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• The proposed test demonstrates superior performance compared to alternative methods. 
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Abstract 

In this study, we suggest a novel test statistic based on the Score statistic for evaluating the 

homogeneity of variances in normal distributions. In addition to the conventional chi-square 

approximation of the Score statistic, we introduce a parametric bootstrap technique known as the 

Computational Approach Test (CAT). Through a simulation study, we evaluate the proposed 

test’s CAT approach (referred to as CS) and assess its performance against established methods 

under varying group sizes and sample sizes. The results show that, regardless of the number of 

groups, the CAT approach of the Score test performs well when sample sizes and variances are 

directly proportional, even with a minimum sample size of three. Furthermore, when sample sizes 

and variances are inversely proportional, the proposed test significantly outperforms alternative 

methods. To demonstrate the application of the discussed methods, we provide two numerical 

examples. 
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1. INTRODUCTION 

 

The analysis of variance (ANOVA) technique is widely used in many scientific applications, including 

health, social, and physical sciences. In the analysis of variance, one of the main assumptions is that the 

variances within treatments or populations are equal, known as homogeneity of variances. It is well-

recognized that when this assumption is violated, the ANOVA F test performs poorly. Testing for 

homogeneity of variances is a critical issue not only in ANOVA but also in other fields. 

 

Determining homogeneity is crucial in biology, medical research, agricultural production systems, 

manufacturing process quality control, and the creation of instructional strategies [1]. For instance, in 

medical studies, the variability of DNA methylation is an important biological marker associated with 

cancer and other complex diseases. Research has shown that, in addition to the differences in mean 

methylation levels between diseased and healthy individuals, variance differences among groups can 

provide meaningful biological insights [2]. In this context, the variance homogeneity test is a vital tool for 

understanding the distribution of DNA methylation markers across different groups and making accurate 

biological interpretations. Evaluating the homogeneity of variances is frequently a useful endpoint of 

analysis in quality control work [3]. For biologists, differences in population variability are significant for 

several reasons, such as studying adaptation mechanisms and measuring genetic diversity [1]. Furthermore, 

homogeneity of variance testing is often used as a precursor to discriminant analysis or dose-response 

modeling [4]. 

 

The literature provides a variety of tests for determining whether variances are homogeneous. One of the 

earliest methods was the Bartlett test, which is based on the Likelihood ratio (LR) test. This test is widely 
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applied and commonly included in statistical software packages [5]. However, several computer 

simulations indicate that the Bartlett test is valid only when the number of groups is not excessively large 

and the sample size is moderate to large [1,4,6-8]. 

 

Over the years, numerous alternative tests for homogeneity of variance have been developed by researchers 

such as Cochran [9], Box [7], Levene [10], Brown and Forsythe [8], Conover et al. [3], Loh [11], Keyes 

and Levy [12], Bhandary and Dai [13], Liu and Xu [14], Gökpınar and Gökpınar [15], Jafari and Shaabani 

[16], Wang et al. [17]. 

 

In hypothesis testing problems, most statisticians initially consider using the LR test.  Like the LR test, the 

Score (S) test is a widely used method in hypothesis testing. As noted by Bera and Bilias [18], the S test is 

an important technique for evaluating statistical models alongside the LR test. Based on our literature 

search, we found that the S test has not been addressed for this problem. Therefore, our goal is to develop 

an S test for addressing the variance homogeneity problem. Under the null hypothesis, the S test, like the 

LR test, follows an approximate chi-squared distribution with k-1 degrees of freedom. 

 

It is well-established that tests relying on asymptotic distributions often perform poorly with small sample 

sizes, particularly concerning test size accuracy. According to Davison and Hinkley [19], likelihood-based 

tests such as the LR and S tests are particularly well-suited for parametric bootstrap techniques. In this 

study, we propose a parametric bootstrap approach for the S test, referred to as CAT (proposed by Chang 

et al. [20]).  

 

The remaining sections of the manuscript are organized as follows: In section 2, we derive the S test statistic 

for assessing the homogeneity of variances. Additionally, we propose the CAT approach for the S test. 

section 3 details the simulation studies conducted to evaluate the sizes and powers of the proposed test 

under various scenarios. In section 4, we report the findings from the analysis of numerical examples. 

Finally, section 5 concludes the manuscript with some final remarks. 

 

2. MATERIAL METHOD 

 

Let 𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝑛𝑖
, be a sample from normal distribution with parameters 𝜇𝑖 and 𝜎𝑖

2, 𝑖 = 1, . . . , 𝑘 . The 

problem of interest is to test the homogeneity of variances; that is, to test  

 

𝐻0: 𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝑘
2 

𝐻1: 𝜎𝑖
2 ≠ 𝜎𝑗

2,   ∃𝑖 ≠ 𝑗.                                                             (1)                                                                                                

 

Note that �̂�𝑖 = �̅�𝑖 and �̂�𝑖
2 =

1

𝑛𝑖
∑ (𝑋𝑖𝑗 − �̅�𝑖)

2𝑛𝑖
𝑗=1 = 𝑆𝑖

2 are the maximum likelihood estimates (MLEs) of 𝜇𝑖 

and 𝜎𝑖
2, respectively. 

