
*Corresponding Author: mzorsahin@ogu.edu.tr 
Receiving Date:  25 August 2017     Publishing Date:  29 June 2018 

Anadolu Üniversitesi Bilim ve Teknoloji Dergisi A- Uygulamalı Bilimler ve Mühendislik   

Anadolu University Journal of Science and Technology A- Applied Sciences and Engineering 

 

Year: 2018 

Volume: 19 

Number: 2 

Page: 347 - 355 

DOI: 10.18038/aubtda.336116 
 

 

A NUMERICAL SOLUTION OF THE ADVECTION-DIFFUSION EQUATION BY USING 

EXTENDED CUBIC B-SPLINE FUNCTIONS 
 

Melis ZORŞAHİN GÖRGÜLÜ 1,*,  İdris DAĞ 2,  Sümeyye DOĞAN 1,  Dursun IRK 1 

 
1 Mathematisc-Computer Department, Science and Art Faculty, Eskişehir Osmangazi University, Eskişehir, Turkey 
2 Computer Engineering Department, Science and Art Faculty, Eskişehir Osmangazi University, Eskişehir, Turkey 

 

ABSTRACT 
 

In this paper, numerical solution of the advection-diffusion equation is obtained by using extended cubic B-spline functions. 

For space discretization, the extended cubic B-spline Galerkin method is used to integrate the advection-diffusion equation and 

for time discretization, the Crank-Nicolson method is employed to obtain the fully integrated advection-diffusion equation. The 

maximum error norm has been used to show the accuracy of the method. Robustness of the suggested method is shown by 

studying some classical test problems and comparing the results with some earlier ones. 
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1. INTRODUCTION 
 

It is well-known that many real life problems in physics and engineering can be modelled by the 

advection-diffusion equation (ADE) which describes phenomena including weak nonlinearity and 

dispersion waves. Since the solutions of the ADE include the sharp behavior with some selection of 

parameters, the numerical methods are of interest due to modelling of steep solutions. Many studies 

have been existed for the numerical solutions of the ADE using spline functions so far [1-23]. By 

keeping the continuity, adding higher order terms with a free parameter to the B-spline which is a 

piecewise function, the extended B-spline function is obtained. The use of different free parameters 

changes the shape of extended B-spline. The effect of the additional term and free parameters for the 

extended B-splines are discussed in the studies [24, 25]. 

 

Our aim in this work is to investigate the results obtained by using extended B-spline functions with a 

combination of Galerkin and Crank-Nicolson methods to find numerical solutions of the ADE. Although 

the extended B-spline function has not yet been extensively used for the numerical solutions of partial 

differential equations, several studies are available in the literature [14, 26, 27]. In parallel with those, 

we use the extended cubic B-spline Galerkin method (ECBSGM) that is not performed before. 

 

2. GOVERNING EQUATION 
 

The one dimensional ADE which describes the transport and diffusion processes is  

 
2

2
0,

u u u

t x x
 

  
  

  
 (1) 

 

where the function ( , )u x t  indicates the concentration at position x  and time t ,   and   represent the 

uniform flow velocity parameter and the constant diffusion coefficient, respectively. The initial and 

boundary conditions of Eq. (1) are 
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u t f t u L t f t t

x
 
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   


 (3) 

 

where the parameters L  and L  demonstrate the length of the channel and the flux at the boundary 

x L , respectively and 0u , 0f , Lf  are imposed functions. 

 

3. EXTENDED CUBIC B-SPLINE GALERKIN METHOD 
 

Let we take a uniform mesh with the knots 0lx x lh   on  ,a b  and  lQ x  be the extended cubic B-

splines at these points with knots lx , 3, 2, 1, 1, 2, 3l N N N        outside the interval  ,a b  and 

having a finite support on the four consecutive intervals  
0

3
, 1 ,l l k

x kh x k h


       0,..., 2.l N   The 

extended cubic B-spline is given as 
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 (4) 

 

The values of  lQ x ,  lQ x  and  lQ x  at the knots lx 's are tabulated in Table 1. The  lQ x , 

1, , 1l N  K  form a basis for functions defined on the interval  ,a b . 

