and metric traits affect system stability (Flache and Macy 2006).
Another application of AM is in opinion dynamics, developing
experiments that examine how tolerance and connectivity also
form robust groups Jacobmeier (2005).

Moreover, the coevolution of cultural groups and networks is
discussed in (Centola et al. 2007), underscoring how lattice network
dynamics determine the stability of multiculturalism or conver-
gence to a completely homogeneous society. The dual role of mass
media is studied in (González-Avella et al. 2005), where strong
media influence promotes cultural fragmentation, while weak in-
fluence drives cultural homogenization. Besides, Rodríguez et al.
(2009) reveals how the strategic use of media can manipulate public
perception to foster either resistance or cultural convergence. Stud-
ies on cultural dissemination have evolved significantly since the
introduction of AM. Numerous studies have refined and expanded
the theoretical framework to address various complex social phe-
nomena. One key extension examined the impact of mass media
by creating a type of super-agent that interacts with all agents
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in the system, demonstrating that mass media can drive cultural
convergence in diverse societies or promote cultural diversity in
moderately diverse contexts due to the interaction between mass
media and local influences (Rodríguez and Moreno 2010).

Other research explored the role of cultural tolerance, as ex-
amined in (Gracia-Lázaro et al. 2011), which showed that tolerant
traits have an evolutionary advantage due to their ability to facil-
itate cultural overlap and enhance social interactions. Similarly,
in (Crokidakis 2012), it was highlighted how mass media influ-
ence can suppress critical phenomena and accelerate consensus
formation in opinion dynamics. An application AM papper with
intercultural interactions reveals how reciprocal media influence
among social groups can lead to structured diversity, balancing
global homogenizing effects with local heterogeneity (González-
Avella et al. 2012). In another paper they identified ordered states
akin to chimera states, demonstrating that one population can
achieve coherent order while others remain disordered (González-
Avella et al. 2014).

Further studies investigated hierarchical structures of cultural
traits, revealing that high ultrametricity and significant cultural
trait variation are essential for preserving diversity in complex
systems (Stivala et al. 2014). The dynamics of innovation diffu-
sion were also analyzed, showing that different network topolo-
gies influence the innovations spread, with highly connected ran-
dom graphs producing S-shaped adoption curves characteristic
of real-world systems (Tilles and Fontanari 2015). The interaction
between cultural diversity and cooperation was studied (Stivala
et al. 2016), showing that multicultural states enhance cooperation
while monocultural states suppress it. In Hernández et al. (2018)
examined mechanisms to preserve cultural diversity, developing
robust cultural communities that avoid monocultural states while
maintaining fragmented but cohesive groups.

The impact and evolution of social networks on cultural dissem-
ination were explored in (Raducha and Gubiec 2017), showing how
different rewiring mechanisms shape the network topology and
cultural configurations. Additionally, the dynamics of minority
groups in globalized societies were analyzed, demonstrating how
certain structural conditions enable minority groups to thrive and
coexist despite dominant mass media trends (Cosenza et al. 2020).
In 2021, polarization in AM was studied, revealing disruptive
effects on cultural dynamics and polarizing traits that inhibit tradi-
tional transitions between monocultural and multicultural states,
with an emphasis on ideological divisions and network structures
(Gracia-Lázaro et al. 2021). In 2024, competition among multiple
mass media influences was studied, uncovering how weaker me-
dia can dominate under specific conditions and how alternative
ordered states can emerge from agent interactions, providing com-
prehensive insights into the balance between local, global, rand
structural interactions Alvarez-Llamoza et al. (2024)).

In our research, the cultural dissemination model described in
Rodríguez et al. (2009) was replicated, focusing on the quantitative
indices of direct and indirect influence of mass media. A new
analytical approach was introduced, specifically identifying con-
figurations where coexisting states emerge in the model (an equiv-
alent idea like Campos Cantón (2025)). This new approach uses
data science, presenting a graphical, descriptive, and categorized
analysis of the different percentages of field information within
the lattice network. Numerical results describe the relationships
between dependent and independent variables, highlighting the
ranges value where cultural diversity promotes coexisting states.

