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Öz 

Bu çalışmada farklı alanlarda kullanılacak ürünlerin üç boyutlu yazıcılarda imal edilirken baskı parametreleri 

dikkate alınarak kullanım amacına göre parçanın pürüzlülük oranı, yüke dayanımı ve çekme kuvvetine göre uzama 

gerilmesi verileri değerlendirilmiş ve ürün kalitesi makine öğrenmesi regresyon metotları ile optimize edilmiştir. 

Ürün kalitesinin tahmini için Kaggle platformundan elde edilen “3D Printer Material Requirement” açık kaynak 

veri seti kullanılmıştır. Bu veri setinde sisteme girdi olarak verilen; katman yüksekliği, duvar kalınlığı, dolgu 

yoğunluğu, dolgu deseni, nozul sıcaklığı, tabla (yatak) sıcaklığı, baskı hızı, baskı malzemesi (PLA ve ABS) ve fan 

hızı parametrelerine göre baskı sonucu ürünün pürüzlülüğü, yüke dayanım gücü ve çekme kuvvetlerinin etkisiyle 

ürünün uzama gerilmesi değerleri incelenmiştir. Bu değerler doğrultusunda da ürünün kullanım amacına göre 

kalitesi tahmin edilmeye çalışılmıştır. Katman yüksekliği, duvar kalınlığı, dolgu yoğunluğu, dolgu deseni, nozul 

sıcaklığı, yatak sıcaklığı, baskı hızı, baskı malzemesi ve fan hızı gibi parametreler, çıktı performansını etkileyen 

temel faktörler olarak kullanılmıştır. Bu çerçevede, Linear Regression (LR), Decision Tree (DT), Random Forest 

(RF), Support Vector Machine (SVM), Gaussian Process Regression (GPR), Multi-Layer Perceptron (MLP) 

tahmin modelleri geliştirilmiş ve model performansları, doğruluk (R²), hata oranları (RMSE, MSE, MAE) ve işlem 

süresi gibi metrikler açısından değerlendirilmiştir. Bu yöntemler içerisinde GPR ile uzanım, gerilim mukavemeti 

ve pürüzlülük açısından en başarılı tahmin oranları sırasıyla 0,98, 0,9 ve 1 olarak elde edilmiştir. Elde edilen 

bulgular, 3B yazıcıların üretim süreçlerinde kalite tahmini ve optimizasyonu için makine öğrenmesi 

uygulamalarının etkili bir araç olduğunu göstermektedir. Ayrıca bu çalışma, 3B baskı süreçlerinde kalite kontrolü 

ve tasarım optimizasyonuna yeni bir perspektif sunmaktadır. 
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Abstract 

This study examines how printing parameters affect the roughness, tensile strength, and elongation of 3D-

printed parts used in various applications. Machine learning-based regression models were employed to 

optimize product quality. The open-source "3D Printer Material Requirement" dataset obtained from the 

Kaggle platform was utilized to predict product quality. This dataset includes input parameters such as layer 

height, wall thickness, infill density, infill pattern, nozzle temperature, bed temperature, print speed, printing 

material (PLA and ABS), and fan speed. These parameters were analyzed for their impact on the product's 

roughness, load resistance, and elongation under tensile force. Based on these evaluations, product quality 

was estimated according to its intended use. Parameters such as layer height, wall thickness, infill density, 

infill pattern, nozzle temperature, bed temperature, print speed, printing material, and fan speed were 

identified as key factors influencing output performance. Within this framework, prediction models including 

Linear Regression (LR), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), 

Gaussian Process Regression (GPR), and Multi-Layer Perceptron (MLP) were developed, and their 

performances were assessed using metrics such as accuracy (R²), error rates (RMSE, MSE, MAE), and 

computational time. Among these methods, GPR demonstrated the highest prediction accuracy for 

elongation, tensile strength, and roughness, with respective values of 0.98, 0.9, and 1. The findings indicate 

that machine learning applications are effective tools for quality prediction and optimization in the production 

processes of 3D printers. Furthermore, this study provides a novel perspective on quality control and design 

optimization in 3D printing processes. 
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1. Introduction  

 

3D printing is an additive manufacturing process that creates physical three-dimensional objects from digital 

models by depositing materials layer by layer, offering advantages over traditional subtractive manufacturing 

methods [1]. Today, 3D printing has revolutionized design and manufacturing by enabling rapid prototyping, 

producing intricate geometries, and facilitating cost-effective small-scale production. This technology is 

widely adopted in both industrial and personal applications. The technology plays a significant role in areas 

such as prototype production, medical devices, and aerospace applications. However, the multitude of 

parameters influencing the quality of 3D-printed parts complicates process optimization. The printing process 

involves parameters that can impact print quality, microstructure, and certain properties [2]. These properties 

can be enhanced through the optimization of parameters such as layer height, infill density, nozzle 

temperature, and print speed. Nevertheless, traditional experimental approaches to understanding these 

parameters' effects are often time-consuming and costly. Machine learning algorithms, by analyzing 

multidimensional and complex datasets, offer the potential to predict these effects quickly and effectively. 

 

The integration of data-driven artificial intelligence and its subset, machine learning (ML), accelerates the 

optimization of 3D printing parameter settings while reducing time and cost [3]. Recent advances in ML 

have opened new avenues to address these challenges. ML algorithms can uncover complex relationships 

between input parameters and output quality metrics, enabling more accurate predictions and optimizations. 

Leveraging these capabilities, this study aims to develop a predictive framework for 3D-printed part quality 

and reduce reliance on experimental trial-and-error methods. 