 

Under the null hypothesis 𝐻0, let 𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝑘
2 = 𝜎2, and note that the log-likelihood function can 

be expressed as  

 

𝑙𝑛𝐿0(𝜇1, … 𝜇𝑘 , 𝜎2) = −∑ (
𝑛𝑖

2
) 𝑙𝑛(2𝜋)𝑘

𝑖=1 − ∑ (
𝑛𝑖

2
) 𝑙𝑛(𝜎2)𝑘

𝑖=1 −
1

2
∑ ∑

(𝑥𝑖𝑗−𝜇𝑖)

𝜎2

2
𝑛𝑖
𝑗=1

𝑘
𝑖=1 .                           (2) 

 

 

The restricted maximum likelihood estimates (RMLEs) of parameters 𝜇𝑖 and 𝜎2 are denoted as  �̃�𝑖  and  

�̃�2, and are obtained as follows: 

�̃�𝑖 = �̅�𝑖     and   �̃�2 =
1

∑ 𝑛𝑖
𝑘
𝑖=1

∑𝑛𝑖𝑆𝑖
2

𝑘

𝑖=1

. 
  (3) 
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In the remainder of this section, we address likelihood-based methods for testing homogeneity of variances. 

To this end, we first give the LRT test, then we derive the S test for testing homogeneity of variances. 

 

2.1. Likelihood Ratio (LR) Test 

 

The general form of the likelihood ratio statistic is defined as follows: 

 

𝐿𝑅 = −2(𝑙𝑛𝐿(�̃�1, �̃�2, … , �̃�𝑘  , �̃�2) − 𝑙𝑛𝐿(�̂�1, �̂�2, … , �̂�𝑘 , �̂�1
2, �̂�2

2, … , �̂�𝑘
2)). 

Then, the following result is obtained  

𝐿𝑅 = −2 [−∑ (
𝑛𝑖

2
𝑙𝑛 (

�̃�2

�̂�𝑖
2))

𝑘
𝑖=1 ] = ∑ [𝑛𝑖 (𝑙𝑛(�̃�2) − 𝑙𝑛(�̂�𝑖

2))]𝑘
𝑖=1 .            (4)  

  

Under the null hypothesis, the LR test follows an approximate chi-square distribution with k − 1 degree of 

freedom. Furthermore, in their study, Chang et al. [20] obtained the LR test statistic as given in Equation 

(4). 

 

2.2. The Proposed Score (S) Test  

 

We propose the S test to test the homogeneity of variances of k normally distributed groups, the general 

form of the S test statistic is defined as follows: 

 

𝑆 = 𝑈𝜎2
′ (�̃�, �̃�2) (𝐼𝜎2𝜎2

(�̃�, �̃�2))𝑈𝜎2 (�̃�, �̃�2).                                                                                            (5) 

 

Here, under the unrestricted model, 𝑈𝜎2
′ (�̃�, �̃�2) is the Score vector, and 𝐼𝜎2𝜎2

(�̃�, �̃�2) denotes the lower 

right block matrix of the inverse of the information matrix (denoted as I). The RMLEs of parameters 𝜇 =

(𝜇1, … , 𝜇𝑘) and 𝜎2 = (𝜎1
2, … , 𝜎𝑘

2) = (𝜎2, … , 𝜎2) are denoted as �̃�  and �̃�2. 

 

The score vector of parameters 𝜎2 are obtained as 

 

𝑈𝜎2
′ (�̃�, �̃�2) = (

𝑛1(−�̃�2+�̂�1
2)

2�̃�4 , … ,
𝑛𝑘(−�̃�2+�̂�𝑘

2)

2�̃�4 ).                                        (6) 

 

I-1 term is calculated using the equation shown below: 

𝐼−1 = [
𝐼𝜇𝜇 (𝜇, 𝜎2) 𝐼𝜇𝜎2

(𝜇, 𝜎2)

𝐼𝜎2𝜇 (𝜇, 𝜎2) 𝐼𝜎2𝜎2
(𝜇, 𝜎2)

]

2𝑘𝑥2𝑘

. 

Then, 𝐼𝜎2𝜎2
(�̃�, �̃�2) term is obtained as 

 

 𝐼𝜎2𝜎2
(𝜇, 𝜎2) = (𝐼𝜎2𝜎2 − 𝐼𝜎2𝜇𝐼𝜇𝜇

−1𝐼𝜇𝜎2)
−1
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𝐼𝜎2𝜎2
(�̃�, �̃�2) =

[
 
 
 
 
2�̃�4

𝑛1
⋯ 0

⋮ ⋱ ⋮

0 ⋯
2�̃�4

𝑛𝑘 ]
 
 
 
 

.𝑘𝑥𝑘                   (7) 

By applying Equations (6) and (7), the S test is derived as shown: 

 

𝑆 =  
1

2
∑ 𝑛𝑖 (

�̂�𝑖
2

�̃�2 − 1)
2

.𝑘
𝑖=1                    (8)

  

Under the null hypothesis, the S test follows an approximate chi-square distribution with k−1 degrees of 

freedom.  

 

Remark. As mentioned in Introduction section, it is well-known that LR and S tests are asymptotically 

equivalent. For this problem, it is also possible to show that these tests are equivalent as follows.  