The article is divided into six sections; The first section provides
the structural and functional ABM of AM with mass media. The
second section describes the various metrics used to evaluate the
model’s stability, such as absorption states and the generation of
cultural regions within it. The third section shows an experimental
design divided into three different experiments: low, moderate,
and high cultural diversity, aiming to observe the transitions occur-
ring in each case. The fourth section shows the numerical results
obtained and its descriptive analysis, followed by the last two
sections dedicated to discussion and conclusions.

ABM AXELROD’S MODEL WITH MASS MEDIA

Agents’ Characteristics and Groups
In this model, agents represent individuals with distinct cultural
characteristics or features. A cultural f eatures vector defines each
agent and their interaction is influenced by the degree of similarity
to other agents in the system. In the following, let

[q] = {0, 1, · · · , q − 1}, q ∈ N

The structure and grouping of agents are described as follows.

Agent Characteristics : Each agent i has nominal feature vector of
dimension F, denoted by

σ⃗i = ⟨σi1, σi2, · · · , σiF⟩ ∈ [q]F

where σi f is the value of trait f for agent i and can take any value
from a finite set [q], such that σi f ∈ [q] represent the diversity of
possible cultural configurations in the model. These traits may
symbolize various aspects of culture, such as beliefs, preferences,
or social behaviors.

External Vector Field (VF) and External Conditions : To incorpo-
rate the influence of external factors on agents, the model intro-
duces an external vector field (VF), which represents a constant
source of cultural influence analogous to mass media (M). This VF
acts on all agents, with the aim of inducing the adoption of certain
cultural traits within the system (equation 6). It is characterized by

σ⃗M = ⟨σM1, σM2, . . . , σMF⟩

and is designed to share at least one trait with each agent on the
network, sharing a minimal connection and interaction with all
individuals (González-Avella et al. 2005).

Agent Groups : Based on the similarity of characteristics, agents
can be grouped into two main categories:

Group A: Consists of agents with high cultural similarity, in-
creasing their interaction likelihood and fostering homogenization.
Frequent interaction among Group A agents facilitates the trans-
mission of cultural traits through local networks of influence. This
group is characterized by a high probability of interaction with cul-
turally similar agents, making them bridges of cultural influence
toward other agents in the system.

Group B: This group consists of agents with few or no common
traits with other agents in their neighborhood. The low similarity
in traits reduces their probabilities of interaction and adoption of
new cultural characteristics, allowing them to maintain a distinct
cultural identity or form isolated subcultures within the system.
For Group B agents, the probability of direct interaction with others
is low. However, if they are positioned near Group A agents, they
may adopt certain cultural traits through an indirect interaction,
mediated by the interactions of Group A agents with others.
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Environment and External Conditions
The proposed model simulates a society structured in the GL,L
lattice (of dimension L × L), where each site on the grid repre-
sents a culturally characterized agent. This spatial environment
allows agents to interact primarily with their four closest neigh-
bors, promoting the diffusion of cultural traits based on similarity
in characteristics.

The effect of VF on the agents is quantified and regulated by
two fundamental parameters:

Effective Traits ϵ: This parameter represents an additional quan-
tity of traits that VF effectively shares with each agent. The effec-
tive traits act as universal elements (such as language or widely
understood symbols) that facilitate interaction and the potential
influence of the VF, even when there is no match in an agent’s
nominal cultural traits. Thus ϵ strengthens the probability of in-
teraction between VF and agents, allowing all agents a chance of
being influenced.

Confidence Value C: This parameter measures the credibility or
acceptance of the VF information. The confidence C is incorporated
as an additional probability factor (it is explained how to be used
in the cultural features update part) for an agent to directly adopt
a trait from the VF. High values of C increase the VF influence and
promote greater cultural homogenization within the system, in
contrast, low values reduce its impact, allowing for the coexistence
of diverse cultural configurations.

Dynamics and Agent Update
The model defines the interaction rules that shape cultural evo-
lution over time. These rules dictate how agents modify their
cultural traits based on interactions with neighbors and external
influences. These rules are based on cultural similarity and the
influence of local interactions with other agents, as well as external
influence represented by the VF. Below, the main internal processes
and the agent update mechanism are detailed.