 

This study utilizes the "3D-Printer Material Requirement" dataset available on Kaggle [4] to predict 3D 

printing part quality through machine learning-based regression methods. The results provide detailed 

insights into the effects of printing parameters on part quality and offer actionable outputs for quality 

optimization. Parameters such as layer height, wall thickness, infill density, infill pattern, nozzle temperature, 

bed temperature, print speed, printing material (PLA and ABS), and fan speed were analyzed for their effects 

on surface roughness, tensile strength, and elongation at break of the printed parts.  

 

Optimizing these parameters to enhance product performance not only ensures material savings but also 

enables the production of higher-quality outputs. In addition, this study will ensure that the product to be 

printed on the 3D printer is manufactured with optimum accuracy according to its intended use. For example, 

a spur gearbox mechanical part that is expected to be resistant to loads and tensile forces that may occur, or 

a figurine that is constantly in a static state and is not exposed to any load but is expected to have minimum 

roughness and can be used as an ornament, will be obtained with optimum printing. 

 

In this paper; Chapter 2 includes a literature review in which similar studies on the subject are researched and 

presented. Chapter 3 provides the contributions of this study to the literature and the originality of the study. 

Chapter 4 presents the materials and methods required for the implementation of this study. Chapter 5 

provides experimental results as a result of the study and evaluates these results. Chapter 6 includes the 

evaluation of the success of the study according to the results obtained and its interpretation and conclusion. 

 

2. Literature Review 

 

The manufacturing of parts using 3D printing techniques and products (Figure 1) is widely applied for various 

purposes, including robotic applications [5-7], healthcare services [8-10], space exploration [11], aviation 

[12], mechanical fasteners [13], and diverse products offering practical solutions for everyday life [14]. These 

parts, whether designed to operate under static and dynamic loads or to perform tasks without being subjected 

to any loads, must be manufactured with high quality according to their intended use by employing the correct 

method and appropriate printing parameters. Therefore, optimizing product quality based on the intended 

application through different 3D printing parameters ensures the successful completion of the manufacturing 

process. 
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Figure 1. Examples of 3D-printed products; a) Prosthetic hand [5], b) Propeller [6], c) Quadruped robot [7], d) Dental 

implant [8], e) Prosthetic arm [9], f) Prothetic leg [10], g) Drone [11], h) Spur gear [12], i) 3D-printed bridge [13] 

 

Artificial intelligence algorithms can be leveraged to predict the quality of parts produced through 3D 

printing. By evaluating the effects of printing parameters on the output product, it becomes possible to 

optimize part quality. Recent studies have demonstrated the effectiveness of machine learning in optimizing 

3D printing parameters [15-22, 27]; 

 

Omigdobun et al. [15] developed a predictive framework employing multiple machine learning regression 

algorithms to enhance the mechanical and thermal properties of PLA, a 3D printing material, for biomedical 

applications. They achieved high prediction accuracies, with R² metrics of 0.9173 and 0.8772 for 

compressive and tensile strengths, respectively. Kasim et al. [16] investigated the influence of infill density 

and print speed on the microstructure and tensile behavior of 3D-printed parts. Their results indicated that 

maintaining a print speed below the threshold of 40 mm/s positively impacts product quality, while higher 

infill percentages enhance the part's strength. 

 

Zhang et al. [17] optimized the dynamic performance of 3D-printed spur gears using a Genetic Algorithm-

based Artificial Neural Network for multi-parametric regression. By analyzing parameters such as nozzle 

temperature, print speed, bed temperature, and infill percentage, they concluded that wear performance 

improved threefold. Pereira et al. [18] evaluated parts produced with varying layer thickness, print speed, 

infill density, infill pattern, and material parameters through tensile, compression, and bending mechanical 

a)  b)  c)  d)  

e)  f)  g)  h)  

i)  
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tests. Their optimization aimed to minimize time and total weight, resulting in a 72.39% reduction in print 

time and a 9.06% increase in mass. 

 

Sani et al. [19] emphasized the potential of Artificial Intelligence-Augmented Additive Manufacturing 

(AI2AM) technology in detecting defects, improving production quality, and minimizing risks of failure. The 

AI2AM framework proved effective in optimizing printer operations under ideal conditions. Sevli [20] 

focused on material selection for 3D printing using machine learning methods. By evaluating the impact of 

different materials on print parameters and outcomes, the study proposed a model for optimal material 

selection, achieving 100% accuracy in classification using the Logistic Regression algorithm. 

 

Dabbagh et al. [21] employed Gradient Boosting Regression (GBR) to determine the optimum printing 

parameters for manufactured parts, achieving a prediction accuracy with an R² score of 0.954. Similarly, Jatti 

et al. [22] used a machine learning regression model to predict tensile, impact, and bending test outcomes for 

printed parts, achieving lower percentage errors of 3.109, 6.532, and 3.712, respectively. 

 

Nair et al. [27], in a study similar to this one, performed the prediction of 3D model selection using various 

machine learning methods and evaluated the processes of elongation, roughness, and tensile strength. The 

success evaluation of the results they obtained has been compared with the success rates in the results section 

of this study. 

 

These studies demonstrate the growing role of machine learning in enhancing the quality and efficiency of 

3D printing, paving the way for advanced manufacturing solutions. 

