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Highlights
* This paper focuses on testing the homogeneity of variances in normal distributions.
* A Score test statistic is proposed to address the homogeneity of variances in the study;
* The proposed test demonstrates superior performance compared to alternative methdds.

Article Info Abstract

In this study, we suggest a novel test statistic based omythe Score statistic for evaluating the
Received: 20 Dec 2024 homogeneity of variances in normal distributions. In addition to the conventional chi-square
Accepted: 12 May 2025 approximation of the Score statistic, We introduce,a parametric bootstrap technique known as the

Computational Approach Test (CAT)-“Through a\simulation study, we evaluate the proposed
test’s CAT approach (referred to as CS) and assess its performance against established methods

Keywords under varying group sizes aild sample sizes. The results show that, regardless of the number of
Homogeneity of groups, the CAT approach of the S_cqre test performs well when sample sizes and Variances.are
variances, directly proportional, even with a minimum sample size of three. Furthermore, when sample sizes
Computational approach and variances are inVersely proportional, the proposed test significantly outperforms alternative
test methods. To demonstrate theyapplication of the discussed methods, we provide two numerical
Score test examples.

1. INTRODUCTION

The analysis of varianéey(ANOVA) technique is widely used in many scientific applications, including
health, social, and physical sciencésplnsthe analysis of variance, one of the main assumptions is that the
variances within treatments ‘o, populations are equal, known as homogeneity of variances. It is well-
recognized that ‘when this assumption is violated, the ANOVA F test performs poorly. Testing for
homogeneity of variancesiis,a critical issue not only in ANOVA but also in other fields.

Detemmining, homogeneity is crucial in biology, medical research, agricultural production systems,
manufacturing\processrquality control, and the creation of instructional strategies [1]. For instance, in
medical‘studies, the variability of DNA methylation is an important biological marker associated with
cancer and othep’complex diseases. Research has shown that, in addition to the differences in mean
methylation levels between diseased and healthy individuals, variance differences among groups can
provide meaningful biological insights [2]. In this context, the variance homogeneity test is a vital tool for
understanding the distribution of DNA methylation markers across different groups and making accurate
biological interpretations. Evaluating the homogeneity of variances is frequently a useful endpoint of
analysis in quality control work [3]. For biologists, differences in population variability are significant for
several reasons, such as studying adaptation mechanisms and measuring genetic diversity [1]. Furthermore,
homogeneity of variance testing is often used as a precursor to discriminant analysis or dose-response
modeling [4].

The literature provides a variety of tests for determining whether variances are homogeneous. One of the
earliest methods was the Bartlett test, which is based on the Likelihood ratio (LR) test. This test is widely
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applied and commonly included in statistical software packages [5]. However, several computer
simulations indicate that the Bartlett test is valid only when the number of groups is not excessively large
and the sample size is moderate to large [1,4,6-8].

Over the years, numerous alternative tests for homogeneity of variance have been developed by researchers
such as Cochran [9], Box [7], Levene [10], Brown and Forsythe [8], Conover et al. [3], Loh [11], Keyes
and Levy [12], Bhandary and Dai [13], Liu and Xu [14], Gokpinar and Gokpinar [15], Jafari and Shaabani
[16], Wang et al. [17].

In hypothesis testing problems, most statisticians initially consider using the LR test. Like the LR test, the
Score (S) test is a widely used method in hypothesis testing. As noted by Bera and Bilias [18], the S test is
an important technique for evaluating statistical models alongside the LR test. Based onjour literature
search, we found that the S test has not been addressed for this problem. Therefore, etir goal'is to develop
an S test for addressing the variance homogeneity problem. Under the null hypothesis, the,S test, like the
LR test, follows an approximate chi-squared distribution with £-1 degrees of freedom.

It is well-established that tests relying on asymptotic distributions often perform poorly with\small sample
sizes, particularly concerning test size accuracy. According to Davisonfand Hinkley [19], likelihood-based
tests such as the LR and S tests are particularly well-suited for pafametri¢,bootstrap, techniques. In this
study, we propose a parametric bootstrap approach for the S testsreferred to as\CATAproposed by Chang
et al. [20]).