Nominal probability of interaction : The interaction between two
agents i and j is conditioned by the degree of overlap or similarity
between their features, defined as the number of shared traits. This
similarity is measured by the overlap l(i, j), which is expressed as:

l(i, j) =
F

∑
f=1

δσi f ,σj f . (1)

where δ is the Kronecker function, which is 1 if σi f = σj f and 0
otherwise. The nominal probability of interaction between two agents
i and j is given by:

p(i, j) =
l(i, j)

F
. (2)

Thus, the probability that two agents interact and influence one
another increases with the traits shared.

Extended Probability of Interaction : To model the interaction
between agents and VF, and the probability of agents adopting
external traits, an extended probability of interaction is defined.
This probability incorporates both agents’ nominal cultural traits
and shared effective traits. It is expressed as:

p(i, M) =
l(i, M) + ϵ

F + ϵ
=

l(i, M)/F + ϵ/F
1 + ϵ/F

. (3)

Note that: p(i, M) ≥ l(i, M)/F. The equality holds if ϵ = 0 or
l(i, M) = F

This extended probability p(i, M) regulates the effective inter-
action between each agent and VF, increasing the likelihood that
agents adopt traits from VF even when overlap l(i, M) is low. The
effect of ϵ on interaction probability enables VF to exert a broader
influence on the system (Rodríguez et al. 2009).

It should be noted that equations 2 and 3 determine whether an
interaction is generated between the selected pair of agents.

Interaction between Agent Groups : As mentioned earlier in the
model, agents are divided into two main groups based on their
relationship with the external VF:

Group A: This group includes agents who share at least one
trait with the VF. These agents can interact directly with the VF
and receive its influence directly.

Group B: Agents in this group do not share any traits with the
VF, so they cannot interact directly with it. However, they can
be indirectly influenced through their interactions with agents in
Group A.

Figure 1 This is a representation of agents and dynamic interactions
in the lattice network with VF is included (Rodríguez et al. 2009).
Different lines represent the interactions types. Thin lines represent
interaction between agents in group A with the VF, within group A,
and within group B. The indirect interaction from the VF to agents
in group B mediated by agents in group A, is depicted using thick
lines. Dashed lines represent direct interaction between the VF
and agents in group B.

The interactions in the model can be classified as follows (Figure
1):

• Interactions between Group A Agents and the VF
(A–VF):Agents in Group A, exhibiting characteristics similar
to those of VF, have the possibility to interact directly with
it and adopt its traits. These interactions are unidirectional
and synchronous (all updates occur at the same time step),
allowing the VF to directly influence Group A, spreading its
cultural characteristics. This relationship is fundamental, as it
turns Group A agents into a channel through which VF traits
may potentially spread throughout society.

• Interactions among Group A Agents (A–A): Group A agents
frequently interact with each other due to their cultural
similarities, facilitating the propagation of traits adopted from
VF within the group. These interactions are unidirectional
and synchronous, consolidating and strengthening the VF’s
influence on Group A, as traits adopted from the VF by one

80 | López-Morales et al. CHAOS Theory and Applications



agent can quickly be shared with other agents in the same
group. Thus, Group A agents tend to form homogeneous
groups that are culturally aligned with the VF.

• Interactions among Group B Agents (B–B): Group B agents,
who do not share traits with the VF, interact with each other
based on their own cultural characteristics. These interactions
are unidirectional and synchronous, reinforcing this separate
identity, as these agents are not directly exposed to the VF’s
traits and, therefore, are less susceptible to its influence. This
interaction leads to the formation of subcultures within the
lattice network.

• Interactions between Group A and Group B Agents (A–B):
Although Group B agents do not interact directly with the VF,
they can be indirectly influenced through their interactions
with Group A agents. When a Group A agent, who has
already adopted a trait from the VF, interacts with a Group
B agent, there is a possibility that the latter adopts this trait.
This interaction is unidirectional and synchronous, as traits
can potentially be shared both ways. In this way, Group A
acts as a bridge, allowing the influence of the VF to propagate
to Group B, albeit indirectly and less frequently. This chain
of interactions (A–VF followed by A–B) enables VF traits to
permeate the entire system, even reaching culturally distant
agents in Group B.

