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Drying Characteristics of Fresh Persimmons: Impacts on Color and Energy 

Consumption 

Taze Hurmaların Kurutma Özellikleri: Renk ve Enerji Tüketimi Üzerindeki Etkileri 

 

Emel ÇELİK1*, Nezaket PARLAK2 

Abstract 

Persimmon (Diospyros kaki) constitutes a notable fruit in Türkiye. The fruit is consumed in its fresh state during 

specific periods of the year, which renders it of significant importance in the context of product preservation. 

Drying is the most commonly used method for preserving products. Drying requires significant energy 

consumption. The drying time and method employed have a direct impact on both energy consumption and product 

quality. Persimmon is a nutrient-dense fruit that needs to be dried for extended shelf life. This study investigated 

the drying behavior of persimmon slices having an initial moisture content of approximately %73.8 wet basis in a 

microwave oven. Moisture diffusion, shrinkage, color change and rehydration properties were investigated as a 

function of microwave power and slice thickness. Samples were prepared at two different thicknesses (5 mm and 

9 mm) and tested at three microwave power levels (350 W, 460 W and 600 W). Curve fitting tools in the Matlab 

programmer were used to model the variation in moisture content over time. The study utilised six models: Lewis, 

Page, Henderson and Pabis, Logarithmic, Midilli, Wang and Singh. The logarithmic model has been demonstrated 

to provide the most accurate description of persimmon drying kinetics. The dried products' quality was evaluated 

through various parameters, including color metrics (L*, a*, b*), color difference (ΔE), browning index (BI), 

chroma, and hue angle, along with rehydration and shrinkage ratios. The effective diffusion coefficients of 

persimmon were found to range from 2.27 × 10-10 to 9.08 × 10-10 m²/s. Specific energy consumption ranged from 

2.21 to 3.028 kWh/kg. The lowest ΔE value was observed in the samples dried at 460 W, suggesting that the 

highest power (460 W) effectively preserved the natural color of fresh persimmon and minimized browning 

reactions during the drying process. Results indicated that the applied microwave energy significantly influenced 

the drying process of the persimmon and the observed changes. 
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Öz  

Trabzon hurması (Diospyros kaki) Türkiye'de önemli bir yere sahip meyvedir. Yılın belirli zamanlarında taze 

olarak tüketilen bir meyve olduğu için ürün muhafazası bakımından önemli bir potansiyele sahiptir. Kurutma, 

ürünleri muhafaza etmek için en yaygın kullanılan yöntemdir. Kurutma işlemlerinde önemli ölçüde enerji tüketimi 

gerektirir. Kurutma süresi ve kullanılan yöntem hem enerji tüketimi hem de ürün kalitesi üzerinde doğrudan bir 

etkiye sahiptir. Trabzon hurması, raf ömrünün uzatılması için kurutulması gereken besin değeri yüksek bir 

meyvedir. Bu çalışmada, yaklaşık olarak %73.8 yaş bazda ilk nem içeriğine sahip Trabzon hurması dilimlerinin 

mikrodalga fırında kurutma davranışı incelenmiştir. Nem difüzyonu, büzülme, renk değişimi ve rehidrasyon 

özellikleri mikrodalga gücünün ve dilim kalınlığının bir fonksiyonu olarak incelenmiştir. Örnekler iki farklı 

kalınlıkta (5 mm ve 9 mm) hazırlanmış ve üç mikrodalga güç seviyesinde (350 W, 460 W ve 600 W) test edilmiştir. 

Nem içeriğinin zaman içindeki değişimini modellemek için Matlab programındaki eğri uydurma araçları 

kullanılmıştır. Çalışmada altı model kullanılmıştır: Lewis, Page, Henderson ve Pabis, Logaritmik, Midilli, Wang 

ve Singh. Logaritmik model Trabzon hurması kurutma kinetiğini en iyi şekilde tanımlamaktadır. Kurutulmuş 

ürünlerin kalitesi, renk ölçümleri (L*, a*, b*), renk farkı (ΔE), kahverengileşme indeksi (BI), kroma ve ton açısı 

ile rehidrasyon ve büzülme oranları dahil olmak üzere çeşitli parametreler aracılığıyla değerlendirilmiştir. Trabzon 

hurmasının etkili difüzyon katsayılarının 2.27 × 10-10 ila 9.08 × 10-10 m²/s arasında değiştiği bulunmuştur. Spesifik 

enerji tüketimi 2.21 ila 3.028 kWh/kg arasında değişmiştir. En düşük ΔE değeri 460 W'da kurutulan örneklerde 

gözlenmiştir, bu da en yüksek gücün (460 W) taze Trabzon hurmasının doğal rengini etkili bir şekilde koruduğunu 

ve kurutma işlemi sırasında kahverengileşme reaksiyonlarını en aza indirdiğini göstermektedir. Sonuçlar, 

uygulanan mikrodalga enerjisinin Trabzon hurmasının kurutma sürecini ve gözlemlenen değişiklikleri önemli 

ölçüde etkilediğini göstermiştir. 