The remaining sections of the manuscript are organized a§ follows:In section 2, we derive the S test statistic
for assessing the homogeneity of variances. Additionally, Weypropose the CAT approach for the S test.
section 3 details the simulation studies conducted to evaluate the'Sizes and powers of the proposed test
under various scenarios. In section 4, we repoft the findings from the analysis of numerical examples.
Finally, section 5 concludes the manuscript with some final remarks.

2. MATERIAL METHOD

Let Xjq, Xi2, ..., Xin,, be a sampleffrom normal distribution with parameters p; and of,i=1,...,k . The
problem of interest is to test the homogeneity ofivariances; that is, to test

Ho: 0f = 0§ = - = gj

Hy:of # of, i # j. (1)
Note that fi; = X;'and 67 = an?;l(X ij— X i)z = 57 are the maximum likelihood estimates (MLEs) of y;
and g/ respectively,

Under thedwll hypethesis Hy, let 62 = 02 = -+ = g2 = 02, and note that the log-likelihood function can
be expressed,as

Lo, -t 0?) = — Ty (%) In(2r) — By () inGo?) — Ly, 37, G 2)

The restricted maximum likelihood estimates (RMLEs) of parameters y; and 62 are denoted as [I; and
&2, and are obtained as follows:

i )
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In the remainder of this section, we address likelihood-based methods for testing homogeneity of variances.
To this end, we first give the LRT test, then we derive the S test for testing homogeneity of variances.

2.1. Likelihood Ratio (LR) Test

The general form of the likelihood ratio statistic is defined as follows:

LR = =2 (InL(fy, fizs s i, 62) = INL(fiy, i -, At 67, 62, .., GF) ).

Then, the following result is obtained

za=—zkzﬁ(%mg9ﬂ=2£Jm0m#yddﬁD} 4)

1

Under the null hypothesis, the LR test follows an approximate chi-square distribution\with £ — 1 degree of
freedom. Furthermore, in their study, Chang et al. [20] obtained the\LR test statistic as given in Equation

(G
2.2. The Proposed Score (S) Test

We propose the S test to test the homogeneity of variances of fmormally distributed groups, the general
form of the S test statistic is defined as follows:

5=, (15%) (12212 (& QZ)) U, (,82). 5)

Here, under the unrestricted model, U(',z (ﬁ, g 2) is the Score vector, and [ a’o* (ﬁ, QZ) denotes the lower

right block matrix of the inverse of'the information matrix (denoted as /). The RMLEs of parameters p =

(1, -, i) and 02 = (02756¢ ) = (0%)..., 0%) are denoted as fi and &2.
The score vector of parameters,g? are obtained as

Uéz (E QZ) _ (nl(—52+6f)’ m’nk(—5'2+?r,%)). ©6)

25# 264

I'! étm is caleulated using the equation shown below:

L |[™Mee) (o)
= 2

1 E(E'QZ) [0 (#,G

%)
— 2kx2k

Then, 1°2° (ﬁ, Qz) term is obtained as

19°9* (1,6%) = (Ip2g2 = L2liip Lo )
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— 0

202 (~ ~ e .
IQQ (E;gz) = : :4 kxk (7)

20

0 - o

By applying Equations (6) and (7), the S test is derived as shown:

s=ivk o (Z-1) (8)

Under the null hypothesis, the S test follows an approximate chi-square distribution with %—1 degrees of
freedom.

Remark. As mentioned in Introduction section, it is well-known that LR andeSitests are asymptotically

equivalent. For this problem, it is also possible to show that these tests are equivalent-as,follows.

52
The LR statistic given in Equation (4) can also be expressed as LR = — Zi-;l nyln (%) Fortany variable,

say y, In y can be expressed using the Taylor series expansion as follows:
1
In) =In(1+ @ -1D)= -4 ;05 D>

~2
Ify= % is taken, it can be observed that the LR test statistie,is equivalent to the S test statistic.