The LR statistic given in Equation (4) can also be expressed as 𝐿𝑅 = −∑ 𝑛𝑖𝑙𝑛 (
�̂�𝑖

2

�̃�2)
𝑘
𝑖=1 . For any variable, 

say y, ln y can be expressed using the Taylor series expansion as follows: 

 

ln(𝑦) = ln(1 + (𝑦 − 1)) ≅ (𝑦 − 1) −
1

2
(𝑦 − 1)2. 

 

If 𝑦 =
�̂�𝑖

2

�̃�2 is taken, it can be observed that the LR test statistic is equivalent to the S test statistic. 

 

ln (
�̂�𝑖

2

�̃�2) ≅ (
�̂�𝑖

2

�̃�2
− 1) −

1

2
(
�̂�𝑖

2

�̃�2
− 1)

2

 

 

−∑𝑛𝑖𝑙𝑛 (
�̂�𝑖

2

�̃�2)

𝑘

𝑖=1

≅ −∑𝑛𝑖

𝑘

𝑖=1

[(
�̂�𝑖

2

�̃�2
− 1) +

1

2
(
�̂�𝑖

2

�̃�2
− 1)

2

] 

𝐿𝑅 ≅
1

2
∑𝑛𝑖 (

�̂�𝑖
2

�̃�2
− 1)

2𝑘

𝑖=1

 

 

𝐿𝑅 ≅ 𝑆. 

 

2.4. Computational Approach Test Approach  

 

The S test asymptotically follows a chi-squared distribution with k-1 degrees of freedom under the 𝐻0 

hypothesis. As mentioned in the Introduction, it is known that the convergence of this test to this distribution 

is not sufficient for small sample sizes. To overcome this problem, we propose to use the CAT approach, 

which is a kind of parametric bootstrap approach, instead of the chi-square distribution for the S test.  

The algorithm of this method is as follows: 

(1) Calculate the S test statistics in Equation (8). 

(2) Draw a pseudo random sample with size ni from the 𝑁(�̃�𝑖, �̃�
2) for 𝑖 = 1, . . . , 𝑘.  

(3) Compute the value of 𝑆 test statistic for these generated samples. 

(4) Repeat steps 2 and 3 for many times (for instance, L times). The calculated S test statistic is denoted 

by S(𝑙), l=1,…,L for each of these generated samples. 

(5) Calculate the p-value as �̂� = ∑ 𝐼𝐿
𝑙=1 (S(𝑙) >  S)/𝐿, l=1,…,L and here I(.) express the indicator 

function. 

(6) Reject the H0 in Equation (1) if the �̂� ≤ α.  
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Since the LR test also asymptotically follows a chi-square distribution, Chang et al. [20] obtained the CAT 

approach for this test using the algorithm provided above. Therefore, we will not repeat the derivation of 

the CAT approach for the LR test here. In the simulation study, the CAT approximations of the S and LR 

tests are considered and shown as CS and CLR, respectively. 

 

3. SIMULATION STUDY 

 

In the simulation study, our main objective is to compare the performance of the proposed test with existing 

tests. The tests evaluated in this study include the CLR test, Levene (L) test [12], Brown-Forsythe (BF) test 

[8], generalized p-value test (GP) [14], Bhandary and Dai’s test (DAI) [13], Bartlett test (B) [5], 

computational approach test (CAT) [15], and standardized likelihood ratio (SLR) test [21]. All tests were 

compared across various group sizes and sample sizes, including combinations of equal and unequal sample 

sizes. 

 

For sample sizes 𝑛𝑖 (i=1,...,k, where k is the number of groups), 10,000 random numbers were generated 

from a normal distribution with parameter μ=0. Additionally, Monte Carlo simulations with L=10000 

iterations were used to calculate the p-values for each test. At a significance level of α=0.05, the sizes of 

all tests are presented in Tables 1–3 for k=3,5,7, respectively. 

 

Table 1. Sizes of all tests when k=3 

n CLR CS GP DAI B L BF SLR CAT 

3 3 3 0.046 0.048 0.050 0.047 0.045 0.012 0.000 0.049 0.050 

5 5 5 0.051 0.050 0.047 0.046 0.047 0.048 0.001 0.048 0.047 

7 7 7 0.050 0.049 0.050 0.047 0.049 0.046 0.006 0.050 0.050 

9 9 9 0.050 0.049 0.050 0.046 0.048 0.050 0.011 0.048 0.050 

15 15 15 0.052 0.050 0.049 0.048 0.050 0.049 0.023 0.050 0.049 

30 30 30 0.051 0.052 0.048 0.045 0.049 0.049 0.037 0.049 0.048 

3 5 7 0.050 0.050 0.048 0.044 0.048 0.045 0.001 0.049 0.049 

3 8 13 0.053 0.056 0.048 0.044 0.045 0.044 0.012 0.048 0.049 

10 15 20 0.051 0.054 0.050 0.044 0.050 0.046 0.023 0.049 0.050 

 