 

3. Contribution and Novelty 
 

This study offers a novel perspective on the application of machine learning algorithms in 3D printing 

processes. The multidimensional structure of the dataset highlights the interactions among multiple printing 

parameters, enabling a deeper understanding of their effects on print quality. By comparing the performance 

of different regression models, the study identifies the most suitable algorithm, providing valuable 

contributions to both academic literature and industrial applications. The application of machine learning 

techniques, particularly regression methods, to predict 3D printer quality constitutes a noteworthy 

methodological contribution. Unlike traditional analytical methods, these models enable the modeling of 

more complex relationships and generate actionable predictions. 

 

The proposed model captures the nonlinear effects of parameters, facilitating accurate adjustments to printer 

settings and improving quality in the production process. This is particularly advantageous for rapid 

prototyping, small-batch production, and personal manufacturing processes, yielding significant time and 

cost savings. Moreover, the study can serve as a decision-support tool for 3D printer users, assisting them in 

optimizing parameters ranging from material selection to print speed, thereby enhancing the overall printing 

experience and outcomes. 

 

4. Material and Method  
 

4.1. Feature of 3D printer dataset 
 

In this study we used an open access dataset, which publish in kaggle platform (3D Printer Material 

Requirement- https://www.kaggle.com/datasets/shubhamgupta012/3d-printer-material-requirement) [4]. 

This dataset provides comprehensive information on various parameters and properties involved in the 3D 

printing process. It includes data on factors such as layer thickness, wall width, infill density, infill pattern, 

nozzle temperature, bed temperature, printing speed, material type, fan speed, surface roughness, tensile 

strength, and elongation.  These variables are critical elements that can influence the quality, durability, and 

aesthetic appearance of 3D-printed objects. Researchers can analyze this dataset to understand how different 

printing parameters affect the final output. The data can be utilized to explore correlations between printing 

settings and the physical properties of printed objects, optimize printing conditions, and identify new trends 

in 3D printing techniques. The primary goal of this dataset is to facilitate the analysis and experimentation of 

https://www.kaggle.com/datasets/shubhamgupta012/3d-printer-material-requirement
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3D printing processes, enabling users to make informed decisions about printing settings to achieve desired 

results. 

 

4.2. Regression analysis based machine learning methods 

 

4.2.1. Multiple linear regression model 
 

In the multiple linear regression model, the dependent variable y is predicted based on multiple independent 

variables (𝑥1, 𝑥2, 𝑥3 … 𝑥𝑝) Each of these independent variables is included in the model with a separate 

coefficient to explain its effect on the dependent variable. The general equation of the model is as follows 

[23]:  

 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑝𝑥𝑝 + 𝜖                                                                                                        (1) 

 

y is the dependent target variable, , 𝑥1, 𝑥2, 𝑥3 … 𝑥𝑝  are the independent input variables, 𝑏0 is the intercept 

term, 𝑏1, 𝑏2 , 𝑏3 … . 𝑏𝑛are the coefficients of each independent variable, and ϵ represents the error term. The 

objective is to determine the coefficients (𝑏0 , 𝑏1, 𝑏2 … . 𝑏𝑛) that best predict the dependent variable yyy. In 

multiple regression, the coefficients (𝑏0 , 𝑏1, 𝑏2 … . 𝑏𝑛) are estimated using the Ordinary Least Squares (OLS) 

method, as shown in Equation (2). The Residual Sum of Squares (RSS) cost function, defined in Equation 

(3), is minimized to calculate these coefficients. 

 

b = (X𝑇X)−1X𝑇y                                                                                                                                               (2) 

𝑅𝑆𝑆 = Minimize ∑𝑖=1
𝑛  (𝑦𝑖 − 𝑦̂𝑖)2                                                                                                                           (3) 

 

4.2.2. Decision tree regression model 
 

The Decision Tree Regression Model is a widely used non-linear predictive modeling method valued for its 

interpretability and ability to manage both numerical and categorical data effectively. In this study, the 

Decision Tree algorithm [24] was applied to evaluate its performance in predicting target variables such as 

roughness, tensile strength, and elongation, using independent variables including layer height, wall 

thickness, infill density, nozzle temperature, bed temperature, print speed, and fan speed. 

 

The model operates by iteratively dividing the dataset into smaller subsets based on feature values, resulting 

in a tree-like structure. At each decision point, the algorithm identifies the feature and threshold that minimize 

the variance within the resulting partitions. This splitting process continues until predefined conditions, such 

as maximum tree depth or a minimum number of samples per leaf, are met. The predicted value for each 

terminal node is the mean value of the target variable for the data points in that subset. 

 

In this study, hyperparameters like maximum tree depth and minimum samples per split were fine-tuned to 

balance prediction accuracy and prevent overfitting. The Decision Tree Regression Model effectively 

captured non-linear relationships between the independent variables and the target outcomes, providing 

valuable insights into the factors significantly influencing roughness, tensile strength, and elongation. 

 

4.2.3. Random forest regression model 
 

The Random Forest (RF) regression technique constructs an ensemble of decision trees to perform regression 

tasks. In this approach, multiple regression trees are generated, and their predictions are combined to produce 

a final result, typically by averaging their outputs [25]. This method operates by recursively dividing the input 

data into subsets through binary splits, creating a hierarchical structure resembling a forest. At each split, the 

algorithm identifies the feature and threshold that best separate the data into smaller, more homogeneous 

groups. This process minimizes the sum of squared deviations within the resulting partitions [25]. The 

regression tree algorithm focuses on optimizing the partitioning at each node by solving the following 

minimization problem : 
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𝑎𝑟𝑔 𝑚𝑖𝑛[𝑃𝑙𝑉𝑎𝑟(𝑌𝑙) + 𝑃𝑟𝑉𝑎𝑟(𝑌𝑟)]       𝑥𝑗 = 𝑥𝑗
𝑅 , 𝑗 = 1,2,3 … , 𝑀                                                       (4) 

 

In Eq. (4), Pl and Pr  resent the probabilities of the left and right child nodes, respectively. M denotes the total 

number of features in the dataset. Xj and xj
R indicate the feature and its optimal split point. Var(Yl), Var(Yr) 

correspond to the variance of the target variable in the left and right child nodes. The algorithm seeks to 

achieve the optimal split by minimizing the weighted variance of the target variable across the two partitions. 