Anahtar Kelimeler: Trabzon hurması; Kinetik kurutma modeli, Büzülme; Güç, Renk  
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1. Introduction 

The persimmon is a member of the Ebenaceae family. It is cultivated in warm regions of the world (Senadeera 

et al., 2020). The persimmon is recognised as a nutrient-rich fruit (Jesus et al., 2023). Persimmon are typically 

consumed in their fresh state. However, since fresh persimmons consist of up to %80 water and are susceptible to 

softening and rotting following harvesting, they result in significant wastage (Qin et al., 2022). Nevertheless, the 

high moisture, sugar and polyphenol content of persimmon fruits renders them susceptible to decay and browning 

after harvesting (Jia et al., 2019).  

The high yield of persimmons coupled with the brief period of harvest has resulted in a notable rise in 

postharvest losses, with estimates reaching up to %30 of total production (Cervera-Chiner et al., 2024). 

Consequently, one of the most pressing issues currently facing the persimmon industry is the need to identify 

strategies that enhance the value of the discarded fruit (González et al., 2021). Drying is a common postharvest 

preservation technique. The process reduces the likelihood of spoilage, extends the shelf life of harvested 

agricultural products, and reduces the bulk weight of the products during transportation. The application of heat 

during the drying of agricultural products inactivates enzymatic reactions, resulting in a reduction in the moisture 

content of the product (Khaled et al., 2020). However, excessive heat exposure may lead to a decline in quality 

attributes, highlighting the need for efficient drying methods to maintain the sensory and nutritional properties of 

fresh fruits (Jesus et al., 2023). The oldest traditional method is natural drying. Despite no energy requirements, 

this method has disadvantages. These include extensive drying areas, prolonged drying periods, a high demand for 

labour, and pests adhering to the product. To eliminate these and obtain higher quality, novel drying methods are 

used (Yildiz et al., 2024). Microwave heating is a new technology. In comparison to conventional heating methods, 

microwave heating is capable of utilizing energy more efficiently due to its accelerated rate of heat transfer (Wu 

et al., 2024). Karacabey et al. (2020) examined dried seedless grape samples at varying temperatures and power 

values, using the microwave and hot air methods without pretreatment. The study presented drying kinetics and 

energy consumption values, depending on the method employed. The process of microwave drying involves the 

simultaneous heating of the material from both the inside and outside, with a minimal overall temperature 

differential, a relatively brief heating duration, and the prevention of surface hardening. This leads to an enhanced 

quality of the final product (Łechtańska et al., 2015). Microwave drying is a common method for the drying of a 

variety of food products, such as fruits (Huang et al., 2022; Rodriguez et al., 2019; Taşova et al., 2023; Yildiz et 

al., 2023;), vegetables (Lapczynska-Kordon et al., 2019); Bi et al., 2023); Dursun et al., 2023) and meat (Kamiloğlu 

et al., 2023; Kipcak et al., 2021). 

Mathematical modeling is important to extend the shelf life in fruit drying. Mathematical models are used  to 

design and optimize industrial drying systems. (Brasiello et al., 2013). Mathematical models describe the drying 

process. Thin layer drying models can be grouped into theoretical, semi-theoretical and empirical models (Doymaz, 

2012; McMinn, 2006). The literature review showed that studies have been done on the drying behavior of 

persimmon, (Cárcel et al., 2007; Tülek and Demiray, 2014), and even theoretical models for drying kinetics have 

been proposed, but no comprehensive study has been carried out, including energy, color analysis, and shrinkage. 

Drying models are important in the control of drying machines. There is a need for mathematical models that both 

save energy and ensure product quality. The objectives of this study were: To investigate the effect of microwave 

power and slice thickness on drying time, moisture, drying rate, shrinkage and rehydration rate, (b) to the 

experimental data to the mathematical model, (c) calculating the effective moisture diffusion, (d) power, (g) 

specific energy consumption and (e) color evaluations. 