2.4. Computational Approach Test Approach

The Sstest asymptotically follows a chi-squared distribution with k-1 degrees of freedom under the H,
hyp6thesis. Asumentioned in the Introduction, it is known that the convergence of this test to this distribution
is not sufficient for,small sample sizes. To overcome this problem, we propose to use the CAT approach,
which is a'kind ofsparametric bootstrap approach, instead of the chi-square distribution for the S test.

The algorithm'of this method is as follows:

(1) Calculate the S test statistics in Equation (8).
(2) Draw a pseudo random sample with size n; from the N(fi;, 62) fori = 1,..., k.

(3) Compute the value of S test statistic for these generated samples.

(4) Repeat steps 2 and 3 for many times (for instance, L times). The calculated S test statistic is denoted
by S®, I=1,...,L for each of these generated samples.

(5) Calculate the p-value as p = Y1, 1 (S® > S)/L, I=1,...,.L and here I(.) express the indicator
function.

(6) Reject the Hy in Equation (1) if the p < a.
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Since the LR test also asymptotically follows a chi-square distribution, Chang et al. [20] obtained the CAT
approach for this test using the algorithm provided above. Therefore, we will not repeat the derivation of
the CAT approach for the LR test here. In the simulation study, the CAT approximations of the S and LR
tests are considered and shown as CS and CLR, respectively.

3. SIMULATION STUDY

In the simulation study, our main objective is to compare the performance of the proposed test with existing
tests. The tests evaluated in this study include the CLR test, Levene (L) test [ 12], Brown-Forsythe (BF) test
[8], generalized p-value test (GP) [14], Bhandary and Dai’s test (DAI) [13], Bartlett test (B) [5],
computational approach test (CAT) [15], and standardized likelihood ratio (SLR) test [21]¢ All tests were
compared across various group sizes and sample sizes, including combinations of equal and unequal sample
sizes.

For sample sizes n; (i=1,...,k, where £ is the number of groups), 10,000 random numbers were generated
from a normal distribution with parameter u=0. Additionally, Monte Carle simulationsywith £=10000
iterations were used to calculate the p-values for each test. At a significace level of a=0.05, the sizes of
all tests are presented in Tables 1-3 for £=3,5,7, respectively.

Table 1. Sizes of all tests when k=3
n CLR | CS GP | DAI B L BF |"SLR | CAT
333 0.046 | 0.048 | 0.050 | 0.047 | 0.045 | 0.012 | 0.000 | 0.049,| 0:050
555 0.051 | 0.050 | 0.047 | 0.046 | 0.047 | 0048, 0.001 | 0.048 | 0.047
7717 0.050 | 0.049 | 0.050 | 0.047 | 0.049 | 0.046 | 0:006 0.050 | 0.050
999 0.050 | 0.049 | 0.050 | 0.046 | 01048 | 0.050 | 0.011 | 0.048 | 0.050
151515 [ 0.052 | 0.050 | 0.049 | 0.048 | 0.050 | 0.049 | 0.023 | 0.050 | 0.049
303030 | 0.051 | 0.052 | 0.048 | 0.045°110:049 | 0.049 | 0.037 | 0.049 | 0.048
357 0.050 | 0.050 | 0.048 | 0.044 | 0.048%.0.045 | 0.001 | 0.049 | 0.049
3813 0.053 | 0.056 | 0,048 | 0.044 | 0.045 |70.044 | 0.012 | 0.048 | 0.049
101520 | 0.051 | 0.054 | 0.050.0.044 | 0.050 | 0.046 | 0.023 | 0.049 | 0.050

Table 2. Sizes of all testswhen k=5

n CLR |CS GP DAI | B L BF SLR | CAT
33333 0,054 | 0.052»] 0.051 | 0.049 | 0.045 | 0.026 | 0.000 | 0.049 | 0.051
55555 0.0499,0.050/] 0.047 | 0.048 | 0.047 | 0.051 | 0.000 | 0.048 | 0.047
7777747 0.051 | 0,053 | 0.049 | 0.048 | 0.051 | 0.051 | 0.004 | 0.051 | 0.050
99999 0.052 | 0.052 | 0.047 | 0.047 | 0.046 | 0.047 | 0.008 | 0.046 | 0.048