This approach is notably robust to outliers and variations in the dataset, making it effective for regression 

tasks where data quality may vary. By leveraging the strengths of multiple decision trees, Random Forest 

regression provides a more stable and reliable prediction compared to individual regression trees. 

 

4.2.4. Supported vector machine regression model 
 

Support Vector Machines (SVMs) are supervised learning methods applied to both classification and 

regression problems [20]. When adapted for regression tasks, the dataset can be represented as [24]: 

 

𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑙 , 𝑦𝑙)}                                                                                                                                  (5) 

 

Here, xi represents the N-dimensional input features, and yi  denotes the corresponding output variable. The 

regression function is defined as: 

 

𝑓(𝑥) = 〈𝑤, 𝑥〉 + 𝑏                                                                                                                                                           (6) 

 

n this equation, www is the weight vector (also known as the normal vector), x is the input vector, and b is 

the bias term. The dot product w, x ensures that the inputs and weights are isodimensional. The goal in 

Support Vector Regression (SVR) is to determine a function f(x) that estimates the output values yi with a 

maximum allowable deviation ϵ, while minimizing the distance between two parallel planes surrounding the 

data. To achieve this, the optimization problem involves minimizing the norm of the vector w, formulated 

as: 

 

𝑚𝑖𝑛
1

2
‖𝑤‖2 + 𝐶 ∑ (

𝑖
+ 

𝑖
∗)𝑙

𝑖−1                                                                                                                                          (7)  

𝑦𝑖 − 〈𝑤, 𝑥𝑖〉 − 𝑏 ≤  𝜀 + 
𝑖
                                                                                                                                               (8) 

〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 ≤  𝜀 + 
𝑖
∗
                                                                                                                                                (9) 


𝑖
, 

𝑖
∗  ≥ 0                                                                                                                                                                          (10) 

 

Here, 
𝑖
, 

𝑖
∗
 are slack variables that allow deviations beyond ϵ. C is a regularization constant greater than 0, 

balancing the trade-off between the model's complexity and the tolerance for errors. Compared to traditional 

neural network-based supervised learning methods, SVMR employs the principle of structural risk 

minimization. This approach not only minimizes the empirical error (training error) but also reduces the 

generalization error's upper bound, making the model robust and effective for unseen data. 

 

4.2.5. Gaussian process regression (GPR) 
 

Gaussian Process Regression (GPR) is a non-parametric machine learning technique designed to predict the 

values of continuous response variables. This method models the output variable as a Gaussian process by 

establishing covariance relationships with the input features. A key advantage of GPR lies in its flexibility, 

as it offers a range of covariance (kernel) functions, enabling the selection of the most appropriate function 

for the specific problem at hand. This adaptability allows the creation of models capable of capturing 

relationships of varying complexity. A Gaussian process extends the Gaussian distribution concept from 

random variables to functions. While a Gaussian distribution describes the distribution of random values, a 

Gaussian process represents the distribution over functions. The Gaussian process function 𝑓(𝑥) is defined 

using a mean function 𝑚(𝑥) and a covariance function 𝑘(𝑥, 𝑥′ ) as shown below [26]: 

 

𝑚(𝑥) = 𝐸(𝑓(𝑥))                                                                                                                                                 (11) 
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𝑘(𝑥, 𝑥′ ) = 𝐸(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′ ) − 𝑚(𝑥′ )))                                                                                         (12) 

 

Here, , 𝑘(𝑥, 𝑥′) represents the kernel or covariance function that describes the relationship between different 

points in the input space. The function (𝑥) can be expressed as: 

 

𝑓(𝑥) = 𝐺P(𝑚(𝑥), 𝑘(𝑥. 𝑥′ ))                                                                                                                    (13) 

 

Typically, the mean function 𝑚(𝑥), is assumed to be zero for simplification. The relationship between the 

input vector 𝑥𝑖 and the output variable 𝑦𝑖 in GPR can be described as: 

 

𝑦𝑖 = 𝑓(𝑥𝑖) + ε                                                                                                                                                (14) 

 

In this equation, 𝑓(𝑥) represents the regression function, while ϵ denotes the noise term, typically modeled as 

Gaussian noise. The covariance matrix for the Gaussian process is defined by 𝑘𝑖.𝑗 which specifies the 

covariance between two points 𝑓(𝑥𝑖) and 𝑓(𝑥𝑗).in the input space as Eq.(15). The covariance matrix can be 

represented as Eq.(16) 

 

 𝑘𝑖.𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗)                                                                                                                                                (15)  

𝑘 = (

𝑘(𝑥1, 𝑥1) 𝑘(𝑥1, 𝑥2)
. ....

𝑘(𝑥𝑛, 𝑥1)

...
…

     

𝑘(𝑥1, 𝑥𝑛)
....

𝑘(𝑥𝑛, 𝑥𝑛)

  )                                                                                                                    (16) 

 

This covariance structure allows GPR to capture the relationships between inputs, making it a robust 

approach for modeling complex patterns in data. By leveraging this framework, GPR can provide accurate 

predictions while accounting for uncertainty in the data. 