 

Table 1. Extended cubic B-spline values at the knot points 

 

 2lx 
 

1lx 
 

lx  
1lx 
 

2lx 
 

 lQ x  0  
4

24


 

8

12


 

4

24


 0  

 lQ x  0  
1

2h
 0  

1

2h
  0  

 lQ x  0  
2

2

2h


 

2

2

h


  

2

2

2h


 0  

 

We seek an approximation U  to the analytical solution u  in terms for the extended cubic B-splines 

 

       
1

1

, ,
N

l l

l

u x t U x t Q x t




   (5) 

 

where  l t  are unknown parameters to be obtained by Galerkin approach to the ADE. U  and its 

derivatives can be calculated at each knot by the following equations: 
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 (6) 

 

When we choose the extended cubic B-splines as weight functions over the interval  0, L , we obtain 

following integral for the ADE by Galerkin method: 

 

  
0

0.

L

l t x xxQ x u u u dx     (7) 

 

Over the sub element 1[ , ]k kx x  , Eqs. (5) and (7) can be rewritten as 

 

               1 1 1 1 2 2

e

k k k k k k k kU Q x t Q x t Q x t Q x t             (8) 

and 

 

  
1k

k

x

j t x xx

x

Q x u u u dx 


   (9) 

 

respectively, where quantities  i t , 1,..., 2i k k    are element parameters and  jQ x , 

1,..., 2j k k    are known as the element shape functions. 

 

According to the Galerkin discretization scheme, replacing tU , xU , xxU  which are derivatives of the 

approximate solution 
eU  in Eq. (8), into tu , xu , xxu  which are derivatives of the exact solution u , 

respectively, we have 

 

1 1 12

1

k k k

k k k

x x xk

ij i j i i j i i

i k x x x

Q Q dx Q Q dx Q Q dx    
  

 

       
             

       
   



 (10) 

 

where 1,..., 2j k k   ; 0,1, , 1k N K  and 


 symbolizes time derivative. 

 

Let the integrals in Eq. (10) are denoted by 

 
1 1 1

, ,
k k k

k k k

x x x

e e e

ji j i ji j i ji j i

x x x

P Q Q dx R Q Q dx S Q Q dx
  

       (11) 

 

and e
P , e

R  and 
e

S  are the element matrices of which dimensions are 4 4 . With these matrices we 

can write the following instead of the (10): 

 

 e e e e e  P R S


   (12) 
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where  1 2,..., .
Te

k k     

 

Collecting the systems (12) over all elements, the following global system can be written 

 

  0   P R S


   (13) 

 

where P , R  and S  are reproduced by the corresponding element matrices e
P , e

R  and e
S  and 

 1 1,...,
T

N     includes all element parameters. 

 

By using the Crank-Nicolson method for the unknown parameters   

 
1 1

, ,
2

n n n n

t

     
 





   

 

 

we have the following iterative formula: 

 

   1 .
2 2

n nt t
       

     
   
P R S P R S     (14) 

 

To incorporate boundary conditions into the remaining system (14) before starting the iteration process, 

we eliminate the terms 1

1

n 


 and 1

1

n

N



 from the system with the following equations: 

 

 

 

1 0 1 0

1 1

4 8 4
0, ( ),

24 12 24

4 8 4
, ( ).

24 12 24

n n n

n n n

N N N L

u t f t

u L t f t

  
  

  
  



 

  
   

  
   

  

 

Thus, a septa-diagonal matrix is obtained.  

 

To carry on the iteration of the system (14), the initial parameters 
0  must be obtained from the initial 

condition (2) and the derivatives of the boundary conditions (3) at both ends: 

 

 

 

0 1 1

1 1

1 1

1 1
( ,0)

2 2

4 8 4
,0 , 0,..., ,

24 12 24

1 1
,0 .

2 2

k k k k

N N N

u x
h h

u x k N

u x
h h

 

  
  

 



 

 

   

  
   

   

 (15) 

 

The matrix equation (15) is solved by the way of Thomas algorithm. Thus the approximate solution U  

(5) can be determined by using these   values. 

 

3. TEST PROBLEMS 
 

In this section, two test problems are addressed where the correctness of given algorithm is measured 

by error norm 
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exact numeric exact numeric

0
max .j j

j N
L u u u u   

     (16) 

 

In numerical calculations, the value of   in the extended cubic B-spline is experimentally selected by 

scanning the predetermined interval with a small increment in a way that the best numerical solutions 

are obtained for the test problems. The Courant number is defined as 
 

.r

t
C

h



   

 

3.1. First Problem 
 

In the first example, we consider the pure advection that is 0,   in an infinitely long channel is of long 

constant cross-section, bottom slope and in which constant velocity is 0.5   /m s . The analytical 

solution is 

 
2

02

1
( , ) 10exp

2
u x t x x t



 
    

 
 (17) 

 

where the standard deviation is chosen as 264   m  and the distribution is 0 2x   km  away from the 

start at the beginning. The initial concentration can be obtained from (17) by taking 0t  . At the 

boundaries of interval [0,9000], the values of Eq. (17) are chosen as zero. Figure 1 shows the 

transportation of initial distribution after 9600t   s . 
 