15 15708 45 0.051 | 0.051 | 0.046 | 0.046 | 0.048 | 0.048 | 0.016 | 0.048 | 0.046
3030 3030,30 4¢0.051 | 0.052 | 0.046 | 0.045 | 0.047 | 0.048 | 0.032 | 0.047 | 0.046
33577 0.050 | 0.052 | 0.055 | 0.051 | 0.051 | 0.050 | 0.001 | 0.055 | 0.055
3381313 0.051 | 0.051 | 0.049 | 0.048 | 0.046 | 0.045 | 0.007 | 0.047 | 0.049
1010 152020 | 0.048 | 0.049 | 0.050 | 0.051 | 0.051 | 0.049 | 0.025 | 0.052 | 0.052




Sevgi AKSOY, Fikri GOKPINAR, Esra GOKPINAR /GU J Sci, 38(4): x-x (2025)

Table 3. Sizes of all tests when k=7

n CLR | CS GP DAI |B L BF SLR | CAT
3,..,3 0.052 | 0.051 | 0.048 | 0.047 | 0.043 | 0.030 | 0.000 | 0.047 | 0.050
5,...,5 0.051 | 0.052 | 0.050 | 0.051 | 0.050 | 0.053 | 0.001 | 0.051 | 0.050
7.7 0.049 | 0.052 | 0.049 | 0.050 | 0.049 | 0.051 | 0.003 | 0.049 | 0.050
9,..9 0.057 | 0.052 | 0.050 | 0.052 | 0.050 | 0.050 | 0.006 | 0.051 | 0.050
15,...,15 0.051 | 0.049 | 0.054 | 0.051 | 0.054 | 0.048 | 0.018 | 0.054 | 0.054
30,...,30 0.051 | 0.051 | 0.050 | 0.050 | 0.050 | 0.049 | 0.031 | 0.050 | 0.050
3355577 0.054 | 0.053 | 0.050 | 0.050 | 0.048 | 0.053 | 0.000 | 0.049 | 0.048
338881313 0.053 | 0.052 | 0.054 | 0.052 | 0.051 | 0.051 | 0.008 | 0.055° 0.054
10101515152020 | 0.052 | 0.053 | 0.053 | 0.050 | 0.052 | 0.051 | 0.020 | 04052 | 0.053

When Tables 1-3 are reviewed, it is seen that the sizes of all tests are very close toithe nominal'yalue. To
understand which test is better in which situation, we need to look at the"power valugsyof the tests. In
calculating the power values of the tests, we took different values of the population variance. For this, in
addition to the case of small and large equal sample sizes, we examined the'situations in which sample sizes
are inversely proportional to population variances and in which population variances are directly
proportional to sample sizes. The calculated powers of tests under 0=10.05 were, displayed in Tables 4—6

fork=3,5, 7, respectively.
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Table 4. Powers of all tests when k=3