Table 2. Sizes of all tests when k=5 

n CLR CS GP DAI B L BF SLR CAT 

3 3 3 3 3 0.054 0.052 0.051 0.049 0.045 0.026 0.000 0.049 0.051 

5 5 5 5 5 0.049 0.050 0.047 0.048 0.047 0.051 0.000 0.048 0.047 

7 7 7 7 7 0.051 0.053 0.049 0.048 0.051 0.051 0.004 0.051 0.050 

9 9 9 9 9 0.052 0.052 0.047 0.047 0.046 0.047 0.008 0.046 0.048 

15 15 15 15  0.051 0.051 0.046 0.046 0.048 0.048 0.016 0.048 0.046 

30 30 30 30 30 0.051 0.052 0.046 0.045 0.047 0.048 0.032 0.047 0.046 

3 3 5 7 7 0.050 0.052 0.055 0.051 0.051 0.050 0.001 0.055 0.055 

3 3 8 13 13 0.051 0.051 0.049 0.048 0.046 0.045 0.007 0.047 0.049 

10 10 15 20 20 0.048 0.049 0.050 0.051 0.051 0.049 0.025 0.052 0.052 
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Table 3. Sizes of all tests when k=7 

n CLR CS GP DAI B L BF SLR CAT 

3 ,…, 3 0.052 0.051 0.048 0.047 0.043 0.030 0.000 0.047 0.050 

5 ,…,5 0.051 0.052 0.050 0.051 0.050 0.053 0.001 0.051 0.050 

7 ,…,7 0.049 0.052 0.049 0.050 0.049 0.051 0.003 0.049 0.050 

9 ,…,9 0.057 0.052 0.050 0.052 0.050 0.050 0.006 0.051 0.050 

15 ,…,15 0.051 0.049 0.054 0.051 0.054 0.048 0.018 0.054 0.054 

30 ,…,30 0.051 0.051 0.050 0.050 0.050 0.049 0.031 0.050 0.050 

3 3 5 5 5 7 7 0.054 0.053 0.050 0.050 0.048 0.053 0.000 0.049 0.048 

3 3 8 8 8 13 13 0.053 0.052 0.054 0.052 0.051 0.051 0.008 0.055 0.054 

10 10 15 15 15 20 20 0.052 0.053 0.053 0.050 0.052 0.051 0.020 0.052 0.053 

 

When Tables 1-3 are reviewed, it is seen that the sizes of all tests are very close to the nominal value. To 

understand which test is better in which situation, we need to look at the power values of the tests. In 

calculating the power values of the tests, we took different values of the population variance. For this, in 

addition to the case of small and large equal sample sizes, we examined the situations in which sample sizes 

are inversely proportional to population variances and in which population variances are directly 

proportional to sample sizes. The calculated powers of tests under α= 0.05 were displayed in Tables 4–6 

for k = 3, 5, 7, respectively. 
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Table 4. Powers of all tests when k=3 

n CLR CS GP DAI B L BF SLR CAT 

 σ2= (0.25, 0.5, 1) 

3 3 3 0.089 0.099 0.082 0.095 0.087 0.033 0.000 0.095 0.082 

5 5 5 0.162 0.175 0.150 0.165 0.167 0.130 0.010 0.169 0.152 

9 9 9 0.356 0.347 0.329 0.338 0.346 0.253 0.110 0.347 0.329 

15 15 15 0.605 0.585 0.586 0.582 0.598 0.475 0.356 0.598 0.588 

30 30 30 0.916 0.907 0.919 0.910 0.919 0.847 0.812 0.919 0.918 

3 5 7 0.167 0.085 0.131 0.108 0.130 0.087 0.009 0.163 0.160 

3 8 13 0.208 0.110 0.168 0.134 0.170 0.123 0.056 0.210 0.182 

10 15 20 0.572 0.458 0.538 0.493 0.542 0.409 0.323 0.575 0.602 

 σ2=(0.25, 0.75, 1.25) 

3 3 3 0.104 0.111 0.090 0.095 0.091 0.034 0.000 0.099 0.091 

5 5 5 0.210 0.191 0.194 0.190 0.200 0.143 0.009 0.203 0.194 

9 9 9 0.461 0.367 0.450 0.422 0.443 0.306 0.134 0.444 0.449 

15 15 15 0.739 0.666 0.762 0.726 0.747 0.590 0.456 0.747 0.762 

30 30 30 0.980 0.970 0.983 0.977 0.980 0.937 0.919 0.980 0.982 

3 5 7 0.167 0.075 0.140 0.106 0.137 0.090 0.009 0.179 0.185 

3 8 13 0.212 0.083 0.169 0.113 0.162 0.106 0.046 0.217 0.210 

10 15 20 0.660 0.419 0.641 0.561 0.624 0.455 0.350 0.659 0.708 

 σ2=(1, 0.5, 0.25) 

3 5 7 0.102 0.239 0.105 0.183 0.152 0.146 0.001 0.100 0.036 

3 8 13 0.133 0.343 0.156 0.271 0.222 0.236 0.041 0.128 0.028 

10 15 20 0.542 0.615 0.567 0.592 0.587 0.489 0.367 0.550 0.480 

 σ2=(1.25, 0.75, 0.25) 