• Interaction between Group B and VF (B–VF): There is no
direct interaction between the VF and Group B agents due to
the absence of shared traits. In the model, this lack of direct
interaction means that Group B agents are "isolated" from VF’s
direct influence. However, the model incorporates effective
features (ϵ) to simulate a minimal unidirectional connection
that the VF maintains with all agents, even those in Group B.

Cultural features Update : The agents update dynamics are carried
out through an iterative process, using the following steps:

1. Active Agent Selection: In each iteration, an agent i is ran-
domly selected to act as the active agent in the interaction.

2. Interaction Agent Selection: For each active agent randomly
selects a nearby neighbor (one of the four closest neighbors)
or the VF, for interaction fase.

3. Determine the overlap l(i, s): Calculate the overlap, where
s = j for a neighboring agent or s = M for the VF. When
s = M, agent i interacts with the VF using the extended
probability (3). On the other hand, if s = j and 0 < l(i, j) < F,
agents i and j interact with the nominal probability (2). In
both cases, if l(i, s) < F, interaction is required; otherwise,
when l(i, s) = F, interaction is not necessary because they
already share all cultural traits.

4. Trait Copying Dynamics: If the interaction is valid, active
agent i proceeds to copy a trait from j agent with certain
probability; as follows. Randomly chose a position trait f ,
such that σi f ̸= σj f . If the interaction agent is a neighbor j,
agent i copies a trait σj f ; if the interaction agent is the VF,
agent i copies the trait σM f of the VF, anyone of these cases
are with probability p′. The probability p′ of adopting the
copied trait depends of C confidence value. This probability
p′ is responsible for regulating whether the selected feature is
copied or not according to the following rule:

p′ = p′(i, s) =


C, if σs f = σM f or σj f = σM f .

1 − C, if σi f = σM f .

1, if σi f ̸= σM f ̸= σj f .

(4)

5. Copy Probability Between Agents: The total probability that
the active agent i copies a trait from the interaction agent s
(where s can be a neighbor j or the VF) is given by:

P(i, s) =

 1
5 · p(i, j) · p′; s = j.
1
5 · p(i, M) · p′; s = M.

(5)

Where the factor 1
5 represents the probability of selecting an

interaction agent among the five possible options (four neigh-
bors and the VF), and p′ is the additional probability of copy-
ing or discarding the trait based on the confidence value C.

With all these statements and looking GL,L as subset of RF+1

and [q]F ⊂ RF+1; the mass media M defined as a vector field VF
has the form:

VF : GL,L → [q]F,

VF(i) = σ′
i .

(6)

Where σ′
i is like σi but with f -position changed with the Trait

Copying Dynamics rules (when i interact with VF).

MAIN ANALYSIS GUIDELINES

Absorbing States
When the system evolution dynamic stops or it undergoes no
further changes we said the model reach an absorbing state. The
absorbing states of the model can be:

• Monocultural States: Represent a class of absorbing states
characterized by complete cultural homogeneity within the
lattice. In these states l(i, s) = F.

• n-cultural States: This absorbing state is organized into mul-
tiple homogeneous cultural regions, distinct from each other.
In these states l(i, s) = 0 between agents of diferent cultural
region and l(i, s) = F between agents on the same cultural
region.

Cultural regions and the bigger cultural region (Smax)
A path w in a lattice network is an ordered sequence of vertices
starting from an initial vertex to an endpoint such that each con-
secutive pair of vertices in the sequence is connected by an edge.

For a σ cultural feature, we define a wσ-path as a set of nodes
(agents) such that σi = σ for each agent (node) in a path w. Also
we define a σ cultural region, as

Rσ = {i : σi = σ and ∀ i, j exists a wσ path}

Now, define, Smax as the biggest cultural region size, that is

Smax = maxσ{|Rσ|}
Smax value is used to quantify the final cultural structure of the

system by evaluating homogeneity or fragmentation of the net-
work. This value corresponds to the number of agents belonging
to the largest cultural domain, meaning the largest set of agents
sharing exactly the same cultural trait vector. Additionally, in the
context of absorbing states, we can define
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• Smax ≈ L2. Monocultural state.
• Smax ≪ L2. n-cultural state.

Analysis of Smax as a function of initial cultural diversity q
and other model parameters, such as confidence C and effective
traits ϵ, allows studying the transition between monocultural and
n-cultural states.