 

4.2.6. Multi-layer perceptron regression model  
 

The MLP (Multi-Layer Perceptron) regression model is an artificial neural network model designed to 

predict a numerical target value by working through multiple layers of nonlinear transformations from 

input to output. The independent variables in the model's input are represented by the vector 𝐱 =
[𝑥1, 𝑥2, … , 𝑥𝑑]𝑇, and this vector is passed to the first hidden layer. At each hidden layer, the following 

transformation is performed [24]: 

 

𝐳(𝑙) = 𝑔(𝐖(𝑙) ⋅ 𝐳(𝑙−1) + 𝐛(𝑙))                                                                                                                                  (17) 

 

Here: l, layer number, z(l−1) is the output of the previous layer. W(l), Weight matrix of l-th layer, b(l), 

The bias vector of the l-th layer, g is the activation function (ReLU, Sigmoid, Tanh, vb.). While 

activation functions are generally used to add nonlinearity in hidden layers, activation function is 

generally not applied in the output layer because of the regression problem. The output is; 

 

𝑦̂ = 𝐖(𝑜) ⋅ 𝐳(𝐿) + 𝐛(𝑜)                                                                                                                                           (18) 

. 

𝐖(𝑜), is the weight vector from the last hidden layer to the output layer, 𝐛(𝑜) bias term of the output 

layer, 𝐳(𝐿) is the output of the last hidden layer. A loss function is defined based on the difference 

between the model's prediction and the actual values. N, total number of data, 𝑦𝑖 actual target value, 𝑦̂𝑖

, is the model's predicted value. 

 

 𝐿 =
1

𝑁
∑  𝑁

𝑖=1 (𝑦̂𝑖 − 𝑦𝑖)2                                                                                                                                         (19) 
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Model weights and bias values are optimized via derivatives of the loss function. 𝛿(𝑜), represents the error 

signal in the output layer. The error signal in the hidden layers is calculated by the chain rule, the learning 

rate is η.  𝑔′(𝐳(𝑙)) is the derivative of the activation function. ⊙ expresses element-wise multiplication.  

 

𝛿(𝑜) = 𝑦̂ − 𝑦                                                                                                                                                     (20) 

𝛿(𝑙) = (𝐖(𝑙+1))
⊤

𝛿(𝑙+1) ⊙ 𝑔′(𝐳(𝑙))                                                                                                             (21) 

𝐖(𝑙) = 𝐖(𝑙) − 𝜂 ⋅ 𝛿(𝑙) ⋅ (𝐳(𝑙−1))
⊤

                                                                                                                (22) 

𝐛(𝑙) = 𝐛(𝑙) − 𝜂 ⋅ 𝛿(𝑙)                                                                                                                                       (23) 

 

4.3. Selected parameters of ML methods  
 

In this study, the dataset was evaluated using 10-fold cross-validation to ensure robust training and testing. 

This method splits the data into 10 equal parts, using 9 folds for training and 1 fold for testing iteratively, 

thus maximizing the use of the dataset while minimizing bias and variance in performance evaluation. The 

parameters employed in the regression models are detailed in Table 1, showcasing the specific configurations 

used for each model. This approach ensures a comprehensive and fair comparison of model performance 

across varying conditions. 

 
Table 1. Parameter of used regression models 

 
Multiple Linear Regression 

(MLR) 

Preset: Robust Linear 

Term: Linear 

Robust option: On 

 

Decision Tree (DT) 

Preset: Fine 

Min. leaf size:4 

Surrogate dessicion splits: Off 

 

Random Forest (RF) 

Preset: Boosted Trees 

Min. leaf size:8 

Number of leraners:30 

Learning rate:0.1 

 

Support Vector Machine 

(SVM) 

Preset: Cubic 

Kernel function: Cubic 

Kernel scale: Auto 

Box constraint: Auto 

Epsilon:Automatic 

Standardize data: True 

 

 

 

Gaussian Process Regression 

(GPR) 

Preset: Exponential GPR 

Basis function: Constant 

Kernel function: Squared Exponential Use Isoterapic kernel true 

Kernel scale: Automatic 

Signal standard deviation: Automatic 

Sigma: Automatic 

Standardize: True 

Optimize numeric parameters: True 

 

 

Multi-Layer Perceptron 

Regression (MLP) 

Preset: Medium 

Number of fully connecte layer: 1 

First layer size: 25 

Activation: ReLu 

Iteration limit:1000 

Regularization streght: 0 

Standardize data: True 

  

4.4. Performance evaluation metrics 
 

In this study, the performance of the regression models was assessed using six metrics, which are 

essential for evaluating the models' accuracy and generalizability. To determine performance, the 



 
 

Fırat Üni Deny. ve Say. Müh. Derg., XX(X), XX-XX, 20XX Firat Univ Jour. of Exp. and Comp. Eng., 4(1), 206-225, 2025 

A.B. Tatar   A.B. Tatar 

 

  
215 

 

regression coefficient (R2), mean absolute error (MAE), mean squared error (MSE), and root mean 

squared error (RMSE) were calculated. These metrics are described mathematically as Eq. (24-27). 

 

𝑀𝐴𝐸 =
1

𝑛
∑𝑖=1

𝑛  |𝑦𝑖 − 𝑦̂𝑖|                                                                                                                                         (24) 

 

This metric calculates the average of the absolute differences between actual (𝑦𝑖) and predicted (𝑦̂𝑖) 

values. A low MAE indicates that the model's predictions closely match the actual values. 