2. Materials and Methods 

2.1. Raw Materials 

The harvesting of persimmon was carried out in the Sakarya region of Turkey. Fruits with homogeneous 

characteristics (of the same size and color) were chosen, and distorted fruits are discarded. The weight of the persimmon 

fruit was 100 g on average, and the thickness was cut between 5 mm and 9 mm. Persimmon samples were selected to 

be uniform in size. The initial moisture content was approximately 73.8 (w.b) (± 2). After these preparations are 

completed, they will be subjected to drying. Figure 1 shows the persimmon sample used in the experiment.  
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Figure 1. (a) All persimmon; (b) Internal see of the persimmon 

Moisture measurements were conducted concurrently with the Sartorius MA30 device (Çelik et al., 2021). 

Persimmon samples were made at three different drying powers: 350 W, 460 W, and 600 W. In this study, persimmons 

(Diospyros kaki) with an initial moisture content of 73.8% (wetted base), an average length of 75 mm, an average 

width of 65 mm, and a thickness ranging between 5 and 9 mm were used. 

2.2. Drying Processes  

The experiments were performed using a precisely programmable microwave oven (Arçelik MD674 Microwave 

Oven). The microwave oven operates at 120, 350, 460, 540, 600, 700 and 900 W. The region of the microwave oven 

is 448 × 262 × 312 mm inner size. The samples were weighed manually throughout the drying process. The 

experiments were conducted in triplicate. See Figure 2 for a schematic of the microwave drying procedure.  

 

Figure 2. Microwave drying system cycle 

Uncertainty analysis improves the precision of experiments used in modelling and design (Koç et al., 2008). Drying 

experiment discrepancies are usually due to measuring instruments, calibration, environmental conditions, observation 

and data interpretation (Koç et al., 2019). The general equation below expresses measurement uncertainty (Kaymak-

Ertekin et al., 2005). The measurements were conducted with the following precision: ambient air temperature with an 

accuracy of ±0.2 °C, time ±0.1 minutes, mass ±0.05 grams, color ±0.01 nm, moisture content ±0.05 grams, and power 

±0.02 kWh. 

2.3. Mathematical Modeling of Hot Air Drying Kinetics 

The moisture ratio (MR) for the persimmon was determined using the following equation, considering different 

microwave powers and thicknesses: 

𝑀𝑅 =
𝑀𝑡−𝑀𝑒

𝑀0−𝑀𝑒
          (Eq. 1)  

Here, Mt represents the moisture content (kg water kg-1 dry matter) at any given time t, while M0 is the initial 

moisture content. Me denotes the equilibrium moisture content, which remains constant during the hot air drying 

process (Karaaslan, 2014; Seremet et al., 2016; Zhao et al., 2021). 
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The drying rate (DR) of persimmon was calculated by the equation given below (Karaaslan, 2016); 

𝐷𝑅 =
𝛥𝑀

𝛥𝑡
=

𝑀𝑡−𝑀𝑡+𝛥𝑡

𝛥𝑡
           (Eq. 2) 

Here, Mt+Δt represents the moisture content at time t + Δt (kg water kg−1 dry matter), with Δt denoting the 

difference between the initial and final timescales. This study used experimental models to find the best way to 

define drying behavior (Table 1). 

Table 1. Models used in modelling 

2.4. Effective Moisture Diffusivity 

Efficient diffusion (Deff) is considered a significant property of mass transfer along with the drying of 

agricultural products. The diffusion coefficient (Deff) of persimmon was determined using Fick's second law, as 

represented by the following equation (Zhao et al., 2021): 

𝑀𝑅 =
8

𝜋2
∑

1

(2𝑛+1)
∞
𝑛=0 𝑒𝑥𝑝 (

−(2𝑛+1)2𝜋2𝐷𝑒𝑓𝑓𝑡

4𝐿2 )        (Eq. 3) 

In this equation, L represents the half-thickness of the persimmon (m), t denotes the time required for air-drying 

(min), and n is an integer greater than or equal to 1. 

Moreover, equation (3) was simplified to the following equation: 

𝑀𝑅 =
8

𝜋2 (𝑒𝐷𝑒𝑓𝑓𝑡(
𝜋

2𝑙
)

2

)          (Eq. 4) 

The equation in its logarithmic form is as follows: 

𝐼𝑛(𝑀𝑅) = 𝐼𝑛
8

𝜋2 − 𝐷𝑒𝑓𝑓 (
𝜋

2𝑙
)

2

𝑡        (Eq. 5) 

2.5. Rehydration Ratio 

The rehydration experiments were conducted by immersing approximately 25 grams of persimmon in 100 ml of 

purified water at ambient temperature for a 30-minute period.  The examples were subjected to a process of removal, 

emptying and blotting in order to eliminate surface water, and were then subjected to a weighing procedure. The 

rehydration ratio (RR) was calculated using the equation from (Deng et al., 2008; Haneef et al., 2021; Jia et al., 2019). 