n CLR [cS |[GP [DAI |B L |BF [SLR | CAT
0%=(0.25,0.5, 1)
333 0.089 | 0.099 |0.082 |0.095 | 0.087 |0.033 | 0.000 |0.095 |0.082
555 0.162 | 0.175 | 0.150 | 0.165 | 0.167 | 0.130 | 0.010 | 0.169 | 0.152
999 0.356 |0.347 |0.329 | 0.338 | 0.346 | 0.253 | 0.110 |0.347 | 0.329
151515 | 0.605 |0.585 | 0.586 | 0.582 | 0.598 | 0.475 | 0.356 | 0.598 | 0.588
303030 |0.916 |0.907 |0.919 | 0.910 | 0.919 | 0.847 | 0.812 | 0.919 |0.918
357 0.167 |0.085 | 0.131 |0.108 | 0.130 |0.087 | 0.009 |[0.163 | 0.160
3813 0.208 [0.110 | 0.168 | 0.134 | 0.170 | 0.123 | 0.056 |0.210 | 0182
101520 | 0.572 |0.458 | 0.538 | 0.493 | 0.542 | 0.409 | 0.323 | 0.5754}.0.602
02=(0.25, 0.75, 1.25)
333 0.104 [ 0.111 [0.090 | 0.095 | 0.091 | 0.034 | 0.000 | 0.099%},0.091
555 0.210 | 0.191 | 0.194 | 0.190 | 0.200 | 0.143 | 0.009” | 0,203 | 0.194
999 0.461 | 0367 | 0.450 | 0.422 | 0.443 | 0306 | 0134, | 0444 | 0.449
151515 | 0.739 | 0.666 | 0.762 | 0.726 | 0.747 | 0.590.40.456 “|10.747 [0.762
303030 |0.980 |0.970 | 0.983 | 0.977 | 0.980 | 0.937 | 0.919 | 0.980" | 0.982
357 0.167 [0.075 | 0.140 | 0.106 | 0.137 | 0.090. | 0.009% 0.179 | 0.185
3813 0212 [0.083 [0.169 |0.113 | 0.1623£0.106%| 0.046 J{ 0.217 | 0.210
101520 | 0.660 |0.419 | 0.641 | 0.561 | 0.624 | 0.455p1°0.350 | 0.659 | 0.708
0%=(1, 0.5, 0.25)
357 0.102 | 0.239 | 0.105 | 0.183 }0.152 | 0.146 | 0.001 | 0.100 | 0.036
3813 0.133 | 0.343 | 0.156 40271,/ 0.222 | 0.236 | 0.041 |0.128 | 0.028
101520 |0.542 |0.615 | 0.567 | 0.592 | 0.587,|0.489 | 0.367 | 0.550 | 0.480
02=(1.25{0.75, 0.25)

357 0.144 |0.286 | 0.180 | 0.263\ | 0.225 | 0.198 | 0.004 | 0.151 | 0.057
3813 0.234 | 0487 0.313°)0.427 | 0.371 | 0.340 | 0.086 |0.231 | 0.052
101520 | 0.735/40.761 /1 0.768 |0.769 | 0.766 | 0.637 | 0.503 | 0.734 | 0.691
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Table 5. Powers of all tests when k=5

n CLR [CS |[GP [DAI [B L | BF | SLR [ CAT
0%=(0.25,0.25,0.5,1, 1
33333 0.116 | 0.144 | 0.083 | 0.114 | 0.104 | 0.068 | 0.000 | 0.113 | 0.083
55555 0.250 | 0.248 | 0.188 | 0.212 | 0.244 | 0.188 | 0.010 | 0.248 | 0.188
99999 0.535 | 0.514 | 0.488 | 0.429 | 0.539 | 0.394 | 0.166 | 0.539 | 0.488
1515151515 | 0.823 | 0.803 | 0.814 | 0.703 | 0.832 | 0.705 | 0.561 | 0.832 | 0.813
3030303030 |0.993 |0.992 | 0.992 | 0.975|0.993 | 0.975 | 0.964 | 0.993 | 0.992
33577 0.221 | 0.099 | 0.142 | 0.114 | 0.161 | 0.110 | 0.010 | 0.220 | 0.195
3381313 0.283 | 0.098 | 0.192 | 0.130 | 0.215 | 0.148 | 0.055 | 0.284 | 0.226
1010152020 | 0.789 | 0.624 | 0.732 | 0.534 | 0.748 | 0.584 | 0.472 | 0.7874.0.799
0%=(0.25,0.25,0.75,1.25, 1.25)
33333 0.142 | 0.154 | 0.097 | 0.136 | 0.133 | 0.086 | 0.0004, | 0.1454,0.097
55555 0.317 | 0.280 | 0.255 | 0.245 | 0.313 | 0.218 | 0011 |.0.318 | 0.254
99999 0.676 | 0.592 | 0.645 | 0.518 | 0.676 | 0.486 ,[70.222 1/0.676,| 0.646
1515151515 | 0.934 | 0.899 | 0.934 | 0.835 | 0.934 | 0.824  0.696 3 0.935/ 0.930
3030303030 | 1.000 |0.999 | 1.000 | 0.997 | 1.000 | 0997 [3:995 [1000 | 1.000
33577 0.254 | 0.100 | 0.254 | 0.118 | 0.185 | 0.117 | 0.008, |, 0.258 | 0.238
3381313 0.305 | 0.087 | 0.305 | 0.123 | 0219,.0.138 | 0.046 | 0.315 | 0.278
1010152020 | 0.891 | 0.675 | 0.891 | 0.670 | 0.866 | 0.699,\ 0.580 | 0.893 | 0.910
0%4(1,1,0.5,0.25, 0.25)
33577 0.144 | 0.362 | 0.1234 0.262 | 0.228 | 0.249 | 0.001 | 0.143 | 0.035
3381313 0.172 | 0.478 | 0.¥63 {01862 | 0.320 | 0.369 | 0.039 | 0.173 | 0.024
1010152020 | 0.764 | 0.836,|0.750 | 0.707 110,787 | 0.695 | 0.557 | 0.752 | 0.652
0?=(1.25, 1225, 0.75,0.25, 0.25)