 

𝑀𝑆𝐸 =
1

𝑛
∑𝑖=1

𝑛  (𝑦𝑖 − 𝑦̂𝑖)2                                                                                                                                     (25) 

 

This metric takes the average of the squared differences between actual and predicted values, giving 

greater weight to larger errors. A lower MSE indicates higher model accuracy. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  𝑛

𝑖=1   (𝑦𝑖 − 𝑦̂𝑖)2                                                                                                                                 (26) 

 

The RMSE provides the average size of prediction errors in the original measurement units. A low 

RMSE suggests that the model makes precise predictions. 

 

R2 −
∑(𝑦𝑖−𝑦̂𝑖)2

∑(𝑦𝑖−𝑦‾)2                                                                                                                                             (27) 

 

This metric explains the proportion of variability in the dataset accounted for by the model. Values close to 

1 indicate that the model has high explanatory power, effectively capturing the patterns in the data. N is the 

number of samples, 𝑦̂ is predicted value of y, 𝑦̅ is mean of experimental results of y.  

5. Experimental Results and Discussion 

 

In this study, all solutions were tested on a workstation with an Intel Core i7-9700K, RAM: 16 GB DDR4, 

GPU: NVIDIA GTX 1660 Ti and 64-bit Windows 11 Pro features. MATLAB 2023a version was used for 

all applications within the scope of the study. 

 

5.1.  Description of the datasets 
 

The characteristics of the dataset are illustrated in Figure 2. The horizontal line connected to the dashed line 

represents the minimum and maximum values within the dataset. The blue box indicates the interquartile 

range, with its upper and lower boundaries corresponding to the 75th and 25th percentiles, respectively. 

Additionally, outliers are depicted as small circular markers positioned outside the minimum and maximum 

distribution, highlighting data points that deviate significantly from the central range. This visualization 

provides a comprehensive overview of the dataset's spread, variability, and outlier presence. 
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Figure 2. The analysis of the variables 

 

In Table 2, specific statistical parameters have been calculated and presented for a comprehensive analysis 

of the dataset. Parameters such as layer height and wall thickness exhibit relatively homogeneous 

distributions, with low standard deviations (0.0626 and 2.95, respectively). In contrast, parameters like infill 

density and fan speed show higher standard deviations (27.55% and 35.83%, respectively), reflecting a wider 

variation. This indicates that some parameters were optimized within specific limits, while others were tested 

across a broader range. Nozzle temperature and bed temperature exhibit controlled variations, with standard 

deviations of 15.09 and 8.65, respectively, suggesting that these parameters were adjusted according to 

material compatibility. Regarding outputs, roughness (standard deviation 95.70) and tensile strength 

(standard deviation 9.20) demonstrate significant variability, indicating differences in mechanical 

performance and surface quality. On the other hand, elongation values vary within a narrower range (standard 

deviation 0.76), indicating more consistent results in terms of flexibility. 

 
Table 2. Statistical analysis of the dataset 

 

Feature Count Mean Std Min 25% 50% 75% Max 

Layer Height 132 0,098182 0,062608 0,02 0,0525 0,1 0,15 0,2 

Wall Thickness 132 5,583333 2,952943 1 3 6 8 12 

Infill Density 132 54,72727 27,54551 10 40 50 80 100 

Nozzle Temperature 132 222,2727 15,09411 200 210 220 230 250 

Bed Temperature 132 70,37879 8,651839 60 65 70 75 100 

Print Speed 132 64,24242 28,59858 40 40 60 60 120 

Fan Speed 132 48,5303 35,83433 0 25 50 75 100 

Roughness 132 160,5455 95,7039 21 78,25 149,5 220 368 

Tension Strength 132 19,75758 9,202108 4 12 18,5 27 38 

Elongation 132 1,625 0,762498 0,4 1,025 1,5 2,175 3,3 
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Figure 3. Coefficients of Pearson Correlation (PCC) of roughness, tension strength and elongation 

 

Figure 3 presents the Pearson Correlation Coefficients (PCCs), which measure the strength and direction of 

linear relationships between pairs of variables. Upon analysis, it becomes evident that roughness, tensile 

strength, and elongation exhibit weak or insignificant linear correlations with other independent variables, 

such as layer height, wall thickness, infill density, nozzle temperature, bed temperature, print speed, and fan 

speed. This lack of strong linear associations suggests that these target variables may be influenced by more 

complex, non-linear interactions among the independent variables, which are not adequately captured 

through simple correlation metrics. The absence of significant linear relationships highlights the limitations 

of using basic statistical tools to understand the underlying patterns within the dataset. It indicates that the 

interactions between the variables are likely more intricate, requiring advanced methods to fully uncover and 

interpret their effects. For example, roughness may depend on a combination of layer height, print speed, and 

fan speed, but in a way that does not manifest as a straightforward linear relationship. Similarly, tensile 

strength and elongation could be affected by multiple features simultaneously, with interactions and 

thresholds that are not evident in linear analyses. In light of these findings, it became necessary to employ 

regression models capable of capturing complex, non-linear dependencies. To address this, three different 

machine learning models were developed as part of this study. These models aim to provide a more detailed 

understanding of the relationships between the independent variables and the target outputs. By leveraging 

machine learning techniques, the models are designed to identify hidden patterns, interactions, and trends 

that are not discernible using traditional linear approaches. This approach ensures a more robust and 

comprehensive analysis, offering valuable insights into the factors influencing roughness, tensile strength, 

and elongation, and ultimately supporting the optimization of 3D printing parameters for improved 

performance. 