𝑅𝑅 =
𝑀𝑏

𝑀𝑎
           (Eq. 6) 

The examples of the masses of the samples after and before rehydration(g), respectively, are labelled as Mb 

and Ma.  

2.6. Shrinkage 

The volume of persimmons was measured before and after drying using the toluene displacement technique 

(Dehghannya et al., 2019). The degree of shrinkage (Sb) of persimmon was calculated using the following equation, 

based on the measurement of primary and secondary volumes of material (Haneef et al., 2021; Kaveh et al., 2018; 

Miraei Ashtiani et al., 2018): 

Models Model Equations References 

Lewis MR=exp(-kt) (Brooker et al., 1992) 

Page MR=exp(-ktⁿ) (Hassan-Beygi et al., 2009) 

Henderson and Pabis MR=a exp(-kt) (Ghodake et al., 2006) 

Logarithmic MR=a exp(-kt)+b (Wang, 1978) 

Midilli MR=a exp(-ktⁿ)+bt (Midilli et al., 2003) 

Wang and Singh MR=a+bt+ct2 (Dağdeviren et al., 2023) 
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𝑆𝑏 =
(𝜃𝑜−𝜃𝑓)

𝜃𝑜
× 100          (Eq. 7) 

2.7. Power Consumption 

Power consumption is calculated using the device output power and pass time. An overall calculation was 

conducted using the following formula: 

 𝑃𝑡 = 𝑃 × 𝑡           (Eq. 8) 

Here, the variables are as follows: Pt represents power consumption, P denotes electronic output power (kW), 

and t is time (h) (Jia et al., 2019). 

2.8. Energy Consumption Analysis 

The specific energy consumed throughout the drying process, as defined by the equation (10), was calculated 

in order to represent the microwave drying method. This equation allows for the calculation of the amount of 

energy required to vaporize 1 kg of water from the crop (Jia et al., 2019; Taghinezhad et al., 2020): 

𝑆𝐸𝐶 =
𝑃𝑡𝑡

𝑚𝑤
           (Eq. 9) 

The specific energy consumption (SEC) is represented by the microwave, and mw is mass of evaporated water 

(kg). 

2.9. Color Evaluation 

The color of persimmon samples was quantified using a tintometer. L*, a* and b* values are given for 

brightness, red, green and yellow. The L*, a*, and b* color parameters were measured for all samples. The hue 

angle (H°) represents the perceived color of a substance. The value in this instance was determined through the 

application of the following equation (Senadeera et al., 2020): 

𝐻 = 𝑡𝑎𝑛−1 𝑏∗

𝑎∗           (Eq. 10)  

Furthermore, the browning index (BI) was determined in accordance with the formulary method described 

below(Karimi et al., 2021): 

𝐵𝐼 =
100(𝑥−0.31)

0.17
           (Eq. 11) 

𝑥 =
(𝑎∗+1.75 𝐿∗)

(5.645𝐿∗+𝑎∗−3.012𝑏∗)
          (Eq. 12) 

A hue angle of over 90° yields green, while under 90° yields an orange-red. 

Total color changes (ΔE) were computed using equation (13) (İlter et al., 2018; Kaveh et al., 2021): 

∆𝐸 = √(∆𝐿∗)2 + (∆𝑏∗)2 + (∆𝑎∗)2         (Eq. 13) 

In this equation, ΔL*, Δb*, and Δa* represent the differential values of the lightness, color parameter b, and 

color parameter a, respectively. 

Chroma (C*) is a quantitative attribute that is used to quantify the colorfulness of a given hue. In order to 

ascertain the extent of the discrepancy between a specific hue and a grey color with an identical lightness, the C* 

value is utilized. C* is calculated using the following formula (Kayacan et al., 2020): 

𝐶∗ = √𝑎∗2
+ 𝑏∗2

          (Eq. 14) 

3. Result and Discussion 

The drying effect of persimmon with a microwave drying method at three different microwave power and two 

different thicknesses was investigated and compared with each other. 
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3.1. Drying Characteristics (Effect of microwave power and product thickness on drying time) 

The initial moisture content of the persimmon samples used in the tests was between 73 and 75% and dried to 

12% (w.b). Figure 3 shows the moisture content variation of persimmon slices for different thicknesses during 

drying at various microwave powers. 