3 5 7 0.144 0.286 0.180 0.263 0.225 0.198 0.004 0.151 0.057 

3 8 13 0.234 0.487 0.313 0.427 0.371 0.340 0.086 0.231 0.052 

10 15 20 0.735 0.761 0.768 0.769 0.766 0.637 0.503 0.734 0.691 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Sevgi AKSOY, Fikri GOKPINAR, Esra GOKPINAR / GU J Sci, 38(4): x-x (2025) 

 

 

Table 5. Powers of all tests when k=5 

n CLR CS GP DAI B L BF SLR CAT 

 σ2= (0.25, 0.25, 0.5,1, 1) 

3 3 3 3 3 0.116 0.144 0.083 0.114 0.104 0.068 0.000 0.113 0.083 

5 5 5 5 5 0.250 0.248 0.188 0.212 0.244 0.188 0.010 0.248 0.188 

9 9 9 9 9 0.535 0.514 0.488 0.429 0.539 0.394 0.166 0.539 0.488 

15 15 15 15 15 0.823 0.803 0.814 0.703 0.832 0.705 0.561 0.832 0.813 

30 30 30 30 30 0.993 0.992 0.992 0.975 0.993 0.975 0.964 0.993 0.992 

3 3 5 7 7 0.221 0.099 0.142 0.114 0.161 0.110 0.010 0.220 0.195 

3 3 8 13 13 0.283 0.098 0.192 0.130 0.215 0.148 0.055 0.284 0.226 

10 10 15 20 20 0.789 0.624 0.732 0.534 0.748 0.584 0.472 0.787 0.799 

 σ2= (0.25, 0.25, 0.75,1.25, 1.25) 

3 3 3 3 3 0.142 0.154 0.097 0.136 0.133 0.086 0.000 0.145 0.097 

5 5 5 5 5 0.317 0.280 0.255 0.245 0.313 0.218 0.011 0.318 0.254 

9 9 9 9 9 0.676 0.592 0.645 0.518 0.676 0.486 0.222 0.676 0.646 

15 15 15 15 15 0.934 0.899 0.934 0.835 0.934 0.824 0.696 0.935 0.930 

30 30 30 30 30 1.000 0.999 1.000 0.997 1.000 0.997 0.995 1.000 1.000 

3 3 5 7 7 0.254 0.100 0.254 0.118 0.185 0.117 0.008 0.258 0.238 

3 3 8 13 13 0.305 0.087 0.305 0.123 0.219 0.138 0.046 0.315 0.278 

10 10 15 20 20 0.891 0.675 0.891 0.670 0.866 0.699 0.580 0.893 0.910 

 σ2= (1, 1, 0.5, 0.25, 0.25) 

3 3 5 7 7 0.144 0.362 0.123 0.262 0.228 0.249 0.001 0.143 0.035 

3 3 8 13 13 0.172 0.478 0.163 0.362 0.320 0.369 0.039 0.173 0.024 

10 10 15 20 20 0.764 0.836 0.750 0.707 0.787 0.695 0.557 0.752 0.652 

 σ2= (1.25, 1.25, 0.75,0.25, 0.25) 

3 3 5 7 7 0.212 0.450 0.186 0.329 0.317 0.316 0.003 0.210 0.045 

3 3 8 13 13 0.318 0.640 0.333 0.497 0.492 0.501 0.095 0.313 0.035 

10 10 15 20 20 0.909 0.936 0.920 0.860 0.932 0.849 0.731  0.912 0.864 
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Table 6. Powers of all tests when k=7 

n CLR CS GP DAI B L BF SLR CAT 

 σ2= (0.25, 0.25, 0.5, 0.5, 0.5, 1, 1) 

3 3 3 3 3 3 3 0.110 0.141 0.073 0.116 0.096 0.080 0.000 0.107 0.074 

5 5 5 5 5 5 5 0.217 0.241 0.144 0.181 0.207 0.168 0.005 0.209 0.145 

9 9 9 9 9 9 9 0.464 0.453 0.409 0.360 0.477 0.352 0.124 0.478 0.409 

15 15 15 15 15 15 15 0.769 0.746 0.734 0.631 0.763 0.637 0.462 0.763 0.733 

30 30 30 30 30 30 30 0.987 0.982 0.985 0.950 0.986 0.961 0.942 0.986 0.984 

3 3 5 5 5 7 7 0.214 0.136 0.126 0.125 0.164 0.122 0.007 0.214 0.170 

3 3 8 8 8 13 13 0.309 0.169 0.198 0.163 0.244 0.178 0.064 0.313 0.229 

10 10 15 15 15 20 20 0.753 0.632 0.679 0.527 0.716 0.571 0.448 0.754 0.750 

 σ2= (0.25, 0.25, 0.75, 0.75, 0.75, 1.25, 1.25) 