33577 0.212 | 0.450 [70:186 | 0.329 | 0.317 | 0.316 | 0.003 | 0.210 | 0.045
3381313 0.31810.640 | 0.333,|.0.497 | 0.492 | 0.501 | 0.095 | 0.313 | 0.035
1010152020 | 0.909%.] 0.936 | 0.920°| 0.860 | 0.932 | 0.849 | 0.731 | 0.912 | 0.864
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Table 6. Powers of all tests when k=7

n CLR |CS |GP |DAI [B |L |BF |SLR |CAT
0%=(0.25,0.25,0.5,0.5,0.5,1, 1)

3333333 0.110 | 0.141 | 0.073 | 0.116 | 0.096 | 0.080 | 0.000 | 0.107 | 0.074

5555555 0.217 | 0.241 | 0.144 | 0.181 | 0.207 | 0.168 | 0.005 | 0.209 | 0.145

9999999 0.464 | 0.453 | 0.409 | 0.360 | 0.477 | 0.352 | 0.124 | 0.478 | 0.409

15151515151515 | 0.769 | 0.746 | 0.734 | 0.631 | 0.763 | 0.637 | 0.462 | 0.763 | 0.733
30303030303030 | 0.987 | 0.982 | 0.985 | 0.950 | 0.986 | 0.961 | 0.942 | 0.986 | 0.984
3355577 0.214 | 0.136 | 0.126 | 0.125 | 0.164 | 0.122 | 0.007 | 0.214 | 0.170
338881313 0.309 | 0.169 | 0.198 | 0.163 | 0.244 | 0.178 | 0.064 | 0.31340.229
10101515152020 | 0.753 | 0.632 | 0.679 | 0.527 | 0.716 | 0.571 | 0.448 | 0.754 | 0750
0%=(0.25,0.25, 0.75, 0.75, 0.75, 1.25, 1.25)

3333333 0.126 | 0.141 | 0.087 | 0.112 | 0.116 | 0.092 | 0.00070x126 },0.087
5555555 0.270 | 0.240 | 0.211 | 0.207 | 0.270 | 0.198 |40.006 | 0.27440.211
9999999 0.603 | 0.477 | 0.578 | 0.431 | 0.600 | 0.429:{ 0.147n 0.601 | 0.578