Figure 3 demonstrates that an elevation in microwave power, coupled with a reduction in sample thickness, 

resulted in an accelerated rate of moisture loss. As the microwave power level was increased, a notable 

enhancement in the slope of the drying curve was observed during the initial time period of the process. Upon 

completion of the drying process, all curves demonstrated a proclivity towards flattening, indicative of a decline 

in the rate of moisture evaporation. 

 

Figure 3. Moisture content (d.b) vs time a) for 5 mm thickness b) for 9 mm thickness 

As the microwave power level increased, the drying time decreased in accordance with the expected 

relationship between these two variables. The maximum decrease in drying time was observed in the 5 mm thick 

persimmon samples, which showed a reduction of up to 50%. For 9 mm thick persimmon samples, the maximum 

decrease was found as 38 %. The mass and heat transfer are faster in higher microwave powers and thinner 

thicknesses. It is evident that elevated levels of power enhance both the kinetic energy and the energy absorbed, 

thus resulting in a greater disparity between the vapor pressures observed at the core and the external surface of 

the samples. This will, in turn, accelerate the rate of moisture elimination. Similarly Karaaslan (2014) observed a 

reduction in drying time as microwave power was increased.  

Also, Jia et al. (2019) indicated that persimmon chips subjected to different drying air temperatures exhibited 

a notable influence on the evaporation and drying time. They showed that the moisture content decreased 

continuously until constant moisture content was reached. The drying rates of persimmon were evaluated at various 

time points, plotted against the moisture ratio for the second phase of the drying treatment, and illustrated in Figure 

4. 

 

Figure 4. Drying rate vs Moisture ratio, a) for 5 mm thickness b) for 9 mm thickness at different microwave 

powers 

Figure 4 shows the initial drying rate rises during drying. The samples' elevated moisture content causes them 

to absorb more energy at the surface. Moisture content and energy absorption decline, reducing drying rates. At a 

constant temperature, more microwave power means a faster drying rate, due to more energy being absorbed. The 
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maximum drying rate was observed at 600 W and 5-9 mm. The drying period exhibited a declining rate, which 

suggests that diffusion was the primary force influencing the removal of water. These results align with those of 

(Çelen, 2019). The drying rate was influenced by enhanced drying power, accelerated moisture loss and reduced 

drying time. 

3.2. Mathematical Analysis of Drying Kinetics 

A variety of mathematical models have been utilized in order to forecast the kinetic processes involved in the 

drying of agricultural products. The moisture content of the product is calculated through experimental means. 

Once the weight loss of the product has been determined over time, a graph is created based on the results of 

mathematical models. In the present study, a selection of six thin-layer models was made and adapted to the 

empirical data. The objective of this process was to determine the most suitable model for the purposes of the 

study. Table 2 presents the results of the statistical analysis of the various models. The evaluation criteria that were 

used to ascertain each model's suitability are also included. As illustrated in Table 2, the values for the coefficient 

of determination (R²), the root mean square error (RMSE), and the sum of squares due to error (SSE) are 

documented. The model that offers the optimal explanation of the thin-layer drying characteristics of whole 

persimmons was selected based on the criteria of achieving the highest possible R2 and the lowest possible RMSE 

and SSE. With regard to the complete experiments, the R², SSE, and RMSE data for the models exhibited values 

between 0.9901 and 0.998, 0.00027 and 0.00930, and 0.01671 and 0.9933, respectively. As demonstrated in Table 

3, the logarithmic model exhibited the highest R² values and the lowest values of RMSE and SSE.  However, it 

should be noted that the results of this study differ from those reported in the literature. The Midilli model has 

been demonstrated to be an appropriate fit for the empirical drying data of persimmon, as indicated by the findings 

of studies (Karaaslan, 2014; Doymaz, 2012; Sampaio et al., 2017). These findings are supported by the results of 

other empirical models. 