 

 

 

 



 
 

Fırat Üni Deny. ve Say. Müh. Derg., XX(X), XX-XX, 20XX Firat Univ Jour. of Exp. and Comp. Eng., 4(1), 206-225, 2025 

A.B. Tatar   A.B. Tatar 

 

  
218 

 

5.2. Single-variable partial dependence visualization for printed prototype of roughness, 

tension strength and elongation 
 

Single-variable partial dependence plot is a type of plot that visualizes the effect of an independent variable 

on a target variable. This plot focuses on the analysis of only one independent variable and aims to isolate 

the effect of the selected variable on the target variable, holding the effect of all other independent variables 

constant. In this work, it has been used to increase the "explainability" of machine learning models (e.g., 

random forest, gradient boosting models) and understand how the model responds to that variable. In Figure 

4, Figure 5 and Figure 6, the effect of 'layer height, wall thickness, infill density, infill pattern, nozzle 

temperature, bed temperature, print speed,  material,  fan speed  on  roughness, tension strenght and 

elongation are presented based on the result of partial dependency analysis. 

 
Figure 4. Single-variable partial dependence visualization for roughness 

 

Figure 4 shows the effect of the specified parameters on roughness. When the graphs are considered, one of 

the most obvious changes is the increase in roughness as the layer height increases. In addition, an increase 

in roughness value is seen when the nozzle temperature exceeds 225°C. 

 

 
Figure 5. Single-variable partial dependence visualization for tension strenght 
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Figure 5 shows the effects of the input parameters on tension strength. The increase in fan speed, printing 

speed, nozzle temperature and bed temperature leads to a decrease in tension strength. It is seen that the 

optimum nozzle temperature is approximately 210 C and the optimum filling ratio is 90% for the specified 

conditions to obtain the highest tension strength. The increase in layer height and wall thickness also increases 

tension strength. 

 

 
Figure 6. Single-variable partial dependence visualization for elongation 

 

Figure 6 shows the results of the elongation effect according to these parameters. When the graphs are 

examined, it is seen that similar results are obtained to the effects seen in tension strength. 

 

The success comparison of the methods according to the parameters of R2, RMSE, MSE, MAE, estimation 

rate, training time is presented in Table 3.  
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Table 3. Performance metrics for Elongation,Tension strength,Roughness prediction 

 

According to Table 2, Gaussian Process Regression (GPR) emerges as the most accurate method overall. 

GPR consistently achieves the lowest error rates (RMSE, MSE, MAE) and the highest R2 values across all 

parameters. For instance, in elongation, it achieves an RMSE of just 0.10417 and an R2 of 0.98, demonstrating 

superior predictive performance. Similarly, in tension strength, GPR achieves an RMSE of 2.833 and an R2 

of 0.90, while in roughness, it reaches an RMSE of 1.3543 and an R2 of 1.00, indicating exceptional accuracy. 

As alternatives, Support Vector Machine (SVM) and Artificial Neural Networks (MLP) also deliver 

commendable results in many cases. SVM, for example, performs well in predicting elongation and tension 

strength, with R2 values of 0.90 and 0.80, respectively. MLP, on the other hand, matches GPR in terms of 

accuracy for roughness with an R2 value of 1.00 while excelling in prediction speed. For instance, MLP 

achieves the fastest prediction speed at 6700 obs/sec.  Meanwhile, Random Forest (RF) provides reasonably 

accurate results, though slightly less precise compared to GPR and SVM. RF's R2values for elongation, 

tension strength, and roughness are 0.84, 0.74, and 0.95, respectively. However, its large model size (167 

kB) and relatively slow prediction speed can be disadvantages in scenarios with large datasets. In contrast, 

Multiple Linear Regression (MLP) and Decision Tree (DT) methods generally perform worse in terms of 

accuracy compared to other methods. Linear Regression has the lowest performance in terms of RMSE and 

R2. For example, in roughness, it records an RMSE of 51.458 and an R2 of only 0.71. Similarly, DT offers 

faster prediction speeds but is limited in accuracy. So, Gaussian Process Regression (GPR) yielded the 

highest prediction accuracies: 0.98 for elongation, 0.90 for tensile strength, and 1.00 for roughness. 

 

In conclusion, GPR is recommended for the highest accuracy and reliability, while MLP is ideal for speed-

focused predictions. The combination of GPR’s accuracy advantage and MLP’s speed superiority highlights 

that the choice of method should depend on the requirements of the specific application. SVM offers a 

balanced option between accuracy and speed, whereas RF may face limitations in memory usage and 

prediction time with larger datasets. 

 

Figure 7, Figure 8 and Figure 9 show the effect of the 3D printer's operating parameters, namely layer height, 

wall thickness, infill density, infill pattern, nozzle temperature, bed temperature, print speed, material, fan 

speed on the roughness, tension strength and elongation of the prototype part, which are predicted graphs in 

Figure 7. The predicted results of the MLR (a), DT (b), SVM (c), RF (d), GPR (e), MLP (f) models are 

presented with graphs, respectively. The x-axis represents the actual experimental data, and the y-axis 

represents the predicted values. The fact that the points are on the linear line shows the high success of the 

prediction. 