Percentage of VF Information (ρ)

VF information percentage ρ measures how much of the VF exter-
nal information has been adopted by agents at the dynamics ends.
This parameter is defined as the average overlap between agents’
cultural traits and VF, expressed as a percentage:

ρ = 100 × 1
L2F

L2

∑
i=1

F

∑
f=1

δσi f ,σM f , (7)

Analysis of ρ evaluates VF effectiveness in culturally homog-
enizing the model and complements metrics such as Smax and
number of cultures to characterize global model dynamics.

EXPERIMENTAL DESIGN

The experimental design was carried out with the following pa-
rameters and characteristics.

• There are L2 agents where L = 30.
• Each agent i has a vector of nominal characteristics σ⃗i with

fixed value F = 4 features, and each one take values in [q].
• Two parameters are included ϵ and C.

– The ϵ parameter takes values 0.01, 0.1, 0.5, and 1, it maxi-
mizes the amount of information.

– The confidence C parameter will range from C = 0 to 1,
with increments of 0.05, it represent confidence of mass
media information.

• The simulation parameter q, will take values from 1 to 39.
• The simulation was divided into three experiments. In each

experiment, ϵ and C take the full range of values, and q is
divided into three value ranges, as follows:

– Experiment 1: q ∈ {1, · · · , 13}
– Experiment 2: q ∈ {14, · · · , 26}
– Experiment 3: q ∈ {27, · · · , 39}

Once experiments were completed, each one generated
a database. The complete database contains approximately
108,000,000 data values.

RESULTS AND ANALYSIS

An analysis of the results obtained for each proposed experiment
is presented below. The following two sections include figures
showing different absorbing states and categorizing them based
on the metrics described in them.

The following figure (Figure 2) were developed to identify sim-
ulation results for Smax, cultural number regions and their relation-
ship with confidence (in mass media) and information percentage.

Figure 2 Filled squares represent a n-cultural state, filled triangles
represent a monocultural state. The different colors are assigned to
various categories depending on the percentage of the VF informa-
tion (equation 7) distributed in the lattice and the different ranges
of values of C

Bigger cultural region Smax results
Different absorbing states have been found and we show them
for each experiment, we report two different views of each one
to analyze accurately its relations with the parameters and the
information measure of VF

Experiment 1 (1 ≤ q ≤ 13) reveals a dominant monoculture
pattern, independent of parameter C (Figure 3a). Monoculture is
observed in scenarios with both low levels of information provided
by VF (between 0% and 20%, represented by pink, green, light
blue, and yellow colors) and high VF information levels (over 90%,
represented by pastel pink). This generalized pattern suggests
that the presence of monoculture does not significantly depend on
the level of VF information. Additionally, a few isolated cases of
n-cultural states were identified for C < 0.35, which coincide with
very low levels of VF information (0% to 20%). These cases are
exceptional and do not show a clear trend or defined effect of the
parameter ϵ/F, which does not appear to significantly influence
the observed absorbing state.

The range of q covers the entire spectrum analyzed (from 1 to
13) without detecting substantial changes in the observed patterns.
This reinforces the conclusion that neither q nor ϵ/F exerts a con-
siderable impact on the emergence of coexistence in the system,
where states of monoculture or n-culturalism are observed under
the given parameters.

Experiment 2 (14 ≤ q ≤ 26) from (Figure 3b) shows a balance
between monocultural and n-cultural states, with both appearing
in similar proportions within the range of parameters analyzed.
n-cultural states are characterized by low levels of information
provided by the VF, ranging between 0% and 20% (represented by
pink, green, light blue and yellow colors). Conversely, monocul-
tural states are associated with high levels of information, reaching
between 90% and 100% of VF. Notably, some monocultural states
with low levels of VF information (0% to 20%) are distributed in
green, light blue, yellow, and fuchsia colors, depending on the
specific conditions of the parameters F and q.
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(a) Experiment 1

(b) Experiment 2

(c) Experiment 3

Figure 3 Bigger cultural region Smax as a function of q. Each panel
corresponds to a specific ϵ/F scenario (0.0025, 0.025, 0.125, and
0.25), illustrating the variation of Smax for different values of q in
the experiments.