Table 2. Statistical Comparison of Models for Thin-Layer Drying of Persimmon 

Model Thickness 

R2 
X2 RMSE 

350 W 460 W 600 W 350 W 460 W 600 W 350 W 460 W 600 W 

Lewis 

5 mm 0.9538 0.9889 0.9718 0.04322 0.004782 0.01377 0.07858 0.03992 0.05867 

9 mm 0.9212 0.9107 0.998 0.04809 0.03918 0.00087 0.1096 0.1143 0.02097 

Henderson 

and Pabis 

5 mm 0.9491 0.9889 0.9733 0.04235 0.004764 0.01305 0.09204 0.04881 0.06596 

9 mm 0.9305 0.9142 0.948 0.04240 0.03764 0.00087 0.1189 0.1372 0.02955 

Logarithmic 

5 mm 0.9901 0.9908 0.9942 0.00930 0.008705 0.00454 0.04315 0.06597 0.0674 

9 mm 0.998 0.9994 0.9933 0.00028 0.000279 0.00379 0.01674 0.01671 0.9933 

Page 

5 mm 0.9972 0.9893 0.985 0.00192 0.004714 0.00734 0.01963 0.04855 0.04946 

9 mm 0.9988 0.9633 0.9927 0.00075 0.01609 0.00415 0.01591 0.08971 0.03721 

Midilli 

5 mm 0.9978 0.994 0.9852 0.00181 0.000876 0.00723 0.02459 0.0296 0.08503 

9 mm 0.9996 0.8707 0.9433 6.648e-05 0.05672 0.03802 0.00815 0.1375 0.06166 

Wangh and 

Singh 

5 mm 0.9871 0.9693 0.9846 0.0107 0.01782 0.00753 0.05172 0.09439 0.06137 

9 mm 0.9841 0.9911 0.9851 0.00486 0.00392 0.00422 0.04931 0.06261 0.04595 
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Senadeera et al. (2020) indicated that the Page model was the most appropriate for characterizing persimmon 

drying curves across a range of temperatures (45-65°C). The findings indicate that the Page and Midilli models 

can be employed, however, the logarithmic model is the most optimal among the models presented in Table 2. 

3.3. Evolution of Effective Moisture Diffusivity 

Effective moisture diffusion (Deff) was calculated by slope method for different microwave power and different 

slice thicknesses. Effective diffusivity (Deff) values were defined by Equation 4 and Figure 5 shows effective 

diffusivity (Deff) values.  

 

Figure 5. Effect of Microwave Power on Effective Moisture Diffusivity 

Table 3. Comparison with results in the literature 

Experiment conditions Deff [m2/s] Reference 

Convective dryer; 40,50 

and 60 ˚C 

7.05x10-11 to 2.34 x 10-10 (Doymaz, 2012) 

Convective dryer; 55–

75°C 

 

9.24 × 10−10 and 10.40 × 10−10 (Blanched) 

7.76 × 10−10 and 9.63 × 10−10 (Solution 

immersed) 

(Demiray and Tülek, 2017) 

Freeze dryer; -55 ˚C 2.57×10-12 (Dağdeviren et al. 2023) 

Microwave drying; 120 

W and 600W 

2.97 × 10−8 and 4.63 × 10−6 (Çelen, 2019) 

Convective dryer 50, 55, 

and 60˚C 

1.04 ×10-6 , 1.40 × 10-6 , and 8.27 × 10-7 (Sampaio et al., 2017) 

In the literature, the effective diffusivity coefficient is reported to range from 10⁻¹² to 10⁻⁸ m²/s for food crops 

(Doymaz, 2012; Dağdeviren et al., 2023). Figure 6 illustrates the rise in diffusion coefficients as the thickness of 

the persimmon slices is increased. It was noted that the Deff values exhibited a marked increase with the elevation 

of slice thickness and microwave power. The application of a higher microwave power during the drying process 

resulted in an elevated level of heating energy, which in turn increased the activity of water molecules and 

consequently enhanced moisture diffusivity. Furthermore, persimmon slices with a thickness of 9mm had higher 

moisture diffusivity than 5mm across all microwave power levels. The thickness allows water to move towards 

the persimmon surface, increasing the effective moisture coefficient. The experiments demonstrated that the 

effective diffusion coefficients exhibited a dependence on both thickness and microwave power. The diffusion 

coefficients ranged between 2.26×10−10 and 9.07×10−9. The findings were consistent with those in Table 3. 

3.4. Rehydration Rate 

The rehydration of dried products is a widely employed method for the evaluation of their quality. The data 

shows the changes in the samples during drying (Doymaz, 2012). Rehydration ratio values of persimmon 

calculated from Equation (6), are illustrated in Figure 6.  
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Figure 6. Rehydration graph for persimmon dried at 350, 460 and 600W 

The rehydration rates of the 5 mm samples were higher than the 9 mm thick samples, which means that there 

is less structural damage and cell disruption during the drying process. The findings reported by Doymaz (2012); 

are comparable to , with rehydration ratios of persimmon reported to be between 2.3 and 3.1.  