Parameter Method RMSE   R-

Squared 

MSE MAE Prediction 

Speed 

(obs/sec) 

Training 

Time 

(sec) 

Model 

Size 

(kB) 

Elongation  MLR 0.51526 0.54 0.26549 0.40592 4900 5.9446 11 

DT 0.36187 0.77 0.13095 0.24103 2300 0.7988 9 

SVM  0.23887 0.90 0.057059 0.15823 2700 1.0253 10 

RF 0.30746 0.84 0.09453 0.21588 1600 2.4777 167 

GPR 0.10417 0.98 0.010852 0.027385 5400 1.0999 19 

 MLP 0.2485 0.89 0.061754 0.062839 6200 2.0725 14 

Tension 

strength 

MLR 4.911 0.71 24.118 3.0868 1600 1.7326 53 

DT 5.3234 0.66 28.339 3.7534 4100 0.76664 8 

SVM  4.1156 0.80 16.938 2.6388 4100 0.67843 10 

RF 4.6571 0.74 21.688 3.0317 1700 2.0643 167 

GPR 2.833 0.90 8.0257 0.78883 5900 1.3456 19 

MLP 4.5639 0.75 20.829 1.5082 6700 3.1345 9 

Roughness MLR 51.458 0.71 2647.9 42.569 4000 1.1285 11 

DT 24.405 0.93 595.62 17.749 4700 1.4112 9 

SVM  10.745 0.99 115.46 9.8676 3600 0.80012 8 

RF 21.089 0.95 444.73 14.805 1200 4.7927 167 

GPR 1.3543 1.00 1.8341 0.24223 4200 2.3904 19 

MLP 4.8427 1.00 23.452 0.87258 6700 3.5984 9 
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Multiple Linear Regression DT SVM 

   
RF GPR MLP 

 

  

 

Figure 7. Prediction performance plots for elongation 

 

Figure 7 shows the results of the prediction performance for elongation. According to the graphs, the most 

successful results are obtained with the GPR, SVM and MLP methods. 

 
Linear Regression DT SVM 

   
RF GPR MLP 

 
 

  

Figure 8. Prediction performance plots for tension strength 
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Figure 8 shows the results of the estimation performance for roughness. According to the graphs, the methods 

that make the estimation with maximum accuracy are GPR and MLP. 

 
Linear Regression DT SVM 

   

RF GPR MLP 

   
 

Figure 9. Prediction performance plots for roughness 
 

In this study, only one work in the literature was identified that predicts the three performance metrics 

(elongation, tension strength, roughness) of parts produced using the same dataset. Table 4 was prepared to 

compare the results obtained using our methods with those reported by Nair et al. [27]. In their study, Nair 

and colleagues [27] utilized 29 different ML regression models and reported the lowest prediction errors for 

each output variable (elongation, roughness, tension Strength) based on Mean Absolute Error (MAE) values 

as follows: 0.3421 for the Elongation parameter using the Radial Basis Function Regression method, 39.2895 

for the Roughness parameter using the Additive Regression method, and 5.2789 for the Tension Strength 

parameter using the Random Forest method. 

 

In this study, the best prediction error values obtained for all three parameters were lower than those reported 

by Nair et al. Specifically, the prediction errors achieved in this study were 0.2485 for elongation (using the 

MLP method), 2.833 for tension strength (using the GPR method), and 1.3543 for roughness (using the GPR 

method). 
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Table 4. Performance comparison with studies using the same dataset 

 
Parameter Method RMSE Value in [23] RMSE Value in  

this study 

 

 

 

Elongation 

 

MLR 0.595 0.51526 

DT 0.732 0.36187 

SVM - 0.23887 

RF 0.4908 0.30746 

GPR - 0.10417 

MLP 0.5584 0.2485 

 

 

 

Tension Strength 

 

MLR 6.0349 4.911 

DT 11.3935 5.3234 

SVM - 4.1156 

RF 5.8104 4.6571 

GPR - 2.833 

MLP 10.0624 4.5639 

 

 

 

Roughness 

 

MLR 58.7044 51.458 

DT 68.348 24.405 

SVM - 10.745 

RF 49.5023 21.089 

GPR - 1.3543 

MLP 52.879 4.8427 

 

6. Conclusion 

 

In this study, a comprehensive machine learning-based analysis was conducted to evaluate the effects of 

various 3D printing parameters on the mechanical and aesthetic properties of printed outputs. Key parameters 

such as layer height, wall thickness, infill density, nozzle temperature, bed temperature, print speed, and fan 

speed were systematically varied, and their impacts on critical output characteristics, including surface 

roughness, tensile strength, and elongation, were assessed. The material type, particularly PLA and ABS, 

plays a crucial role in determining the roughness, tensile strength, and elongation of 3D-printed parts. PLA, 

known for its rigidity and ease of printing, typically produces smoother surfaces due to its lower melting 

temperature and better layer adhesion, resulting in reduced roughness. On the other hand, ABS exhibits 

higher elongation and better impact resistance due to its ductile nature, making it ideal for parts subjected to 

mechanical stresses. The choice between PLA and ABS thus directly influences the trade-offs between 

surface quality, strength, and flexibility, requiring careful consideration based on the intended application of 

the printed part. 

 

The interplay between these parameters demonstrates the complex relationship between printing conditions 

and material performance, highlighting the need for fine-tuning to achieve a balance between surface quality, 

strength, and flexibility in 3D-printed parts. 

 

The most successful methods in this study were estimation errors obtained using the MLP method for 

elongation, 0.2485, For tensile strength, it was obtained as 2.833 using the GPR method and for roughness, 

it was obtained as 1.3543 using the GPR method. This study demonstrates that machine learning models, 

particularly Gaussian Process Regression (GPR) and Multi-Layer Perceptron (MLP), provide highly accurate 

predictions of 3D-printed part quality. These findings highlight the potential for AI-driven optimization in 

additive manufacturing, reducing trial-and-error in material selection and print parameter adjustment. 
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