3 3 3 3 3 3 3 0.126 0.141 0.087 0.112 0.116 0.092 0.000 0.126 0.087 

5 5 5 5 5 5 5 0.270 0.240 0.211 0.207 0.270 0.198 0.006 0.274 0.211 

9 9 9 9 9 9 9 0.603 0.477 0.578 0.431 0.600 0.429 0.147 0.601 0.578 

15 15 15 15 15 15 15 0.900 0.804 0.904 0.776 0.901 0.758 0.579 0.901 0.904 

30 30 30 30 30 30 30 1.000 0.998 1.000 0.994 1.000 0.993 0.989 1.000 1.000 

3 3 5 5 5 7 7 0.228 0.103 0.139 0.109 0.162 0.114 0.005 0.223 0.210 

3 3 8 8 8 13 13 0.304 0.119 0.190 0.133 0.224 0.147 0.050 0.307 0.265 

10 10 15 15 15 20 20 0.836 0.583 0.802 0.574 0.800 0.612 0.459 0.836 0.865 

 σ2= (1, 1, 0.5, 0.5, 0.5, 0.25, 0.25) 

3 3 5 5 5 7 7 0.134 0.292 0.112 0.216 0.199 0.222 0.001 0.134 0.036 

3 3 8 8 8 13 13 0.174 0.432 0.179 0.310 0.299 0.326 0.037 0.174 0.029 

10 10 15 15 15 20 20 0.696 0.758 0.699 0.646 0.744 0.631 0.459 0.705 0.593 

 σ2= (1.25, 1.25, 0.75, 0.75, 0.75, 0.25, 0.25) 

3 3 5 5 5 7 7 0.205 0.355 0.192 0.272 0.291 0.283 0.002 0.196 0.055 

3 3 8 8 8 13 13 0.361 0.602 0.413 0.453 0.521 0.477 0.092 0.349 0.065 

10 10 15 15 15 20 20 0.900 0.891 0.920 0.832 0.923 0.822 0.649 0.901 0.865 

 

When interpreting power tables, we first consider the situation where sample sizes are equal, and then the 

situations where sample sizes are proportional to variances and inversely proportional to variances. 

Regardless of the number of groups, when sample sizes are equal and for n =3, the CS test performs better 

than the other tests. As the sample sizes increase, especially for n 5, the powers of the CLR, SLR, and B 

tests become very close to each other and these tests perform slightly better than others. Considering the 

case where sample sizes are proportional to variances, regardless of the number of groups, it is observed 

that the CLR and SLR tests have significantly higher power values compared to other tests, especially for 

small sample sizes. With increasing sample size, the CAT method is also observed to outperform the other 

tests, in addition to these tests. When considering the case where sample sizes are inversely proportional to 

variances, the CS test has significantly higher power than the other tests. For example, for k=3, 𝜎2=(1, 0.5, 

0.25), and n=3,8,13, the power values of the CLR, CS, GP, DAI, B, L, BF, SLR, and CAT tests are 0.133, 

0.343, 0.156, 0.271, 0.222, 0.236, 0.041, 0.128, and 0.028, respectively. As the difference between the 

variances increases, this result has not changed. Furthermore, when we compare the CS test with other tests, 

it is seen that the CS test has considerably higher power values than other tests. The observed patterns do 

not change as the number of groups increased. It is observed that the CS test has significantly higher power 

values than the other tests, especially with small sample sizes. In addition, as can be seen from Table 4-6, 

the power values of all the tests generally converge and are very close to the value of 1 when the sample 

size is larger than about 30.  
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Figure 1. Powers of the tests when sample sizes are equal across different groups 

 

Figure 2. Powers of the tests when sample sizes are inversely proportional to variance values across different groups
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The power performance of the tests can be seen in Figure 1 and Figure 2. Since there are many cases as 

seen in the tables, due to space constraints, graphs comparing the power values of the tests were obtained 

only for remarkable cases. For this purpose, Figure 1 shows the graphs comparing the power values of the 

tests when the sample sizes are equal for different number of groups. Here, σ2=(1, 0.5, 0.25) for k=3, σ2= 

(0.25, 0.25, 0.5,1, 1) for k=5, and σ2= (0.25, 0.25, 0.5, 0.5, 0.5, 1, 1) for k=7. In Figure 2, graphs comparing 

the power values of the tests are presented when the sample sizes vary across groups and are inversely 

proportional to the variance values. Specifically, σ2=(1, 0.5, 0.25) for k = 3, σ2= (1, 1, 0.5, 0.25, 0.25) 

for    k = 5 and σ2= (1, 1, 0.5, 0.5, 0.5, 0.25, 0.25) for k = 7. It is observed that the results obtained from the 

tables are also clearly reflected in the graphs. 

 

4. NUMERICAL EXAMPLES 

 

In this section of the paper, we will present two data sets and show how the homoscedasticity tests work.  

 

Example 1.  In this section, we use the iris dataset that Anderson [22] gathered, which is still widely used 

in many studies. Examples of these studies include those that deal with data mining, multivariate normality 

assessment, and other topics [23, 24]. This dataset contains measurements of the sepals and characteristics 

of iris flowers, specifically their length and width in centimeters. It also includes a grouping variable 

indicating the type of iris flower, which can be categorized as setosa, virginica and versicolor. To 

demonstrate the application of the tests, we use the sepal length measurements as the dependent variable, 

while the iris types serve as the independent variable. The summary statistics of iris data are presented in 

Table 9. 