• Green and light blue states are primarily found with ϵ/F =
0.025, 0.125, 0.250 and (14 ≤ q ≤ 26). Their lower frequency
suggests that these specific conditions do not favor the forma-
tion of monoculture as much as states with high information
levels.

• Fuchsia states are mostly located in ϵ/F = [0.125, 0.25] and
(14 ≤ q ≤ 26). This indicates that even with slightly higher
levels of ϵ/F, monocultures can occur, albeit in smaller pro-
portions.

• Yellow states are even rarer and are observed when ϵ/F =
0.25 and (14 ≤ q ≤ 20). This restricted range implies that
monocultures with these characteristics are unusual and lim-
ited to specific combinations of parameteras.

The results of Experiment 3 (27 ≤ q ≤ 39) from (Figure 3c)
show that n-cultural states are predominant, accounting for ap-
proximately 70% of the total compared to 30% for monocultural
states. A significant proportion of n-cultural states occurs in the
range (18 ≤ q ≤ 26), indicating a strong relationship between
high q values and the prevalence of n-culturalism. n-cultural states
appear with high VF information (90% to 100%, pastel pink) and
low VF information (0% to 20%, green and light blue). This demon-
strates that the stability of these states does not solely depend
on the level of VF information in the system, but also on other
parameters such as q and ϵ/F.

It is observed that when ϵ/F = 0.0025, the system generates two
types of cultural regions: one with a maximum region size of up
to 0.2 and another with a size exceeding 0.8. As ϵ/F increases, the
proportions of the largest cultural region sizes become more evenly
distributed across the spectrum of values between 0 and 1. In all
cases, monoculture always occurs when C > 0.35, some with high
VF information (90% or more, pastel pink) and others with almost
no VF information (up to 20%, green and light blue). The number
of cultures complements the analysis of Smax to characterize the
transition between monocultural and n-cultural states.

Cultural regions numerical results
Different types of cultural regions have been found and we show
them for each experiment, we report two different views of each
one to analyze accurately its relations with the parameters and the
information measure of VF. For Experiment 1, Figure 4a reveals
a pattern characterized by a low number of cultural regions in
most of the configurations analyzed. For nearly all ϵ/F values,
the number of cultural regions does not exceed 10. These regions
can have low or high levels of VF information. In cultural regions
with low VF information (0%–20%), states associated with low
confidence levels (C ≤ 0.25) dominate, identified by pink, green,
light blue and yellow colors. These configurations tend to generate
multiple cultural regions, although in a limited number.

On the other hand, in cases with high VF information (above
90%), monocultural states (C > 0.35) predominate, represented
by triangles and pink coloring, which denote a high level of con-
fidence. A notable observation is that even when there are fewer
than 10 cultural regions, this configuration could be interpreted
as a trend toward monoculture due to the system’s low diversity,
regardless of the ϵ/F value.

Note: Since the number of cultural regions is less than 10, this
could also be seen as a monoculture in a certain sense (as triangles
appear in the classification code).

In Experiment 2, Figures 4b show a large number of cultural
regions, with most configurations presenting around 50 cultural
regions. However, extreme cases with significantly higher values,
ranging between 200 and 500 cultural regions, are also observed.
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(a) Experiment 1

(b) Experiment 2

(c) Experiment 3

Figure 4 Number of cultures as a function of q. Each panel corre-
sponds to a specific ϵ/F scenario (0.0025, 0.025, 0.125, and 0.25),
illustrating the variation in the number of cultures for different
values of q in the experiments.

These cases of high cultural diversity occur predominantly for
q > 20 and confidence levels C ≤ 0.15 (pink color), highlighting
strong cultural diversification under these conditions.

As the confidence level (C) increases, the number of cultural
regions decreases significantly, stabilizing around 50. In these con-
figurations, regions tend to have higher levels of VF information
(above 90%, indicating greater integration and cultural homogene-
ity in systems with high levels of confidence. In general, for con-
fidence values C > 0.35, the number of cultural regions is even
smaller and the configurations are mostly limited to 14 ≤ q ≤ 20
and ϵ/F = [0.0025, 0.025, 0.125, 0.25].