 
Figure 1. Transportation of the initial distribution with 0.25rC   and 50t  . 

 

To see the errors along the whole domain for various Courant numbers, Table 2 is documented. 

According to this table, the results of ECBSGM for various Courant numbers are obtained to be same 

accuracy with those produced by Dag et al. [5] and Irk et al. [14]. For various values of  , Table 3 is 

shown the errors with 0.25rC   at 9600t  s . 

 

Table 2. Errors at 9600t  s  with 0.5   /m s . 

 

rC  h  t    ECBSGM [14] [5] 

0.125 200 50 -0.568169 2.18E-1 1.29 5.18E-1 

0.25 100 50 -0.142055 1.90E-1 3.25E-1 3.76E-1 

0.50 50 50 -0.032925 1.90E-1 1.98E-1 3.73E-1 

0.50 10 10 -0.027064 7.50E-3 7.51E-3  

0.50 1 1 -0.0.27064 7.50E-5 7.50E-5  

0.50 0.5 0.5 -0.498015 1.88E-5 1.88E-5  
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Table 3. Errors at 9600t  s  with 0.5   /m s  and 0.25rC  . 

 

  ECBSGM 

-10 0.9200226 

-5 0.4351456 

-1 0.1968777 

-0.5 0.1908966 

-0.142055 0.1896909 

0 0.1898749 

0.142055 0.1904208 

0.5 0.1933445 

1 0.2009420 

5 0.3666941 

10 0.6572077 

 

The absolute error distribution of the ECBSGM at 9600t   is illustrated in Figure 2. Maximum error 

occurs around the peak concentration. 

 

 
 

Figure 2. Absolute error distribution at 9600t   s  with 0.25rC   and 50t  . 

 

3.2. Second Problem 

 

As a second test problem, we deal with both advection and diffusion. The analytical solution to the one-

dimensional ADE of a Gaussian pulse of unit height over the domain  0,9  is given as 

 

 
2

01
( , ) exp

4 1 4 1

x x t
u x t

t t





  
  
   

 (18) 

 

where   is the velocity,   is diffusion coefficient and 0x  is the center of the initial Gaussian pulse 

[28]. 

 

The initial condition is chosen as the analytical value of the Eq. (18) for 0t   and the boundary 

conditions are chosen as 

 

(0, ) (9, ) 0.u t u t    

 

The results presented here are computed for time step 0.0125t   s . Parameters in the equation are 

used as 0.005   
2 /m s  and 0.8   /m s . Figure 3 shows the behavior of the numerical solutions for 
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various times until the simulation terminating time 5t  . Thus, the decay in time of the initial pulse is 

modeled. So that the effect of the diffusion term has been observed in this test problem. The absolute 

error distribution of the ECBSGM at 5t   is illustrated in Figure 4. 
 

 
 

Figure 3. Distributions of an initial Gaussian pulse 

 

 
 

Figure 4. Absolute error distribution at 5t   with 0.025h  , 0.0125t  . 

 

For comparison, the ADE is solved for various Courant numbers and computed errors at 5t   s  are 

presented in Table 4. 

 

Table 4. Error norm at 5t  , 0.8   /m s , 0.005   
2 /m s , 0.0125t  . 

 

rC  h    ECBSGM Method I [16] Method II [16] 

0.05 0.2 -0.238247 0.1326156 0.1253926 0.1361437 

0.10 0.1 -0.238247 0.0042296 0.0069553 0.0145554 

0.20 0.05 -0.200000 0.0008429 0.0012117 0.0002886 

0.40 0.025 -0.106431 0.0008426 0.0003071 0.0000181 

 

 

4. CONCLUSION 

 

In this paper, we have proposed a new algorithm for the numerical solution of the ADE. This algorithm 

is obtained by employing extended cubic B-spline functions to the well-known Galerkin finite element 

method. To see achievement of the method, two test problems is studied. The resulting numerical 

solutions for various Courant numbers are compared with the previous studies in Tables 2 and 4. 

Accordingly, we can say that the proposed method gives acceptable results. 
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