3.5. Shrinkage 

Figure 7 illustrates the shrinkage percentage values for dried dates with varying strengths and two distinct 

thicknesses. 

 

Figure 7. Shrinkage behavior of Persimmon samples 

The shrinkage was observed to decrease at 5 and 9 mm slices with increasing drying power value. The lowest 

degree of shrinkage was observed at 600 W and a depth of 9 mm, while the highest degree of shrinkage was 

observed at 350 W and a depth of 5 and 9 mm. 

3.6. Power 

Energy consumption was measured with an energy counter. The graphic of persimmon power for microwave 

dryers is shown in Figure 8. 

The energy consumption of a microwave oven was measured at different powers and slice thicknesses. At 5 

mm, it was 0.05–0.23 kWh, at 9 mm, 0.05–0.46 kWh. 450 W and 9 mm may be the most energy-efficient. Çelen 

(2019), measured the system's energy consumption at 5 mm, 0.085 kWh; 7 mm, 0.1 kWh; and 9 mm,  0.09 kWh. 

Jia et al. 2019; said that persimmon chips were dried using a freeze-drying technique. Freeze-dried persimmon 

chips consumed 7-9 times more power than combined hot-air and hot-air microwave drying. The extended drying 

period necessitated by the freeze-drying process, which required approximately five times longer than that required 
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for the hot-air and combined hot-air-microwave methods, may have contributed to the result. The maintenance of 

a vacuum and low temperatures within the cold trap necessitated a greater input of energy. 

 

Figure 8. Energy consumption for drying of permission at different levels of microwave powers 

3.7. Specific Energy Consumption (SEC) 

Figure 9 demonstrates the values of the specific energy content (SEC) for two distinct persimmon slices (5 and 

9 mm in thickness) subjected to microwave drying. 

 

Figure 9. Specific energy consumption for microwave 

This study found SEC ranged from 2.21 to 3.028 kWh/kg. Figure 9 shows SEC declines with power. Kaveh et 

al. (2021) showed that drying pomegranate arils in a microwave dryer uses 35.42 kWh/kg at 270 W and 13.19 

kWh/kg at 630 W. The ratio between the maximum and minimum values of SEC is 2.68. As MW power increases, 

SEC decreases significantly, reaching a value that is approximately three times less. The decrease in SEC is 

attributed to the impact of volumetrically heating, which reduces drying time. The reduction of drying times and 

the lowering of the specific energy consumption (SEC) are of significant importance in the process of improving 

microwave drying. Çelen 2019, reported that the maximum and minimum values of SEC were 14 and 28 MJ kg-1 

at a microwave power range of 120–600 W. 

3.8. Color 

Food product color is important in marketing fresh and processed items, particularly in relation to quality. The 

microwave drying persimmon was determined for color changes depending on the time in the drying process. 

Figure 10 shows the L*, a*, b* of dried persimmon for the microwave drying at different microwave power (350, 

460, and 600W) and slice thickness. For the dried Persimmon, the lowest values of L*and b* were microwave 

power of 600 W but a* values are high. 
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Table 4. Comparative Colour Evaluation of Fresh and Dried Persimmon Samples 

 

 

Figure 10. The color of persimmon, a) for 5 mm thickness b) for 9 mm thickness at different microwave 

powers 

Çelen (2019) found that slice thickness has no effect on ∆L values.  The impact of slice thickness on ∆E values 

was significant for samples sliced at 9 mm. The effects of microwave power levels on ∆L values were significant 

for samples dried at 600 W, while the effects on ∆E values were insignificant. The color alterations observed in 

the microwave power dryer are presented in Table 4. 

The hue angle and total color variations from the Hunter values (L*, a*, and b*) provide a more nuanced 

representation of the color change in fresh and dried persimmons (Maskan, 2001). The optimal drying of 

persimmons is associated with minimal overall color change (∆E), which plays a crucial factor in consumer 

approval (Senadeera et al., 2020). Moreover, the hue values of the dried samples differed from those of the fresh 

persimmons. Persimmon samples dried at 460 W with a thickness of 5 mm and at 350 W with a thickness of 9 mm 

showed a significant increase in hue angle values compared to other dried samples. The drying conditions notably 

influenced the total color differences of the dried samples. The lowest ΔE value was observed in the samples dried 

at 460 W, suggesting that the highest power (460 W) effectively preserved the natural color of fresh persimmon 

and minimized browning reactions during drying. 