 

Table 9. The summary statistics of iris data 

 n �̅�𝒊 𝑺𝒊
𝟐 

setosa 50 5.01 0.124 

versicolor 50 5.94 0.266 

virginica 50 6.59 0.404 

 

When we performed the Shapiro-Wilk test to check the normality of the data in each group, the p-values 

obtained for each group are 0.460, 0.465, and 0.258 respectively. As we can see, each group has a normal 

distribution. To calculate the p-values for all tests, we performed 10000 replications.  

 

Table 10. The results of tests for iris data 

Test CLR CS GP B L BF SLR CAT 

p-value 0.0001 0.0003 0.0004 0.0003 0.0008 0.0022 0.0000 0.0002 

 

Table 10 demonstrates that every test yields the same result, i.e., every test rejects the 𝐻0 provided in 

Equation (2) at the nominal level of 0.05. As a result, we can conclude that there are differences among iris 

species. 

 

Example 2. The data set is drawn from a study by Chang et al. [20]. The subjects in the study were 45 rape 

survivors, each subject randomly assigned to one of four treatment groups: (i) Treatment-1=Stress 

inoculation treatment (SIT), where subjects learned various coping skills. (ii) Treatment-2=Prolonged 

Exposure (PE), where subjects mentally replayed the rape in their minds repeatedly for seven sessions. (iii) 

Treatment-3=Supportive Counselling (SC), which is a standard treatment group; and (iv) Treatment-

4=Waiting List (WL), control.  

Summary statistics for symptom scores obtained from subjects under four different treatments are given in 

Table 11. 
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Table 11. The summary statistics of rape victims 

 n �̅�𝒊 𝑺𝒊
𝟐 

Treatment-1 14 11.071 14.495 

Treatment-2 10 15.400 111.240 

Treatment-3 11 18.091 46.265 

Treatment-4 10 19.500 45.450 

 

When we performed the Shapiro-Wilk test to check the normality of the data in each group, the p-values 

obtained for each group are 0.997, 0.312, 0.355, and 0.114 respectively. As we can see, each group has a 

normal distribution. To calculate the p-values for all tests, we performed 10000 replications. The p-values 

of the tests are given in Table 12. 

 

Table 12. The results of tests for rape victims 

Test CLR CS GP B L BF SLR CAT 

p-value 0.016 0.013 0.019 0.014 0.003 0.004 0.000 0.025 

 

Table 12 demonstrates that every test rejects the 𝐻0 provided in Equation (2) at the nominal level of 0.05. 

As a result, we can conclude that the treatments of rape victims have difference variances. 

 

5. CONCLUSION 

 

In this paper, we propose a CAT-based approach for the S test, referred to as the CS test, to assess the 

homogeneity of variances under normality. A simulation study was conducted to evaluate the performance 

of the proposed test and compare it with its competitors. 

 

Using Monte Carlo simulations, all tests were compared in terms of size and power across various sample 

sizes and group numbers. According to the simulation results, the sizes of all tests are very close to the 

nominal level. When comparing the tests based on power values, the following observations were made: 

Regardless of the group size, the CS test outperforms the other tests for n=3. As sample sizes increase, 

particularly for n5, the power values of the CLR, SLR, and B tests slightly better than those of the other 

methods. Additionally, as the sample sizes increase, the power values of all the tests tend to converge. 

When sample sizes and variances are inversely proportional, the CS test consistently exhibits significantly 

higher power values than the other tests, regardless of group size. The simulation study highlights that the 

CS and CLR tests perform differently across all scenarios, particularly for small sample sizes. Furthermore, 

numerical examples have shown that the proposed method is highly accurate even for small sample sizes 

or large sample sizes. 

 

Small sample sizes often arise due to time constraints, cost limitations, or insufficient data availability, 

making the choice of test critical. Therefore, we recommend researchers consider the CS test, especially 

alongside the CLR test, when sample sizes and variances are inversely proportional. Additionally, for other 

hypothesis testing problems, researchers may explore other likelihood-based tests beyond the LR test. 

 

CONFLICTS OF INTEREST  

No conflict of interest was declared by the authors. 

 

ACKNOWLEDGEMENTS 

 

The authors thank the editor, the associate editor, and the referees for their constructive suggestions that 

helped us improve the early manuscript. Also, this work is part of the thesis of Sevgi Aksoy. 

 

 

 

 



Sevgi AKSOY, Fikri GOKPINAR, Esra GOKPINAR / GU J Sci, 38(4): x-x (2025) 

 

 

REFERENCES 

 

[1] Boos, D. D., Brownie, C., “Comparing variances and other measures of dispersion”, Statistical 

Science, 19: 571-578, (2004). DOI: https://doi.org/10.1214/088342304000000500. 