15151515151515 | 0.900 | 0.804 | 0.904 | 0.776 | 0.901 | 0(758 [0:579 | 0.901 | 0.904
30303030303030 | 1.000 | 0.998 | 1.000 | 0.994 | 1.000 | 0.993 | 0.989,| 1#000 | 1.000
3355577 0.228 | 0.103 | 0.139 | 0.109 | 0.162y 0.114°40.005'1 0.223 | 0.210
338881313 0.304 | 0.119 | 0.190 | 0.1334.0.224 (40.147 | 0,050 | 0.307 | 0.265
10101515152020 | 0.836 | 0.583 | 0.802 | 0.574 | 0.800x.0:612 | 0.459 | 0.836 | 0.865
0%=41,1,0.5,0.5,0.5,025, 0.25)
3355577 0.134 | 0.292 | 0,112 [10.216 | 0.199 | 0.222 | 0.001 | 0.134 | 0.036
338881313 0.174 | 0.432 {0279 | 0.310 | 0.299 | 0.326 | 0.037 | 0.174 | 0.029
10101515152020 | 0.696 | 0.758 | 0.699 | 0.646 | 0.744 | 0.631 | 0.459 | 0.705 | 0.593
0= (1.25,1.25,0.75, 0.75, 0.75, 0.25, 0.25)
3355577 0.205 | 0355 | 0.192,| 0.272 | 0.291 | 0.283 | 0.002 | 0.196 | 0.055
338881313 01361, | 0.60200.413 | 0.453 | 0.521 | 0.477 | 0.092 | 0.349 | 0.065
1010 15 15 1520 20450.900 | 0.891 [10.920 | 0.832 | 0.923 | 0.822 | 0.649 | 0.901 | 0.865

When interpreting power tables, we first consider the situation where sample sizes are equal, and then the
situations where, sample sizes ‘ate” proportional to variances and inversely proportional to variances.
Regardless of the numbetiof groups, when sample sizes are equal and for n =3, the CS test performs better
than thesother tests\AS the sample sizes increase, especially for n =5, the powers of the CLR, SLR, and B
tests become, very close to each other and these tests perform slightly better than others. Considering the
cast where sample sizes are proportional to variances, regardless of the number of groups, it is observed
that the'CLR and SLR tests have significantly higher power values compared to other tests, especially for
small sampleysizes. With increasing sample size, the CAT method is also observed to outperform the other
tests, in addition to these tests. When considering the case where sample sizes are inversely proportional to
variances, the CS test has significantly higher power than the other tests. For example, for k=3, a2=(1, 0.5,
0.25), and n=3,8,13, the power values of the CLR, CS, GP, DAI B, L, BF, SLR, and CAT tests are 0.133,
0.343, 0.156, 0.271, 0.222, 0.236, 0.041, 0.128, and 0.028, respectively. As the difference between the
variances increases, this result has not changed. Furthermore, when we compare the CS test with other tests,
it is seen that the CS test has considerably higher power values than other tests. The observed patterns do
not change as the number of groups increased. It is observed that the CS test has significantly higher power
values than the other tests, especially with small sample sizes. In addition, as can be seen from Table 4-6,
the power values of all the tests generally converge and are very close to the value of 1 when the sample
size is larger than about 30.
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The power performance of the tests can be seen in Figure 1 and Figure 2. Since there are many cases as
seen in the tables, due to space constraints, graphs comparing the power values of the tests were obtained
only for remarkable cases. For this purpose, Figure 1 shows the graphs comparing the power values of the
tests when the sample sizes are equal for different number of groups. Here, 62=(1, 0.5, 0.25) for k=3, 0=
(0.25,0.25,0.5,1, 1) for k=5, and 6%= (0.25, 0.25, 0.5, 0.5, 0.5, 1, 1) for k=7. In Figure 2, graphs comparing
the power values of the tests are presented when the sample sizes vary across groups and are inversely
proportional to the variance values. Specifically, 0%=(1, 0.5, 0.25) for k = 3, 6%= (1, 1, 0.5, 0.25, 0.25)
for k=5and o?=(1,1,0.5,0.5,0.5,0.25,0.25) for k= 7. It is observed that the results obtained from the
tables are also clearly reflected in the graphs.

4. NUMERICAL EXAMPLES
In this section of the paper, we will present two data sets and show how the homoscedasticityitests work.

Example 1. In this section, we use the iris dataset that Anderson [22] gathered{ which is'still'widely used
in many studies. Examples of these studies include those that deal with data mining, multivariate normality
assessment, and other topics [23, 24]. This dataset contains measurements’of the sepals and¢haracteristics
of iris flowers, specifically their length and width in centimeters. It“also includes a grouping variable
indicating the type of iris flower, which can be categorized asdsetosa, wirginicaand versicolor. To
demonstrate the application of the tests, we use the sepal length measurementsyas the dependent variable,
while the iris types serve as the independent variable. The sumimary statistics of ifis data are presented in
Table 9.