This result, which occurs in color change depending on the temperature, is also compatible with the general 

literature data. Yıldız Akbulut (2021) observed that in the microwave the L * (Brightness) value of Trabzon 

persimmon is increased. On the subject of a* (redness) and b* (yellowness) values, these values were observed to 

be decreased. Jia et al. (2024) observed a reduction in color with increased microwave power. The highest L* 

value and the lowest a*/b* value were observed at a power density level of 6.8 Wg−1. Çelen (2019) observed a 

reduction in color change with increasing slice thickness.  The lowest gloss and total color change were observed 

at 600 W and a slice thickness of 9 mm.  The drying process results in oxidation, leading to a reduction in color 

intensity. Kaveh et al., (2021) indicated that the color changes in microwave dryers increased from 6.77 to 13.11 

with the increase in microwave power from 270 to 630 W. Xu et al. (2020) emphasize that the alteration in pigment 

coloration can be attributed to the impact of elevated temperatures on heat-sensitive compounds, including 

 Values 

Measured color values-

5 mm 

L* a* b* C(Croma) H(Hue)       ΔE BI 

Fresh 38.45 10.21 32.69 42.40 56.19   

350 37.80 10.39 21.24 23.78 50.71 31.23 73.59 

460 33.50 10.92 15.80 19.27 52.34 19.66 79.02 

600 31,15 11.17 16.03 19.70 50.49 21.19 86.00 

Measured color values-

9mm 

L* a* b* C(Croma) H(Hue) ΔE BI 

Fresh 43.15 13.20 34.85 37.27 69.26   

350 41.93 13.27 27.69 30.76 61.54 27.78 57.17 

460 39.07 15.93 24.45 29.26 56.90 10.95 73.61 

600 31,68 18.23 19.25 26.51 46.56 22.07 83.95 
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carbohydrates, proteins and vitamins. This phenomenon also leads to colour change during the drying process.  

Senadeera et al. (2020) report that no significant differences were observed in the L* values between fresh and all 

dried persimmon slabs. The a* values of the samples were found to be influenced by the drying conditions, 

specifically the temperature and time. With regard to the dehydrated samples, there was an increase in a* values 

following the drying process.  No statistically significant differences were observed in the b* values of the dried 

persimmon slices. The dried samples exhibited distinct H° values in comparison to the fresh persimmon fruit. The 

persimmon samples that were dried at 65°C demonstrated a higher hue angle and ΔE values in comparison to the 

other dried samples. Kayacan et al. 2020 observed that the ΔE value of persimmon exhibited a range of 21.57 to 

23.63, indicating a notable color change following hot air drying, with freeze-drying demonstrating a less 

pronounced effect. As power density increased, brightness decreased. Power density increases caused temperature 

and vapor pressure to rise. This was a consequence of the transfer of energy into the product.  

4. Conclusions  

This study examined the effects of microwave power and slice thickness on drying time, drying rate, shrinkage, 

color, and rehydration rate. A mathematical model was proposed, and diffusion coefficients and specific energy 

consumption values were calculated. The results of the experimental and theoretical study can be summarized as 

follows. 

a) As expected, the 5 mm samples dried faster than the 9 mm ones. Drying time decreased with increased 

microwave power. 5 mm samples showed a higher rehydration ratio than 9 mm samples. Effective moisture values 

ranged from 9.08 x 10−10 to 2.27 x 10−10 m² s−1, across tested power levels. 

b) The drying process was not observed to occur at a constant drying rate; rather, it took place in a falling rate 

period 

c) The Midilli model demonstrated the most accurate representation of drying data across all experimental 

conditions. 

d) The 5 mm and 9 mm samples consumed between 0.05 and 0.23 kWh and 0.05 and 0.46 kWh, respectively. 

Thermodynamic analysis showed that increasing microwave power and sample thickness reduced specific energy 

consumption (SEC). The lowest and highest SEC values were 2.2 and 3.0 kWh/kg, and 10.5 and 25.9 MJ/kg of 

water, respectively. 

e) The lowest shrinkage was at 600 W and 9 mm, while the highest was at 350 W and 9 mm. 

f) The results of the color change indicate that a color change of 10.95 (ΔE) was observed in the samples with 

a 9 mm slice thickness at 460 W power. It was also observed that while the a* values are high at 600 W microwave 

power, the L* and b* values have the lowest values. 
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