Finally, in Experiment 3, Figures 4c reveal remarkable cultural
diversity, with configurations extending up to 700 cultural regions.
This extreme level of cultural fragmentation occurs predominantly
at low confidence levels (C ≤ 0.15, pink color) and is observ-
able across all q values within this range. This indicates that low
confidence levels facilitate the existence of multiple cultures, par-
ticularly in systems with high q values. On the other hand, as the
confidence level increases (C > 0.15), a progressive reduction is
observed in the number of cultural regions, dropping to fewer than
100 in most configurations. A notable case arises in configurations
with C > 0.35 and ϵ/F = 0.0025 (red color), where the number of
cultural regions is very limited, not exceeding 50.

Last square relation between bigger cultural region and number
of cultures

The following graph (Figure 5), based on simulation data, illus-
trates the geometric relationship between Smax and number of
cultural regions. Clearly, this relationship is not linear. However,
what is the nature of the relationship between these two variables?

Figure 5 Bigger-region vs. number of cultures: This graph illus-
trates the relationship between the largest regions on the X-axis
and number of cultures on the Y-axis, using different markers
to represent varying percentages of VF information: blue stars
(0–20%), orange pentagons (20–60%), green hexagons (60–90%),
and red diamonds (90–100%). Star points and pentagons, which in-
dicate low information levels, tend to be more dispersed, whereas
hexagons and diamonds correspond to moderate and high infor-
mation levels, respectively.

Figure 5 has a rectangular hyperbolic shape, with asymptotes
parallel to Cartesian axes, so it has the form y = k

1+rx + l. A rela-
tionship between the model dependent variables was determined
using the Levenberg-Marquardt method (Marquardt 1963), an it-
erative algorithm for solving nonlinear least squares problems to
approximate their rate change. The resulting equation is as follows:
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y =
1029.91

1 + 0.05935 · x
(8)

where:

• y: Number of cultures
• x: Bigger cultural region

For this hyperbola, the vertex is located at (114.85, 131.7) and
its eccentricity is

√
2.

DISCUSSION

The figures analysis and experimental results reveals that emer-
gence of coexistence in the system does not significantly depend
on individual parameters such as q or ϵ/F but rather on their joint
interaction. N-cultural states span a wide range of conditions and
are less sensitive to these variables, whereas monocultural states
tend to arise in scenarios characterized by high information and
confidence (C > 0.35). Categorization indicates that monocultural
states are associated with high confidence and high information
levels, while n-cultural states exhibit greater diversity, with con-
fidence ranging from low (C ≤ 0.15) to high and information
levels varying widely. Regarding the parameter q, an evolution
in cultural dynamics is observed. In Experiment 1 (1 ≤ q ≤ 13),
monoculture predominates due to low number of cultural regions
and high VF information, which limits diversity. In Experiment 2
(14 ≤ q ≤ 26), a transition occurs between highly fragmented and
more integrated configurations, with n-cultural states prevailing
under conditions of low confidence and VF information, while
monocultural states emerge with high confidence. Finally, in Ex-
periment 3 (27 ≤ q ≤ 39), high cultural diversity appears under
low confidence conditions, whereas monoculture predominates
with high confidence.

Overall, the model exhibits strong coexistence of n-cultural
and monocultural states. Parameters q, ϵ/F, and C critically influ-
ence cultural transitions, offering information relevant to influence
on social media, political polarization, and marketing strategies.
Mathematically, the number of cultural regions (nR) and maximum
stability (Smax) depend on F, q, ϵ/F, and C. Moreover, we hypoth-
esize that Smax ∝ (C + 0.15) and nR ∝ (C + 0.15)−1, suggesting
that small changes in these parameters can induce patterns of
self-organization patterns and abrupt transitions between cultural
states. The vertex (114.85, 131.7) in equation 8 can be interpreted as
a point where the relationship between number of cultural regions
and the bigger cultural region changes most significantly. The ec-
centricity is

√
2, indicating a non-simple relationship between the

two variables; small changes in one can result in extremely high or
low values in the other. We analyze the relationship between the
largest region and number of cultures using a logarithmic scale,
applying a log-log transformation on both variables to identify
patterns and model them with a power law.

num_cultures = A · (bigger_region)α

where A is a proportionality constant and α is the exponent of
scaling law. In log-log calculation (or plot), the fitted line’s slope
resulted in α = −1.53 and R2 = 0.596.