Table 9. The summary statistics of iris data
n Xi Slz
setosa 50 5.01 0.124
versicolor 50 5.94 0.266
virginica 50 6.59 0.404

When we performed the Shapiro-Wilk test to check the'normality of the data in each group, the p-values
obtained for each group are 0.460, 0.465, and 0.258 réspectively. As we can see, each group has a normal
distribution. To calculate the p-valuesifor all tests, we performed 10000 replications.

Table 10. The results of'tests foriris data
Test CLR | CS GP B L BF SLR | CAT
p-value | 0.0001 | 0.0003(20.0004 | 0.0003 | 0.0008 | 0.0022 | 0.0000 | 0.0002

Table 10 demonstrates that every test yields the same result, i.e., every test rejects the H, provided in
Equationf(2) at the nominal level of 0.05. As a result, we can conclude that there are differences among iris
species.

Example2. The data set is drawn from a study by Chang et al. [20]. The subjects in the study were 45 rape
survivors, ‘€ach stbject randomly assigned to one of four treatment groups: (i) Treatment-1=Stress
inoculation treatment (SIT), where subjects learned various coping skills. (ii) Treatment-2=Prolonged
Exposure (PE), where subjects mentally replayed the rape in their minds repeatedly for seven sessions. (iii)
Treatment-3=Supportive Counselling (SC), which is a standard treatment group; and (iv) Treatment-
4=Waiting List (WL), control.

Summary statistics for symptom scores obtained from subjects under four different treatments are given in
Table 11.
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Table 11. The summary statistics of rape victims
n Xi Slz
Treatment-1 14 11.071 | 14.495
Treatment-2 10 15.400 | 111.240
Treatment-3 11 18.091 | 46.265
Treatment-4 10 19.500 | 45.450

When we performed the Shapiro-Wilk test to check the normality of the data in each group, the p-values
obtained for each group are 0.997, 0.312, 0.355, and 0.114 respectively. As we can see, each group has a
normal distribution. To calculate the p-values for all tests, we performed 10000 replications. The p-values
of the tests are given in Table 12.

Table 12. The results of tests for rape victims
Test CLR | CS GP B L BF SLR | CAT
p-value | 0.016 | 0.013 | 0.019 | 0.014 | 0.003 | 0.004 | 0.000 | 0.025

Table 12 demonstrates that every test rejects the H, provided in Equatioft (2) atithe nominal‘level of 0.05.
As a result, we can conclude that the treatments of rape victims have, diffetence/variances.

5. CONCLUSION

In this paper, we propose a CAT-based approach for the S test,\referred toyas the CS test, to assess the
homogeneity of variances under normality. A simulatiofi study was\conducted to evaluate the performance
of the proposed test and compare it with its competitors.

Using Monte Carlo simulations, all tests were compared in terms of size and power across various sample
sizes and group numbers. According to the simulation results, the sizes of all tests are very close to the
nominal level. When comparing the tests"based,on power values, the following observations were made:
Regardless of the group size, the CS test outperforms the other tests for n=3. As sample sizes increase,
particularly for n>5, the power valdes of the CLR, SCR; and B tests slightly better than those of the other
methods. Additionally, as the sample sizes increase, the power values of all the tests tend to converge.
When sample sizes and variances are inversely proportional, the CS test consistently exhibits significantly
higher power values than the other tests, tegardless of group size. The simulation study highlights that the
CS and CLR tests perfofm differently across-all scenarios, particularly for small sample sizes. Furthermore,
numerical examples have shownithat.the/proposed method is highly accurate even for small sample sizes
or large sample sizes.

Small sample sizes oftemparise due to time constraints, cost limitations, or insufficient data availability,
making the, choice‘ofsest critical. Therefore, we recommend researchers consider the CS test, especially
alongside the CLR test, when sample sizes and variances are inversely proportional. Additionally, for other
hypothesis testing problems, researchers may explore other likelihood-based tests beyond the LR test.
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