 

[2] Li, X., Qiu, W., Morrow, J., DeMeo, D. L., Weiss, S. T., Fu, Y., Wang, X., “A comparative study 

of tests for homogeneity of variances with application to DNA methylation data”, PloS 

one, 10(12): (2015). DOI: https://doi.org/10.1371/journal.pone.0145295 

 

[3] Conover, W. J., Johnson, M.E., Johnson, M.M. “A comparative study of tests for homogeneity of 

variances, with applications to the outer continental shelf bidding data”, Technometrics, 23: 351- 

361, (1981). DOI: https://doi.org/10.1080/00401706.1981.10487693 

 

[4] Cahoy, D. O. “A bootstrap test for equality of variances”, Computational Statistics and Data 

Analysis, 54: 2306-2316, (2010). DOI: https://doi.org/10.1016/j.csda.2010.01.015 

 

[5] Bartlett, M. S., “Properties of Sufficiency and Statistical Test”, Proceedings of the Royal Society: 

A, 160: 268-282, (1937). DOI: https://doi.org/10.1098/rspa.1937.0109 

 

[6] Bishop, D. J., Nair, U. S. “A note on certain methods of testing for the homogeneity of a set of 

estimated variances”, Journal of the Royal Statistical Society, 6: 89–99, (1939). 

 

[7] Box, G. E., “Non-Normality and Tests on Variances”, Biometrika, 40: 318-335, (1953). 

DOI: https://doi.org/10.1093/biomet/40.3-4.318 

 

[8] Brown, M. B., Forsythe, A.B., “Robust tests for the equality of variances”, Journal of the 

American Statistical Association, 69: 364-367, (1974). DOI: https://doi.org/10.2307/2285659 

 

[9] Cochran, W. G., “Testing a linear relation among variances”, Biometrics, 7: 17-32, (1951). 

DOI: https://doi.org/10.2307/3001666 

 

[10] Levene, H., “Robust Tests for Equality of Variances, In Contributions to Probability and Statistics: 

Essays in honor of Harold Hotelling”, 2: 278-292, (1960).   

 

[11] Loh, W. Y., “Some modifications of Levene's test of variance homogeneity”, Journal of Statistical 

Computation and Simulation, 28: 213-226, (1987). 

DOI: https://doi.org/10.1080/00949658708811047 

 

[12] Keyes, T. K., Levy, M. S., “Analysis of Levene’s Test under Design Inbalance”, Journal of 

Educational and Behavioral Statistics, 22: 227-236, (1997). 

DOI: https://doi.org/10.3102/10769986022003227 

 

[13] Bhandary, M., Dai, H., “An alternative test for the equality of variances for several populations 

when the underlying distributions are normal”, Communications in Statistics- -Simulation and 

Computation, 38: 109-117, (2008). DOI: https://doi.org/10.1080/03610910802387378 

 

[14] Liu, X., Xu, X., “A new generalized p-value approach for testing the homogeneity of 

variances”, Statistics and Probability Letters, 80: 1486-1491, (2010). 

DOI: https://doi.org/10.1016/j.spl.2010.04.018 

 

[15] Gökpınar, E., Gökpınar, F., “Testing equality of variances for several normal populations”, 

Communications in Statistics- Simulation and Computation, 46(1): 38–52, (2017). 

DOI: https://doi.org/10.1080/03610918.2015.1093934 

 

  



Sevgi AKSOY, Fikri GOKPINAR, Esra GOKPINAR / GU J Sci, 38(4): x-x (2025) 

 

 

[16] Jafari, A. A., Shaabani, J.,  “Comparing scale parameters in several gamma distributions with 

known shapes”, Computational Statistics, 35(4): 1927-1950, (2020). 

DOI: https://doi.org/10.1007/s00180-019-00926-0 

 

[17] Wang, J., Li, X., Liang, H., “A new exact p-value approach for testing variance 

homogeneity”, Statistics Theory Related Fields, 6(1): 81-86, (2022). 

DOI: https://doi.org/10.1080/24754269.2021.2021010 

 

[18] Bera, A. K., Bilias, Y., “Rao's score, Neyman's C (α) and Silvey's LM tests: an essay on historical 

developments and some new results”, Journal of Statistical Planning and Inference, 97: 9-44, 

(2001). DOI: https://doi.org/10.1016/S0378-3758(00)00236-2 

 

[19] Davison, A. C., Hinkley, D. V., “Bootstrap methods and their application”, Cambridge: 

Cambridge University Press, (1997).  DOI: https://doi.org/10.1017/CBO9780511802843 

 

[20] Chang, C. H., Pal, N., Lin, J. J., “A revisit to test the equality of variances of several populations”, 

Communications in Statistics- -Simulation and Computation, 46: 6360-6384, (2017). 

DOI: https://doi.org/10.1080/03610918.2016.1148143 

 

[21] Gökpınar, E., “Standardized likelihood ratio test for homogeneity of variance of several normal 

populations”, Communications in Statistics- -Simulation and Computation, 51: 6309-6319, 

(2022). DOI: https://doi.org/10.1080/03610918.2021.1943494 

 

[22] Anderson, E., “The Irises of the Gaspe Peninsula”, Bulletin of the American Iris Society, 59: 2–

5, (1935). 

 

[23] Hu, Y. C., “A new fuzzy-data mining method for pattern classification by principal component 

analysis”, Cybernetics and Systems, 36: 527–547, (2005). DOI: 

https://doi.org/ 10.1080/01969720590913116 

 

[24] Korkmaz, S., Goksuluk, D., Zararsiz, G., “MVN: An R Package for Assessing Multivariate 

Normality”, The R Journal, 6: 151–162, (2014). DOI: https://doi.org/10.32614/RJ-2014-031 

 