1. The power law exponent, α,indicates an inverse relationship
between region size and number of cultures. As region size
increases, the number of cultures decreases according to a
power law

2. The proportionality constant, A ≈ 84950.89, represents initial
scale of the model and depends on unit of measurement used.

3. The coefficient of determination, R2, indicates that the model
explains about 59.6% of data variability, reflecting a moder-
ately strong relationship.

The result showed a negative slope, suggesting that larger re-
gions tend to support fewer cultures. This may be explained by
cultural homogenization processes in expansive areas or the chal-
lenge of sustaining multiple cultures in large spaces without natu-
ral barriers. In contrast, smaller regions are more likely to maintain
greater cultural diversity due to the reduced influence of dominant
cultures.

CONCLUSION

This research on cultural dissemination in Axelrod’s Model high-
lights the relevance of monoculture and n-culturalism based on the
number of cultural regions. Cultural diversity was characterized
and analyzed, showing that while it exists, full monoculturality is
not achieved in this model. Two types of monoculture are iden-
tified: one influenced by mass media (VF) and one without. VF
can generate unexpected results, since varying the value of q to a
higher value makes the formation of a monoculture with VF more
difficult; however, monoculture can emerge without VF influence
if C is close to 1, although n-culturalism remains predominant.

Simulations were performed using NetLogo, optimizing com-
putational performance, and dividing the experimental design into
three parts to enhance computing efficiency. Using Python, data
science methods, and scientific visualization, up to five variables
were graphically represented, achieving a more comprehensive
and cross-sectional understanding of the phenomenon. This re-
search extends the model by González-Avella et al. (2005) and
Rodríguez et al. (2009), developing new three-dimensional data
visualizations on cultural dissemination and offering a novel anal-
ysis focused on the emergence of different cultural regions. In
Gracia-Lázaro et al. (2021), the focus was on agents’ internal mech-
anisms, emphasizing the adaptive advantage developed in agents,
whereas our research introduces mass media to explore cultural
stability conditions. Crokidakis (2012) investigates opinion spread-
ing with an emphasis on critical phenomena and mathematical
formalization, while our model incorporates cultural diversity
within a sociological framework, both being analyzed from differ-
ent perspectives.

Our study focused on a single population and the impact
of strategic advertising on cultural diversity, whereas González-
Avella et al. (2012) analyzes intergroup interactions through mass
media in a model where two populations of social agents, each
with its own internal dynamics. In González-Avella et al. (2014) ex-
plores interactions between two populations and phenomena such
as localized coherence and symmetry breaking, while our research
examines transitions between absorption states in a single popu-
lation. Stivala et al. (2014) analyzes how hierarchical properties
(ultrametricity) and cultural variations in agents structure cultural
diversity, whereas our study focuses on how mass media induces
monocultural states. In Tilles and Fontanari (2015), the focus was
on the internal introduction of innovations, their dependence on
network topology, and initial diversity. In contrast, our research
focused on the impact of mass media and cultural stability. The
work of Stivala et al. (2016) highlighted the relationship between
culture and cooperation in the context of public goods games,
while our study focused on the influence of external forces on cul-
tural diversity. Hernández et al. (2018) incorporated a continuous
updating dynamic of cultural traits, whereas our study explored
the emergence of different states under external influences.
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Raducha and Gubiec (2017) focused on the coevolution of cul-
tural dynamics and complex network topology. In contrast, our
research examined the stability of cultural states and explored cul-
tural transitions. The work of Cosenza et al. (2020) centered on
the impact of mass media represented as a global field reflecting
predominant cultural traits, whereas our study modeled media as
an external force directly influencing state transitions. In Gracia-
Lázaro et al. (2021), a binary trait representing polarization was
introduced, showing how it eliminates classical phase transitions.
In contrast, our research demonstrated that n-cultural states can
stabilize depending on external parameters, such as media inten-
sity. Finally, Alvarez-Llamoza et al. (2024) introduced competition
between two mass media sources, identifying conditions where a
weaker medium can dominate, producing ordered patterns. In con-
trast, our study shows how mass media can drive transitions de-
pending on their intensity, generating monocultural and n-cultural
states.
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